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Abstract

We discuss the gradient gauge invariance for the massive and massless fields described by
sedeonic second-order and first-order wave equations.

1 Introduction

The generalization of scalar Klein-Gordon wave equation and spinor Dirac equation on the basis
of wider class of multicomponenet wave functions is the subject of intensive investigations. In
particular, in recent years many attempts have been made to generalize these equations using
different algebras of hypercomplex numbers, such as four-component quaternions (including scalar
and vector) [1-4] and eight-component octonions (including scalar, vector (polar vector), pseu-
doscalar and pseudovector (axial vector)) [5-7]. The authors discuss the possibility of constructing
the field equations similar to the equations of electrodynamics but with a massive ”photon”. How-
ever, the resulting Proca-Maxwell equations are not gauge invariant [8-10]. On the other hand,
a consistent relativistic approach implies equally the space and time symmetries that require the
consideration of the extended sixteen-component space-time algebras. There are a few approaches
in the development of field theory on the basis of sixteen-component structures. One of them is
the application of hypernumbers sedenions, which are obtained from octonions by Cayley-Dickson
extension procedure [11-15]. But the essential imperfection of sedenions is their nonassociativity.
Another approach is based on the application of hypercomplex multivectors generating associative
space-time Clifford algebras [16]. However, the application of such sixteen-component structures is
considered in general as the abstract algebraic scheme enabling the factorization of Klein-Gordon
and Dirac operators.

Recently we proposed the alternative approach based on sixteen-component sedeons generat-
ing noncommutative but associative scalar-vector algebra [17]. The sedeons take into account the
properties of physical values with respect to the space-time inversion and realize the scalar-vector
representation of Poincare group. In present paper, we apply the sedeonic approach for the con-
struction of symmetric scalar-vector equations of massive and massless fields described by sedeonic
second-order and first-order wave equations. The main attention is focused on the discussion of
gradient gauge invariance of field equations.

2 Sedeonic space-time algebra

To begin with we briefly review the basic properties of sedeons. The sedeonic algebra encloses four
groups of values, which are differed with respect to spatial and time inversion.
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1. Absolute scalars (A) and absolute vectors ( ~A) are not transformed under spatial and time
inversion.

2. Time scalars (Bt) and time vectors ( ~Bt) are changed (in sign) under time inversion and are
not transformed under spatial inversion.

3. Space scalars (Cr) and space vectors (~Cr) are changed under spatial inversion and are not
transformed under time inversion.

4. Space-time scalars (Dtr) and space-time vectors ( ~Dtr) are changed under spatial and time
inversion.

The indexes t and r indicate the transformations (t for time inversion and r for spatial inversion),
which change the corresponding values. The space-time sedeon S̃ is defined by the following
expression:

S̃ = A + ~A + Bt + ~Bt + Cr + ~Cr + Dtr + ~Dtr. (1)

Here and further we indicate the sedeon by bold symbol with wave. The components of sedeon (1)
can be written in the sedeonic space-time basis as

A = e0Aa0,
~A = e0 (A1a1 + A2a2 + A3a3) ,
Bt = etBa0,
~Bt = et (B1a1 + B2a2 + B3a3) ,
Cr = erCa0,
~Cr = er (C1a1 + C2a2 + C3a3) ,
Dtr = etrDa0,
~Dtr = etr (D1a1 + D2a2 + D3a3) ,

(2)

where values a0, a1, a2, a3 are scalar-vector basis (a0 ≡ 1 is absolute scalar unit and the values
a1, a2, a3 are absolute unit vectors generating the right Cartesian basis) and values e0, et, er, etr

are space-time basis (e0 ≡ 1 is a absolute scalar unit; et is a time unit; er is a space unit; etr is a
space-time unit). Further we will omit the units a0 and e0 for simplicity.

The multiplication and commutation rules for the sedeonic absolute unit vectors a1, a2, a3

and space-time units et, er, etr are presented in the tables 1 and 2 respectively (in the tables and
further the value i is the imaginary unit (i2 = −1)). Note that sedeonic units et, er, etr commute
with a1, a2, a3.

Thus the sedeon S̃ is the complicated space-time object consisting of absolute scalar, time
scalar, space scalar, space-time scalar, absolute vector, time vector, space vector and space-time
vector.

In sedeonic algebra we assume the Clifford multiplication of vectors. For example, the sedeonic
product of two absolute vectors ~A and ~B can be presented in the following form:

~A~B =
(
~A · ~B

)
+

[
~A× ~B

]
. (3)

Here we denote the sedeonic scalar multiplication of two vectors (internal product) by symbol “·”
and round brackets (

~A · ~B
)

= A1B1 + A2B2 + A3B3, (4)

and sedeonic vector multiplication (external product) by symbol “×” and square brackets[
~A× ~B

]
= i (A2B3 −A3B2)a1 + i (A3B1 −A1B3)a2 + i (A1B2 −A2B1)a3. (5)

Note that in sedeonic algebra the definition of the vector product differs from analogous expression
in Gibbs-Heaviside vector algebra.
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Table 1:

Table 1.

a1 a2 a3

a1 1 ia3 −ia2

a2 −ia3 1 ia1

a3 ia2 −ia1 1

Table 2:

Table 2.

et er etr

et 1 ietr −ier

er −ietr 1 iet

etr ier −iet 1

3 Sedeonic second-order equation for massive field

Let us introduce the operators:

∂ =
1
c

∂

∂t
,

~∇ =
∂

∂x
a1 +

∂

∂y
a2 +

∂

∂z
a3,

m =
m0c

h̄
,

(6)

where c is the speed of light, m0 is the mass of quantum, h̄ is the Planck constant. Then the
sedeonic second-order wave equation for massive field [18] can be presenteted in the following
symmetric form: (

iet∂ − er
~∇− ietrm

) (
iet∂ − er

~∇− ietrm
)
W̃ = J̃, (7)

where W̃ is a sedeonic field potential, J̃ is a phenomenological sedeonic source of massive field.
Denoting a new operator

_

∇ =
(
iet∂ − er

~∇− ietrm
)

, (8)

the wave equation (7) can be rewritten in very compact form :
_

∇
_

∇ W̃ = J̃. (9)

Additionally we can introduce the filed strengths

Ẽ =
_

∇ W̃, (10)

then the wave equation (7) takes the following form:
_

∇ Ẽ = J̃. (11)

The sedeonic equation (11) is the system of Maxwell-like equations for the massive filed strengths.
Applying the operator

_

∇ to (11) we get the sedeonic wave equation for the field strengths
_

∇
_

∇ Ẽ =
_

∇J̃. (12)
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The equation (7) for potentials or the equations (11) (or (12 )) for field strengths describe the
massive field completely. From the viewpoint of symmetry these equations are invariant with
respect to the following replacement of potential:

W̃ ⇒ W̃ + F̃ +
_

∇G̃, (13)

where F̃ and G̃ are arbitrary sedeons satisfy the following conditions:

_

∇ F̃ = 0, (14)

_

∇
_

∇ G̃ = 0. (15)

The conditions (14) and (15) indicate that the potential W̃ is defined up to an additive arbitrary
function F̃ satisfying the homogeneous first-order wave equation (sedeonic Dirac equation) and
gradient of the arbitrary function G̃, which satisfies the homogeneous second-order wave equation
(sedeonic Klein-Gordon equation).

Besides, the equations (11) and (12) for field strengths are invariant with respect to the following
substitution:

Ẽ⇒ Ẽ + F̃ +
_

∇G̃. (16)

In addition, increasing the order of the equation leads to the additional symmetry. Particularly,
the equation (12) is invariant with respect to the replacement of source

J̃⇒ J̃ + F̃ +
_

∇G̃. (17)

All the invariant relations (13), (16) and (17) are the consequences of specific properties of the
operator

_

∇.
Let us consider the equations for massive field in details. We choose the field potential as

W̃ = ia1et − ia2er + a3 − ia4etr + ~A1er + ~A2et − ~A3etr + i ~A4, (18)

where components as and ~As are real functions of coordinates and time. Here and further the
index s = 1, 2, 3, 4. Also we take the field source in the following form:

J̃=− iρ1et + iρ2er − ρ3 + iρ4etr − ~j1er −~j2et +~j3etr − ~j4i, (19)

where ρs = 4πρ′
s (ρ′

s is the volume density of charge) and ~js = 4π
c
~j′
s (~j′

s is volume density of current).
Multiplying the operators in the left part of equation (7) and separating the values with different
space-time properties, we obtain the following wave equations for the components of potentials:(

∂2 −∆ + m2
)
as = ρs,(

∂2 −∆ + m2
)

~As = ~js,
(20)

where 4 is the Laplace operator. Taking into account the definition (10) we choose the sedeon of
field strength as

Ẽ = −ε1 + iε2etr + iε3et − iε4er + ~E1etr − i ~E2 + ~E3er + ~E4et, (21)
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so we have the following definitions for scalar εs and vector ~Es field strengths:

ε1 = ∂a1 +
(

~∇ · ~A1

)
+ ma4,

ε2 = ∂a2 +
(

~∇ · ~A2

)
−ma3,

ε3 = ∂a3 +
(

~∇ · ~A3

)
+ ma2,

ε4 = ∂a4 +
(

~∇ · ~A4

)
−ma1,

~E1 = −∂ ~A1 − ~∇a1 + i
[
~∇× ~A2

]
+ m ~A4,

~E2 = −∂ ~A2 − ~∇a2 − i
[
~∇× ~A1

]
−m ~A3,

~E3 = −∂ ~A3 − ~∇a3 − i
[
~∇× ~A4

]
+ m ~A2,

~E4 = −∂ ~A4 − ~∇a4 + i
[
~∇× ~A3

]
−m ~A1.

(22)

Thus, we have

_

∇
(
ia1et − ia2er + a3 − ia4etr + ~A1er + ~A2et − ~A3etr + i ~A4

)
= −ε1 + iε2etr + iε3et − iε4er + ~E1etr − i ~E2 + ~E3er + ~E4et,

(23)

and the initial wave equation (7) takes the following form (see (11)) :

_

∇
(
−ε1 + iε2etr + iε3et − iε4er + ~E1etr − i ~E2 + ~E3er + ~E4et

)
= −iρ1et + iρ2er − ρ3 + iρ4etr − ~j1er −~j2et +~j3etr − ~j4i.

(24)

Producing the action of the operator on the left side of the equation (24) and separating the values
with different space-time properties, we obtain a system of equations for the field strengths, similar
to the system of Maxwell equations in electrodynamics:

∂ε1 +
(

~∇ · ~E1

)
−mε4 = ρ1 ,

∂ε2 +
(

~∇ · ~E2

)
+ mε3 = ρ2,

∂ε3 +
(

~∇ · ~E3

)
−mε2 = ρ3,

∂ε4 +
(

~∇ · ~E4

)
+ mε1 = ρ4,

∂ ~E1 + ~∇ε1 + i
[
~∇× ~E2

]
+ m~E4 = −~j1,

∂ ~E2 + ~∇ε2 − i
[
~∇× ~E1

]
−m~E3 = −~j2,

∂ ~E3 + ~∇ε3 − i
[
~∇× ~E4

]
+ m~E2 = −~j3,

∂ ~E4 + ~∇ε4 + i
[
~∇× ~E3

]
−m~E1 = −~j4.

(25)

On the other hand, separating in equation (12) the terms with different space-time properties we
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get the following wave equation for the field strength components εs and ~Es:(
∂2 −∆ + m2

)
ε1 = − ∂ρ1 −

(
~∇ ·~j1

)
−mρ4,(

∂2 −∆ + m2
)
ε2 = −∂ρ2 −

(
~∇ ·~j2

)
+ mρ3,(

∂2 −∆ + m2
)
ε3 = −∂ρ3 −

(
~∇ ·~j3

)
−mρ2,(

∂2 −∆ + m2
)
ε4 = −∂ρ4 −

(
~∇ ·~j4

)
+ mρ1,(

∂2 −∆ + m2
)

~E1 = ∂~j1 + ~∇ρ1 − i
[
~∇×~j2

]
−m~j4,(

∂2 −∆ + m2
)

~E2 = ∂~j2 + ~∇ρ2 + i
[
~∇×~j1

]
+ m~j3,(

∂2 −∆ + m2
)

~E3 = ∂~j3 + ~∇ρ3 + i
[
~∇×~j4

]
−m~j2,(

∂2 −∆ + m2
)

~E4 = ∂~j4 + ~∇ρ4 − i
[
~∇×~j3

]
+ m~j1.

(26)

Let us consider the gauge invariance for the components of massive field. We take the arbitrary
sedeons F̃ and G̃ in the following form:

F̃ = if1et − if2er + f3 − if4etr + ~F1er + ~F2et − ~F3etr + i ~F4, (27)

G̃ = −g1 + ig2etr + ig3et − ig4er − ~G1etr + i ~G2 − ~G3er − ~G4et. (28)

Then the replacement (13) leads us to the following system of substitutions:

a1 ⇒ a1 + f1 − ∂g1 +
(

~∇ · ~G1

)
+ mg4,

a2 ⇒ a2 + f2 − ∂g2 +
(

~∇ · ~G2

)
−mg3,

a3 ⇒ a3 + f3 − ∂g3 +
(

~∇ · ~G3

)
+ mg2,

a4 ⇒ a4 + f4 − ∂g4 +
(

~∇ · ~G4

)
−mg1,

~A1 ⇒ ~A1 + ~F1 − ∂ ~G1 + ~∇g1 − i
[
~∇× ~G2

]
−m~G4,

~A2 ⇒ ~A2 + ~F2 − ∂ ~G2 + ~∇g2 + i
[
~∇× ~G1

]
+ m~G3,

~A3 ⇒ ~A3 + ~F3 − ∂ ~G3 + ~∇g3 + i
[
~∇× ~G4

]
−m~G2,

~A4 ⇒ ~A4 + ~F4 − ∂ ~G4 + ~∇g4 − i
[
~∇× ~G3

]
+ m~G1.

(29)

It is easy to check that these replacements do not change the field strengths definitions (22) and
corresponding equations (25) and (26). Analogous substitutions for the field strengths have the
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following form:
ε1 ⇒ ε1 − f3 + ∂g3 −

(
~∇ · ~G3

)
−mg2,

ε2 ⇒ ε2 − f4 + ∂g4 −
(

~∇ · ~G4

)
+ mg1,

ε3 ⇒ ε3 + f1 − ∂g1 +
(

~∇ · ~G1

)
+ mg4,

ε4 ⇒ ε4 + f2 − ∂g2 +
(

~∇ · ~G2

)
−mg3,

~E1 ⇒ ~E1 + ~F3 − ∂ ~G3 + ~∇g3 + i
[
~∇× ~G4

]
−m~G2,

~E2 ⇒ ~E2 + ~F4 − ∂ ~G4 + ~∇g4 − i
[
~∇× ~G3

]
+ m~G1,

~E3 ⇒ ~E3 − ~F1 + ∂ ~G1 − ~∇g1 + i
[
~∇× ~G2

]
+ m~G4,

~E4 ⇒ ~E4 − ~F2 + ∂ ~G2 − ~∇g2 − i
[
~∇× ~G1

]
−m~G3.

(30)

These substitutions do not change the equations (25).
Let us discuss the Proca-Maxwell equations for massive fields. If we consider the fields produced

by a one type of sources ρ1 and ~j1 and take very strict condition, that the massive field is described
only by a1 and ~A1 potentials:

W̃=ia1et + ~A1er, (31)

then we have only the following nonzero field’s strengths (see (22)):

ε1 = ∂a1 +
(

~∇ · ~A1

)
,

ε4 = −ma1,

~E1 = −∂ ~A1 − ~∇a1,

~E2 = −i
[
~∇× ~A1

]
,

~E4 = −m ~A1.

(32)

Moreover, often they assume the charge conservation

∂ρ1 + (∇ ·~j1) = 0, (33)

and choose the scalar field ε1 equal to zero (see the first equation in (26). It is equivalent to the
following gauge condition:

∂a1 +
(

~∇ · ~A1

)
= 0, (34)

which coincides with Lorentz gauge in electrodynamics. Then the wave equation (24) can be reduce
to (

iet∂ − er
~∇− ietrm

) (
−iε4er + ~E1etr − i ~E2 + ~E4et

)
= −iρ1et −~j1er,

(35)
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and the system (25) takes the following form:(
~∇ · ~E1

)
−mε4 = ρ1 ,(

~∇ · ~E2

)
= 0,

∂ε4 +
(

~∇ · ~E4

)
= 0,

∂ ~E1 + i
[
~∇× ~E2

]
+ m~E4 = −~j1,

∂ ~E2 − i
[
~∇× ~E1

]
= 0,

−i
[
~∇× ~E4

]
+ m~E2 = 0,

∂ ~E4 + ~∇ε4 −m~E1 = 0.

(36)

The system (36) is the analog of Proca-Maxwell equations with considerably reduced symmetry
and broken gauge invariance.

4 Second-order equation for massless field

Let us consider the symmetric equation for massless electromagnetic field taking into account the
hypothetical magnetic charge (magnetic monopole) and corresponding magnetic current [19,20].
In massless case the wave equation (7) takes the following form:(

iet∂ − er
~∇

) (
iet∂ − er

~∇
)
W̃ = J̃. (37)

When the mass of the field quantum equal to zero, the equations (25) are disengaged and the field
can be described by the eight-component potential

W̃ = ia1et − ia2er + ~A1er + ~A2et, (38)

and eight-component source

J̃=− iρ1et + iρ2er − ~j1er −~j2et. (39)

Here a1 and ~A1 are scalar and vector electric potentials; a2 and ~A2 are scalar and vector magnetic
potentials; ρ1 and ~j1 are the volume density of electric charge and current; ρ2 and ~j2 are the volume
density of magnetic charge and current. We can introduce the scalar and vector field strengths
according the following definitions:

ε1 = ∂a1 +
(

~∇ · ~A1

)
,

ε2 = ∂a2 +
(

~∇ · ~A2

)
,

~E1 = −∂ ~A1 − ~∇a1 + i
[
~∇× ~A2

]
,

~E2 = −∂ ~A2 − ~∇a2 − i
[
~∇× ~A1

]
.

(40)

Taking into account (40) we get(
iet∂ − er

~∇
) (

ia1et − ia2er + ~A1er + ~A2et

)
= −ε1 + iε2etr + ~E1etr − i ~E2,

(41)

and wave equation (37) can be rewritten as(
iet∂ − er

~∇
) (
−ε1 + iε2etr + ~E1etr − i ~E2

)
= −iρ1et + iρ2er − ~j1er −~j2et.

(42)
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Producing the action of the operator on the left side of equation (42) and separating the terms
with different space-time properties, we obtain the symmetric system of the equations for the field
strengths

∂ε1 +
(

~∇ · ~E1

)
= ρ1 ,

∂ε2 +
(

~∇ · ~E2

)
= ρ2,

∂ ~E1 + ~∇ε1 + i
[
~∇× ~E2

]
= −~j1,

∂ ~E2 + ~∇ε2 − i
[
~∇× ~E1

]
= −~j2.

(43)

Corresponding wave equations for the field strengths have the following form:(
∂2 −∆

)
ε1 = − ∂ρ1 −

(
~∇ ·~j1

)
,(

∂2 −∆
)
ε2 = −∂ρ2 −

(
~∇ ·~j2

)
,(

∂2 −∆
)

~E1 = ~∇ρ1 + ∂~j1 − i
[
~∇×~j2

]
,(

∂2 −∆
)

~E2 = ~∇ρ2 + ∂~j2 + i
[
~∇×~j1

]
.

(44)

The definitions of massless field strengths (40) and the equations (44) are not changed under
the following replacements:

a1 ⇒ a1 + f1 − ∂g1 +
(

~∇ · ~G1

)
,

a2 ⇒ a2 + f2 − ∂g2 +
(

~∇ · ~G2

)
,

~A1 ⇒ ~A1 + ~F1 − ∂ ~G1 + ~∇g1 − i
[
~∇× ~G2

]
,

~A2 ⇒ ~A2 + ~F2 − ∂ ~G2 + ~∇g2 + i
[
~∇× ~G1

]
.

(45)

The gauge conditions (45) include the gradient invariance relations well known in classical electro-
dynamics [21] as a particular case, when values f1, f2, ~F1, ~F2, ~G1, ~G2 are equal to zero. Analogously
the equation (43) is not changed under following substitutions for the field strengths :

ε1 ⇒ ε1 − f3 + ∂g3 −
(

~∇ · ~G3

)
,

ε2 ⇒ ε2 − f4 + ∂g4 −
(

~∇ · ~G4

)
,

~E1 ⇒ ~E1 + ~F3 − ∂ ~G3 + ~∇g3 + i
[
~∇× ~G4

]
,

~E2 ⇒ ~E2 + ~F4 − ∂ ~G4 + ~∇g4 − i
[
~∇× ~G3

]
.

(46)

The system of equations (43) corresponds to the usual system of Maxwell equations. Let us
show it. If we take the scalar fields ε1 and ε2 equal to zero then the potentials satisfy the Lorentz
gauge conditions for electric and magnetic potentials:

∂a1 +
(

~∇ · ~A1

)
= 0,

∂a2 +
(

~∇ · ~A2

)
= 0,

(47)

and as it follows from (44) we have charge conservation

∂ρ1 +
(

~∇ ·~j1
)

= 0,

∂ρ2 +
(

~∇ ·~j2
)

= 0.
(48)
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we can choose that Then we obtain the following system:(
~∇ · ~E1

)
= ρ1,(

~∇ · ~E2

)
= ρ2,

∂ ~E1 + i
[
~∇× ~E2

]
= −~j1,

∂ ~E2 − i
[
~∇× ~E1

]
= −~j2.

(49)

Here ~E1 is the electric field strength; ~E2 is the magnetic field strength. Taking into account the
experimental fact that in our part of the universe there are no magnetic charges and currents
(ρ2 = 0, ~j2 = 0), we obtain the system of equations(

~∇ · ~E1

)
= ρ1,(

~∇ · ~E2

)
= 0,

∂ ~E1 + i
[
~∇× ~E2

]
= −~j1,

∂ ~E2 − i
[
~∇× ~E1

]
= 0,

(50)

which coincides with the conventional system of Maxwell’s equations.

5 First-order wave equation of massive field

Let us consider a massive field, which is described by the sedeonic first-order wave equation [18]:
_

∇W̃ = Ĩ. (51)

Here Ĩ is the phenomenological field source. The field source can be chosen in the following sedeonic
form:

Ĩ = −β1 + iβ2etr + iβ3et − iβ4er +~l1etr − i~l2 +~l3er +~l4et (52)

where βs = 4πβ′
s (β′

s are the volume density of charges) and ~ls = 4π
c
~l′s (~l′s are the corresponding

volume density of currents). Taking the potential W̃ in the form of (18) we can rewrite the equation
(51) in the following expanded form

_

∇
(
ia1et − ia2er + a3 − ia4etr + ~A1er + ~A2et − ~A3etr + i ~A4

)
= −β1 + iβ2etr + iβ3et − iβ4er +~l1etr − i~l2 + ~f3er +~l4et.

(53)

This sedeonic equation is equivalent to the following system:

∂a1 +
(

~∇ · ~A1

)
+ ma4 = β1,

∂a2 +
(

~∇ · ~A2

)
−ma3 = β2,

∂a3 +
(

~∇ · ~A3

)
+ ma2 = β3,

∂a4 +
(

~∇ · ~A4

)
−ma1 = β4,

∂ ~A1 + ~∇a1 − i
[
~∇× ~A2

]
−m ~A4 = −~l1,

∂ ~A2 + ~∇a2 + i
[
~∇× ~A1

]
+ m ~A3 = −~l2,

∂ ~A3 + ~∇a3 + i
[
~∇× ~A4

]
−m ~A2 = −~l3,

∂ ~A4 + ~∇a4 − i
[
~∇× ~A3

]
+ m ~A1 = −~l4.

(54)
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Applying the operator
_

∇ to the equation (51) we obtain the following second-order wave equa-
tion:

_

∇
_

∇ W̃ =
_

∇ Ĩ, (55)

which is equivalent to the following system:(
∂2 −∆ + m2

)
a1 = ∂β1 +

(
~∇ ·~l1

)
−md4,(

∂2 −∆ + m2
)
a2 = ∂β2 +

(
~∇ ·~l2

)
+ md3,(

∂2 −∆ + m2
)
a3 = ∂β3 +

(
~∇ ·~l3

)
−md2,(

∂2 −∆ + m2
)
a4 = ∂β4 +

(
~∇ ·~l4

)
+ md1,(

∂2 −∆ + m2
)

~A1 = −∂~l1 − ~∇β1 − i
[
~∇×~l2

]
−m~l4,(

∂2 −∆ + m2
)

~A2 = −∂~l2 − ~∇β2 + i
[
~∇×~l1

]
+ m~l3,(

∂2 −∆ + m2
)

~A3 = −∂~l3 − ~∇β3 + i
[
~∇×~l4

]
−m~l2,(

∂2 −∆ + m2
)

~A4 = −∂~l4 − ~∇β4 − i
[
~∇×~l3

]
+ m~l1.

(56)

It can be seen that as before the equation (51) is invariant with respect to the following potential
replacement:

W̃ ⇒ W̃ + F̃ +
_

∇G̃. (57)

In addition, the equation (55) is invariant for the following substitution for the source:

Ĩ⇒ Ĩ + F̃ +
_

∇G̃. (58)

The generalization of all considerations for the case of massless field described by first-order wave
equation is evident.

6 Concluding remarks

Thus it was shown that the approach based on sedeonic potentials and sedeonic space-time opera-
tors allows us to formulate the symmetric scalar-vector equations describing massive and massless
fields. The gradient gauge invariance of the sedeonic equations is the specific property of the op-
erator (iet∂ − er

~∇− ietrm) and can be generalized to a wider class of scalar-vector substitutions.
On the example of Proca-Maxwell equations we have shown that the reduction of the number of
potential components leads us to the breaking of symmetry and to the gauge invariance viola-
tion. On the other hand, we have shown that the symmetric definition of the field strengths in
electrodynamics using both electric and magnetic potentials enables the generalization of gradient
invariance on the considerably wider class of gauge functions.
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