A proof of the twin primes conjecture

Diego Liberati

Consiglio Nazionale delle Ricerche	
Istituto di Elettronica e Ingegneria dell'Informazione e delle Telecomunicazioni	

Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano

Piazza Leonardo da Vinci 32
20133 Milano
Italy

Every natural number would be prime if it was not sieved by a multiple of a lesser prime.
Thus every prime other than 2 and 3 has to be in the form $6 \mathrm{k}-1$ or $6 \mathrm{k}+1$: each of such two arrays can not contain a multiple of 2 or 3 .

Both such arrays are infinite, but k stays finite even when tending to infinite: this is the key point.

In fact, both the amount of primes and composites, even exceeding k , stay also finite when k tends to infinite, thus multiples of primes greater than 3 can sieve each of the two said arrays in a finite amount of possibly different positions k, leaving anyway an infinite amount of positions k for which both $6 \mathrm{k}-1$ and $6 \mathrm{k}+1$ are primes, thus proving the conjecture.

