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Abstract 

By starting from a quaternionic separable Hilbert space as a base model the paper uses the 

capabilities and the restrictions of this model in order to investigate the origins of the electric 

charge and the electric fields. Also other discrete properties such as color charge and spin are 

considered. 

The paper exploits all known aspects of the quaternionic number system and it uses 

quaternionic differential calculus rather than Maxwell based differential calculus. 

The paper presents fields as mostly continuous quaternionic functions. The electric field is 

compared with another basic field that acts as a background embedding continuum. The 

behavior of photons is used in order to investigate the long range behavior of these fields. 

 

 

If the paper introduces new science, then it has fulfilled its purpose. 
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1 Introduction 
Indications suggest that electrical charges are properties of space. The major indication is the 

fact that quaternionic number systems exist in several versions that differ in their symmetry 

properties. These symmetry properties are related to the way that these versions are ordered.  

As a consequence, it makes sense to introduce the notion of types of spaces where each type has 

its own symmetry flavor. An important category of these spaces are symmetry centers. 

Symmetry centers float on a covering background space that has its own symmetry flavor. 

Within a separable Hilbert space such types of spaces can coexist as eigenspaces of 

corresponding types of quaternionic operators. That is why we will use an infinite dimensional 

separable quaternionic Hilbert space ℌ as our base model.  

Each infinite dimensional separable quaternionic Hilbert space owns a companion Gelfand triple 

ℋ, which is a non-separable Hilbert space. In the separable Hilbert space ℌ the eigenspaces of 

operators are countable. In the Gelfand triple ℋ the eigenspaces of operators can be continuums. 

In the separable Hilbert space we introduce the concept of well-ordered normal operators. We 

will define a well-ordered reference operator ℛ whose eigenspace acts as a model-wide 

parameter space. The well-ordered reference operator that provides the countable parameter 

space in the separable Hilbert space ℌ owns a companion reference operator ℜ in the Gelfand 

triple ℋ that provides a continuum eigenspace.  

Fields will appear as continuum eigenspaces of normal operators that reside in the Gelfand 

triple. We will show that fields can be defined as quaternionic functions that use the eigenspace 

of the reference operator ℜ as their parameter space. 

Symmetry centers reside in the separable Hilbert space and are maintained in finite dimensional 

subspaces. Symmetry centers exist in a small number of types that differ in the corresponding 
symmetry flavor. Corresponding normal operators 𝕾𝑥 map these subspaces onto themselves. 

Superscript  𝑥 refers to the type dependent properties of the symmetry center. The center 

location of the symmetry center corresponds to the value of a quaternionic mapping function of 

its quaternionic location in the parameter space that is defined via the well-ordered reference 

operator ℛ and its companion ℜ. That value is a location in a background continuum ℭ. ℜ is the 
parameter space of the quaternionic function ℭ(𝑞) that defines continuum ℭ. 
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2 Quaternions 
Quaternions can be interpreted as combinations of a real scalar and a three dimensional real 

vector. The vector forms the imaginary part of the quaternion. The combination supports 

numeric arithmetic. The vector part introduces a non-commutative multiplication. 

We will indicate the real part of quaternion 𝑎 by subscripted 𝑎0 and the vector part will be put in 

bold font face 𝒂. 

𝑎 = 𝑎0 + 𝒂 

𝑎∗ is the quaternionic conjugate of 𝑎.  

𝑎∗ = 𝑎0 − 𝒂 

 

The sum of two quaternions is defined by: 

𝑐 = 𝑐0 + 𝒄 = 𝑎 + 𝑏 

𝑐0 = 𝑎0 + 𝑏0 

𝒄 = 𝒂 + 𝒃 

 

The product rule is defined by: 

𝑐 = 𝑎 𝑏 = (𝑎0 + 𝒂)(𝑏0 + 𝒃) = 𝑎0 𝑏0 − 〈𝒂, 𝒃〉 + 𝑎0𝒃 + 𝑏0𝒂 ± 𝒂 × 𝒃 

𝑐0 = 𝑎0 𝑏0 − 〈𝒂, 𝒃〉 

𝒄 = 𝑎0𝒃 + 𝑏0𝒂 ± 𝒂 × 𝒃 

〈𝒂, 𝒃〉 is the inner vector product. 𝒂 × 𝒃 is the outer vector product. 

The ± sign signalizes the choice between a right handed and a left handed external vector 

product. This choice indicates that quaternionic number systems exist in multiple versions. Due 

to the four dimensions of quaternions will quaternionic number system exist in sixteen different 

symmetry flavors. The handedness depends on the symmetry flavor.  

 

(𝑎 𝑏)∗ = 𝑏∗ 𝑎∗ 

 

The norm of a quaternion is defined by: 

|𝑎| = √𝑎𝑎∗ = √𝑎0𝑎0 + 〈𝒂, 𝒂〉 

The norm of a quaternionic function is defined by: 

‖𝑓‖ = ∫𝑓(𝑞)𝑓∗(𝑞)
𝑞

 𝑑𝑞 

  

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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3 Quaternionic Hilbert spaces 
Separable Hilbert spaces are linear vector spaces in which an inner product is defined. This 

inner product relates each pair of Hilbert vectors. The value of that inner product must be a 

member of a division ring. Suitable division rings are real numbers, complex numbers and 

quaternions. This paper uses quaternionic Hilbert spaces. 

Paul Dirac introduced the bra-ket notation that eases the formulation of Hilbert space habits [5]. 

〈𝑥|𝑦〉 = 〈𝑦|𝑥〉∗ 

〈𝑥 + 𝑦|𝑧〉 = 〈𝑥|𝑧〉 + 〈𝑦|𝑧〉 

〈𝛼𝑥|𝑦〉 = 𝛼 〈𝑥|𝑦〉 

〈𝑥|𝛼𝑦〉 = 〈𝑥|𝑦〉 𝛼∗ 

〈𝑥| is a bra vector. |𝑦〉 is a ket vector.  𝛼 is a quaternion. 

This paper considers Hilbert spaces as no more and no less than structured storage media for 

dynamic geometrical data that have an Euclidean signature. Quaternions are ideally suited for 

the storage of such data. Quaternionic Hilbert spaces are described in “Quaternions and 

quaternionic Hilbert spaces” [8]. 

The operators of separable Hilbert spaces have countable eigenspaces. Each infinite dimensional 

separable Hilbert space owns a Gelfand triple. The Gelfand triple embeds this separable Hilbert 

space and offers as an extra service operators that feature continuums as eigenspaces. In the 

corresponding subspaces the definition of dimension loses its sense. 

3.1 Representing continuums and continuous functions 
Operators map Hilbert vectors onto other Hilbert vectors. Via the inner product the operator 𝑇 

may be linked to an adjoint operator 𝑇†.  

〈𝑇𝑥|𝑦〉 ≡ 〈𝑥|𝑇†𝑦〉 

〈𝑇𝑥|𝑦〉 = 〈𝑦|𝑇𝑥〉∗ = 〈𝑇†𝑦|𝑥〉∗ 

A linear quaternionic operator 𝑇, which owns an adjoint operator 𝑇† is normal when 

𝑇† 𝑇 =  𝑇 𝑇†  

𝑇0 = (𝑇 + 𝑇†)/2 is a self adjoint operator and 𝑻 = (𝑇 − 𝑇†)/2 is an imaginary normal operator. 

Self adjoint operators are also Hermitian operators. Imaginary normal operators are also anti-

Hermitian operators. 

By using reverse bra-ket notation, operators that reside in the Hilbert space and correspond to 

continuous functions, can easily be defined by starting from an orthonormal base of vectors. In 

this base the vectors are normalized and are mutually orthogonal. The vectors span a subspace 

of the Hilbert space. This works both in separable Hilbert spaces as well as in non-separable 

Hilbert spaces.  

Let {𝑞𝑖} be the set of rational quaternions in a selected quaternionic number system and let 
{|𝑞𝑖〉} be the set of corresponding base vectors. They are eigenvectors of a normal operator ℛ =
|𝑞𝑖〉𝑞𝑖〈𝑞𝑖|. Here we enumerate the base vectors with index 𝑖. 

ℛ = |𝑞𝑖〉𝑞𝑖〈𝑞𝑖|  

(1) 

(2) 

(3) 

(4) 

(1) 

(2) 

(3) 

(4) 
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ℛ is the configuration parameter space operator.  

ℛ0 = (ℛ + ℛ†)/2 is a self-adjoint operator. Its eigenvalues can be used to order the 

eigenvectors. The ordered eigenvalues can be interpreted as progression values. 

𝓡 = (ℛ −  ℛ†)/2 is an imaginary operator. Its eigenvalues can be used to order the 

eigenvectors. The eigenvalues can be interpreted as spatial values and can be ordered in several 

ways. 

 

Let 𝑓(𝑞) be a quaternionic function. 

𝑓 = |𝑞𝑖〉𝑓(𝑞𝑖)〈𝑞𝑖|  

𝑓 defines a new operator that is based on function 𝑓(𝑞). Here we suppose that the target values 

of 𝑓 belong to the same version of the quaternionic number system as its parameter space does. 

Operator 𝑓 has a countable set of discrete quaternionic eigenvalues. 

For this operator the reverse bra-ket notation is a shorthand for 

〈𝑥|𝑓 𝑦〉 = ∑〈𝑥|𝑞𝑖〉𝑓(𝑞𝑖)〈𝑞𝑖|𝑦〉

𝑖

 

In a non-separable Hilbert space, such as the Gelfand triple, the continuous function ℱ(𝑞) can be 

used to define an operator, which features a continuum eigenspace. 

 

ℱ = |𝑞〉ℱ(𝑞)〈𝑞|  

 

Via the continuous quaternionic function ℱ(𝑞), the operator ℱ defines a curved continuum ℱ. 

This operator and the continuum reside in the Gelfand triple, which is a non-separable Hilbert 

space. 

 

ℜ = |𝑞〉𝑞〈𝑞| 

 

The function ℱ(𝑞) uses the eigenspace of the reference operator ℜ as a flat parameter space that 

is spanned by a quaternionic number system {𝑞}. The continuum ℱ represents the target space 

of function ℱ(𝑞).  

Here we no longer enumerate the base vectors with index 𝑖. We just use the name of the 

parameter. If no conflict arises, then we will use the same symbol for the defining function, the 

defined operator and the continuum that is represented by the eigenspace. 

For the shorthand of the reverse bra-ket notation of operator ℱ the integral over 𝑞 replaces the 

summation over 𝑞𝑖. 

 

〈𝑥|ℱ 𝑦〉 = ∫〈𝑥|𝑞〉ℱ(𝑞)〈𝑞|𝑦〉
𝑞

 𝑑𝑞 

(5) 

(6) 

(7) 

(8) 

(9) 
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Remember that quaternionic number systems exist in several versions, thus also the operators 𝑓 

and ℱ exist in these versions. The same holds for the parameter space operators. When relevant, 

we will use superscripts in order to differentiate between these versions.  

Thus, operator 𝑓𝑥 = |𝑞𝑖
𝑥〉𝑓𝑥(𝑞𝑖

𝑥)〈𝑞𝑖
𝑥| is a specific version of operator 𝑓. Function 𝑓𝑥(𝑞𝑖

𝑥) uses 

parameter space ℛ𝑥.  

Similarly, ℱ𝑥 = |𝑞𝑥〉ℱ𝑥(𝑞𝑥)〈𝑞𝑥| is a specific version of operator ℱ. Function ℱ𝑥(𝑞𝑥) and 

continuum ℱ𝑥 use parameter space ℜ𝑥. 

In general the dimension of a subspace loses its significance in the non-separable Hilbert space.  

The continuums that appear as eigenspaces in the non-separable Hilbert space ℋ can be 

considered as quaternionic functions that also have a representation in the corresponding 

infinite dimensional separable Hilbert space ℌ. Both representations use a flat parameter space 

ℜ or ℛ that is spanned by quaternions. ℛ is spanned by rational quaternions. 

The parameter space operators will be treated as reference operators. The rational quaternionic 

eigenvalues {𝑞𝑖} that occur as eigenvalues of the reference operator ℛ in the separable Hilbert 

space map onto the rational quaternionic eigenvalues {𝑞𝑖} that occur as subset of the 

quaternionic eigenvalues {𝑞} of the reference operator ℜ in the Gelfand triple. In this way the 

reference operator ℛ in the infinite dimensional separable Hilbert space ℌ relates directly to the 

reference operator ℜ, which resides in the Gelfand triple ℋ. 
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4 Well-ordered reference operators 
The eigenvalues of a normal operator 𝑇 that resides in a separable Hilbert space can be ordered 

with respect to the real part of the eigenvalues. Operator 𝑇0 = (𝑇 +  𝑇†)/2 is the corresponding 

self-adjoint operator. If each real value occurs only once, then the operator 𝑇 and its adjoint 𝑇† 
can be well-ordered. The imaginary part of the eigenvalues can then still be ordered in different 

ways. Operator 𝑻 = (𝑇 −  𝑇†)/2 is the corresponding anti-Hermitian operator. For example it 

can be ordered according to Cartesian coordinates or according to spherical coordinates. Also 

each of these orderings can be done in different ways. 

The property of being well-ordered is restricted to operators with countable eigenspaces. 

However, via the defining functions, the well-orderedness can be transferred to the 

corresponding operator in the Gelfand triple.  

 Progression ordering 
A single self-adjoint reference operator that offers an infinite set of rational eigenvalues can 

synchronize a category of well-ordered normal operators. We use ℛ0 for this purpose. The 

ordered eigenvalues of this self-adjoint operator act as progression values. In this way the 

infinite dimensional separable Hilbert space owns a model wide clock. With this choice the 

separable Hilbert space steps with model-wide progression steps. 

The selected well-ordered normal reference operator ℛ that resides in an infinite dimensional 

separable quaternionic Hilbert space is used in the specification of the companion quaternionic 

Gelfand triple. There it corresponds to reference operator ℜ. In that way progression steps in 

the separable Hilbert space and flows in the companion Gelfand triple. Both reference operators 

will be used to provide parameter spaces. 

The countable set of progression values of the Hermitian part ℛ0 = (ℛ +  ℛ†)/2 of the well-

ordered reference operator ℛ can be used to enumerate other ordered sequences. 

 Cartesian ordering 
The whole separable Hilbert space can at the same time be spanned by the eigenvectors of a 

reference operator whose eigenvalues are well-ordered with respect to the real parts of the 

eigenvalues, while the imaginary parts are ordered with respect to a Cartesian coordinate 

system.  

For Cartesian ordering, having an origin is not necessary. In affine Cartesian ordering only the 

direction of the ordering is relevant. Affine Cartesian ordering exists in eight symmetry flavors. 

Cartesian ordering supposes a unique orientation of the Cartesian axes. 

The well-ordered reference operator ℛ is supposed to feature affine Cartesian ordering.  

 Spherical ordering 
Spherical ordering starts with a selected Cartesian set of coordinates. In this case the origin is at 

a unique center location. Spherical ordering can be done by first ordering the azimuth and after 

that the polar angle is ordered. Finally, the radial distance from the center can be ordered. 

Another procedure is to start with the polar angle, then the azimuth and finally the radius. Such, 

spherical orderings may create a symmetry center. Since the ordering starts with a selected 

Cartesian coordinate system, spherical ordering will go together with affine Cartesian ordering.  

Each symmetry center is described by the eigenspaces of an anti-Hermitian operator 𝕾𝑥 that 

map a finite dimensional subspace of Hilbert space ℌ onto itself. Superscript  𝑥 refers to the 
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ordering type of the symmetry center. 𝕾𝑥 has no Hermitian part. Only through its ordering it can 

synchronize with progression steps. 

5 Symmetry flavor 
Quaternions can be mapped to Cartesian coordinates along the orthonormal base vectors 1, 𝒊, 𝒋 

and 𝒌; with 𝒊𝒋 = 𝒌  

Due to the four dimensions of quaternions, quaternionic number systems exist in 16 well-

ordered versions {𝑞𝑥} that differ only in their discrete Cartesian symmetry set. The quaternionic 

number systems {𝑞𝑥} correspond to 16 versions {𝑞𝑖
𝑥} of rational quaternions.  

Half of these versions are right handed and the other half are left handed. Thus the handedness 

is influenced by the symmetry flavor. 

The superscript  𝑥 can be  ⓪,  ①,  ②,  ③,  ④,  ⑤,  ⑥,  ⑦,  ⑧,  ⑨,  ⑩,  ⑪,  ⑫,  ⑬,  ⑭, or ⑮.  

This superscript represents the symmetry flavor of the indexed subject. 

The reference operator ℛ⓪ = |𝑞𝑖
⓪

〉 𝑞𝑖
⓪

〈𝑞𝑖
⓪

| in separable Hilbert space ℌ maps into the 

reference operator ℜ⓪ = |𝑞⓪〉𝑞⓪〈𝑞⓪| in Gelfand triple ℋ. 

The symmetry flavor of the symmetry center 𝕾𝑥, which is maintained by operator 

𝕾𝑥 = |𝖘𝑖
𝑥〉𝖘𝑖

𝑥〈𝖘𝑖
𝑥| is determined by its Cartesian ordering and then compared with the reference 

symmetry flavor, which is the symmetry flavor of the reference operator ℛ⓪.  

Now the symmetry related charge follows in three steps. 

1. Count the difference of the spatial part of the symmetry flavor of 𝕾𝑥 with the spatial part 

of the symmetry flavor of reference operator ℛ⓪. 

2. If the handedness changes from R to L, then switch the sign of the count. 

3. Switch the sign of the result for anti-particles. 

 

Symmetry flavor 
Ordering 
x   y   z    τ 

Super 
script 

Handedness 
Right/Left 

Color 
charge 

Electric 
charge * 3 

Symmetry center type. 
Names are taken from the 
standard model 

 ⓪ R N +0 neutrino 

 ① L R −1 down quark 

 ② L G −1 down quark 

 ③ L B −1 down quark 

 ④ R B +2 up quark 

 ⑤ R G +2 up quark 

 ⑥ R R +2 up quark 

 ⑦ L N −3 electron 

 ⑧ R N +3 positron 

 ⑨ L R −2 anti-up quark 

 ⑩ L G −2 anti-up quark 

 ⑪ L B −2 anti-up quark 

 ⑫ R B +1 anti-down quark 

 ⑬ R R +1 anti-down quark 

 ⑭ R G +1 anti-down quark 

 ⑮ L N −0 anti-neutrino 
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Per definition, members of coherent sets {𝑎𝑖
𝑥} of quaternions all feature the same symmetry 

flavor that is marked by superscript  𝑥. 

Also continuous functions and continuums feature a symmetry flavor. Continuous quaternionic 

functions 𝜓𝑥(𝑞𝑥) and corresponding continuums do not switch to other symmetry flavors  𝑦.  

The reference symmetry flavor 𝜓𝑦(𝑞𝑦) of a continuous function 𝜓𝑥(𝑞𝑦) is the symmetry flavor 
of the parameter space {𝑞𝑦}.  

If the continuous quaternionic function describes the density distribution of a set {𝑎𝑖
𝑥} of 

discrete objects 𝑎𝑖
𝑥, then this set must be attributed with the same symmetry flavor  𝑥. The real 

part describes the location density distribution and the imaginary part describes the 

displacement density distribution. 

6 Symmetry centers 
Each symmetry center corresponds to a dedicated subspace of the infinite dimensional 
separable Hilbert space. That subspace is spanned by the eigenvectors {|𝖘𝑖

𝑥〉} of a corresponding 

symmetry center reference operator 𝕾𝑥. Here the superscript  𝑥 refers to the type of the 

symmetry center. The type covers more than just the symmetry flavor. 

Symmetry flavors relate to affine Cartesian ordering. Each symmetry center will own a single 

symmetry flavor. The symmetry flavor of the symmetry center relates to the Cartesian 

coordinate system that acts as start for the spherical ordering. The combination of affine 

Cartesian ordering and spherical ordering puts corresponding axes in parallel. Spherical 

ordering relates to spherical coordinates. Starting spherical ordering with the azimuth 

corresponds to half integer spin. The azimuth runs from 0 to π radians. Starting spherical 

ordering with the polar angle corresponds to integer spin. The polar angle runs from 0 to 2π 

radians. These selections add to the type properties of the symmetry centers.  

The model suggests that symmetry centers are maintained by special mechanisms that ensure 

the spatial and dynamical coherence of the coupling of the symmetry center to the background 

space. Several types of such mechanisms exist. Each symmetry center type corresponds to a 

mechanism type. These mechanisms are not part of the separable Hilbert space. 

Symmetry centers are resources where the coherence ensuring mechanisms can take dynamic 

locations that are stored in quaternionic eigenvalues of dedicated operators, in order to generate 

coherent location swarms that represent point-like objects. The type of the point-like object 

corresponds to the type of the controlling mechanism.  

The basic symmetry center is independent of progression. Once created, a symmetry center 

persists until it is annihilated. However, during creation its ordering can be synchronized with 

selected progression steps. Any progression dependence that concerns a symmetry center is 

handled by a type dependent mechanism. The type depends on the symmetry flavor and on the 

spin. Further, it depends on other characteristics that will not be treated in this paper, but that 

will appear as properties of the point-like object that will be supported by the controlling 
mechanism. An example is the generation flavor of the point-like particle. In this way the same 

symmetry center type can support electrons, muons and tau particles. Symmetry flavor and spin 

can be related to ordering of the symmetry center. Generation flavor is a property of the 

controlling mechanism. 
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The mechanisms that control the usage of symmetry centers act mostly in a cyclic fashion. When 

compared to mechanisms that care about particles, the cycles that occur in equivalent 

mechanisms that care about corresponding anti-particles act in the reverse direction. As a 

consequence many of the properties of the anti-particles are the opposite of the properties of the 

corresponding particles. This holds for the sign of the symmetry related charge and it holds for 

the color charge, but it does not hold for the mass and for the energy of the (anti)particle. 

Symmetry centers have a well-defined spatial origin. That origin floats on the eigenspace of the 

reference operator ℛ⓪. Symmetry centers are formed by a dedicated category of compact anti-
Hermitian operators {𝕾𝑥}.  

An infinite dimensional separable Hilbert space can house a set of subspaces that each represent 

such a symmetry center. Each of these subspaces then corresponds to a dedicated spherically 

ordered reference operator 𝕾𝑥. The superscript  𝑥 distinguishes between symmetry flavors and 

other properties, such as spin and generation flavor. Symmetry centers correspond to dedicated 
subspaces that are spanned by the eigenvectors {|𝖘𝑖

𝑥〉} of the symmetry center reference 

operator 𝕾𝑥. 

 

𝕾𝑥 = |𝖘𝑖
𝑥〉𝖘𝑖

𝑥〈𝖘𝑖
𝑥| 

 

𝕾𝑥† =  −𝕾𝑥 

 

Only the location of the center inside the eigenspace of reference operator ℛ⓪ is a progression 
dependent value. This value is not eigenvalue of operator 𝕾𝑥. The location of the center inside 

ℛ⓪ is eigenvalue of a central governance operator ℊ. 

Symmetry centers feature a symmetry related charge that depends on the difference between the 

symmetry flavor of the symmetry center and the symmetry flavor of the reference operator ℛ⓪, 

which equals the symmetry flavor of the embedding continuum ℭ. The symmetry related 

charges raise a symmetry related field 𝜑. The symmetry related field 𝜑 influences the position of 

the center of the symmetry center in parameter space ℛ⓪ and indirectly it influences the 

position of the map of the symmetry center into the field that represents the embedding 

continuum ℭ. Both fields, 𝜑 and ℭ use the eigenspace of the reference operator ℜ as their 

parameter space. 

The closed subspaces that correspond to a symmetry center have a fixed finite dimension. This 

dimension is the same for all types of symmetry centers. This ensures that symmetry related 

charges all appear in the same short list. 

6.1 Synchronization via coupling 
The basic symmetry center is independent of progression. Any progression dependence that 

concerns a symmetry center is handled by a type dependent mechanisms that controls the usage 

of the symmetry center. The type dependent mechanism acts in a progression dependent 

fashion. On certain progression steps the mechanism selects a location from the symmetry 

center that will be used to embed a point-like object in the background space. 

The background space, is maintained by reference operator ℛ. Embedding the symmetry center 

into the eigenspace of this operator ensures the synchronization of the symmetry center with 

(1) 

(2) 
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the background space. That is why the embedding occurs at instances that are selected from the 

progression values, which are offered as eigenvalues by ℛ0 = (ℛ +  ℛ†)/2. However, the 

controlling mechanism does not embed the center location, but instead the mechanism uses a 

stochastic process in order to select a location somewhere inside the symmetry center. Further, 
not all eigenvalues {𝖘𝑖

𝑥} of 𝕾𝑥 will be used in the embedding process. A special operator ℴ that is 

dedicated to the type of the embedded point-like object describes the selected locations in its 

eigenvalues. Operator ℴ has an equivalent ℭ(ℴ) in the Gelfand triple. Function ℭ(𝑞)maps 

eigenvalues of ℴ onto continuum ℭ. 

The embedding location represents a point-like object that resides in the symmetry center. That 

embedding location is mapped onto the embedding continuum, which resides as the eigenspace 

of operator ℭ in the Gelfand triple ℋ. This continuum is defined as a function ℭ(𝑞) over 

parameter space ℜ. 

The locations in the symmetry center that for the purpose of the embedding are selected, form a 

coherent location swarm and a hopping path that characterize the dynamic behavior of the 

point-like object. The embedding process deforms continuum ℭ.This embedding process is 

treated in more detail in [14]. 
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7 Central governance 
The eigenvalues of the central governance operator ℊ administer the relative locations of the 

symmetry centers with respect to the reference operator ℛ⓪ which resides in the separable 

Hilbert space ℌ and maps to the reference continuum ℜ⓪ in the Gelfand triple ℋ. A further map 

projects onto the embedding continuum ℭ.The central governance operator ℊ resides in the 

separable Hilbert space ℌ. Operator ℊ has an equivalent ℭ(ℊ) in the Gelfand triple. Function 

ℭ(𝑞)maps eigenvalues of ℊ onto continuum ℭ. 

The reference continuum ℜ⓪ acts as a parameter space of the function 𝜑(𝑞) that specifies the 

symmetry related field 𝜑, which is eigenspace of the corresponding operator.  

Each symmetry center owns a symmetry related charge, which is located at its geometric center. 

Each symmetry related charge owns an individual field that contributes to the overall symmetry 

related field 𝜑. 

The reference continuum ℜ⓪ also acts as a parameter space of the function ℭ(𝑞) that specifies 

the embedding continuum ℭ, which is eigenspace of the corresponding operator ℭ. 

A fundamental difference exists between field 𝜑 and field ℭ. However both fields obey the same 

quaternionic differential calculus. The difference originates from the artifacts that cause the 

discontinuities of the fields. In the symmetry related field 𝜑 these artifacts are the symmetry 

related charges. In the embedding continuum ℭ these artifacts are the embedding events. What 

happens in not too violent conditions will be described by the wave equation of the 

corresponding field and will be affected by the local and current conditions. Since the 

elementary point-like objects reside inside their individual symmetry center, the embedding 

continuum will also be affected by what happens to the symmetry centers. 

Double differentiation of field 𝜑 shows the relation between 𝜑 and ℊ. Function ℭ(𝑞) maps the 

eigenspace of ℊ onto continuum ℭ. 

 

∇∗∇ 𝜑 = ℭ(ℊ) 

 

7.1 Embedding symmetry centers 

The well-ordered eigenspace of a quaternionic normal operator ℛ⓪ that resides in an infinite 

dimensional separable Hilbert space acts as a reference operator from which the parameter 

space ℜ⓪ of the embedding continuum ℭ will be derived. This parameter space resides as 

continuum eigenspace of a corresponding operator ℜ⓪ in the Gelfand triple. This parameter 

space also acts as parameter space of a symmetry related field 𝜑. It is sparsely covered by 

locations of symmetry centers. The central governance operator ℊ administers these locations. 

The symmetry centers contain symmetry related charges. The locations of these charges are 

influenced by the symmetry related field 𝜑.  

  

(1) 
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8 Field dynamics 
In the model that we selected, the dynamics of the fields are described by quaternionic 

differential calculus. Apart from the eigenspaces of reference operators and the symmetry 

centers we encountered two fields that are defined by quaternionic functions and corresponding 

operators. One is the symmetry related field 𝜑 and the other is the embedding field ℭ.  

𝜑 determines the dynamics of the symmetry centers. ℭ gets deformed and vibrated by the 

recurrent embedding of point-like elementary particles that each reside on an individual 

symmetry center.  

Apart from the way that they are affected by point-like artifacts that disrupt the continuity of the 

field, both fields obey, under not too violent conditions and over not too large ranges, the same 

differential calculus.  

Under rather general conditions the change of a quaternionic function 𝑓(𝑞) can be described by: 

 

𝑑𝑓(𝑞) = 𝑐𝜏 𝑑𝑞𝜏 + 𝑐𝑥 𝑑𝑞𝑥 + 𝑐𝑦 𝑑𝑞𝑦 + 𝑐𝑧 𝑑𝑞𝑧 = 𝑑𝑓𝜈(𝑞)𝑒𝜈 = ∑
𝜕𝑓

𝜕𝑞𝜇
𝑑𝑞𝜇

𝜇=0…3

= 𝑐𝜇(𝑞)𝑑𝑞𝜇 

 

Here the coefficients 𝑐𝜇(𝑞) are full quaternionic functions. 𝑑𝑞𝜇 are real numbers. 𝑒𝜈 are 

quaternionic base vectors. 

 

Under more moderate and sufficiently short range conditions the function behaves more 

linearly.  

 

𝑑𝑓(𝑞) = 𝑐0
𝜏 𝑑𝑞𝜏 + 𝑐0

𝑥 𝒊 𝑑𝑞𝑥 + 𝑐0
𝑦

 𝒋 𝑑𝑞𝑦 + 𝑐0
𝑧 𝒌 𝑑𝑞𝑧 = 𝑐0

𝜇(𝑞) 𝑒𝜇 𝑑𝑞𝜇 

 

Here the coefficients 𝑐0
𝜇(𝑞) are real functions.  

Thus, in a rather flat continuum we can use the quaternionic nabla ∇. 

 

∇= {
𝜕

𝜕𝜏
,

𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
} =  

𝜕

𝜕𝜏
+ 𝒊

𝜕

𝜕𝑥
+ 𝒋

𝜕

𝜕𝑦
+ 𝒌

𝜕

𝜕𝑧
= 𝛻0 +  𝜵 

 

𝛷 = 𝛷0 + 𝜱 = 𝛻𝜓 = (𝛻0 +  𝜵)(𝜓0 + 𝝍) 

 

𝛷0 = 𝛻0𝜓0 − ⟨𝜵, 𝝍⟩ 

 

𝜱 = 𝛻0𝝍 + 𝜵𝜓0 ± 𝜵 × 𝝍 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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In this form the differential equations can still describe point-like disruptions of the continuity of 

the field.  

Double differentiation will then result in the quaternionic wave equation: 

 

𝜌 = 𝜌0 + 𝝆 = 𝛻∗𝛻𝜓 = (𝛻0 −  𝜵)(𝛻0 +  𝜵)(𝜓0 + 𝝍) = {𝛻0𝛻0 +  〈𝜵, 𝜵〉}𝜓 

=
𝜕2𝜓

𝜕𝜏2
+

𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
+

𝜕2𝜓

𝜕𝑧2
 

 

Here 𝜌 is a quaternionic function that describes the density distribution of a set of point-like 
artifacts that disrupt the continuity of function 𝜓(𝑞). In case of a single static artifact, the 

solution 𝜓 will describe the corresponding Green’s function. 

Function 𝜓(𝑞) describes the mostly continuous field 𝜓. 

The wave equation can be split into two continuity equations: 

𝛷 = 𝛻𝜓 

 

𝜌 = 𝛻∗𝛷 

 

If 𝜓 and Φ are normalizable functions and ‖𝜓‖ = 1, then with real 𝑚 and ‖𝜁‖ = 1 

 

𝛻𝜓 = 𝑚 𝜁 

 

8.1 Fourier equivalents 
In this quaternionic differential calculus, differentiation is implemented as multiplication. 

This is revealed by the Fourier equivalents of the equations: 

�̃� = �̃�0 + �̃� = 𝑝 �̃� = (𝑝0 +  𝒑)(�̃�0 + �̃�) 

 

�̃�0 = 𝑝0�̃�0 − ⟨𝒑, �̃�⟩ 

 

�̃� = 𝑝0�̃� + 𝒑�̃�0 ± 𝒑 × �̃� 

 

The equivalent of the quaternionic wave equation is: 

 

(7) 

(8) 

(9) 

(10) 

(1) 

(2) 

(3) 
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�̃� = �̃�0 + �̃� = 𝑝∗𝑝 �̃� = {𝑝0𝑝0 +  〈𝒑, 𝒑〉}�̃� 

 

The continuity equations result in: 

�̃� = 𝑝�̃� 

 

�̃� = 𝑝∗�̃� 

8.2 Poisson equations 
The Poisson equation is a special condition of the non-homogeneous wave equation in which 

some terms are zero or have a special value.  

 

∇∗∇𝜓 = ∇0∇0𝜓 + ⟨𝛁, 𝛁⟩𝜓 = 𝜌 

 

∇0∇0𝜓 = −𝜆2 𝜓 

 

⟨𝛁, 𝛁⟩𝜓 − 𝜆2𝜓 =  𝜌 

 

The 3D solution of this equation is determined by the screened Green’s function 𝐺(𝑟). 

Green functions represent solutions for point sources. 

 

𝐺(𝑟) =
exp(−𝜆 𝑟)

𝑟
 

 

𝜓 =  ∭ 𝐺(𝒓 − 𝒓′) 𝜌(𝒓′) 𝑑3𝒓 ′ 

 

G(r) has the shape of the Yukawa potential [11] 

In case of 𝜆 = 0 it is the Coulomb or gravitation potential of a point source. 

8.3 Solutions of the homogeneous wave equation 
Solutions of the homogeneous wave equations are of special interest because for odd numbers of 

participating dimensions this equation has solutions in the form of wave-fronts. 

The homogeneous wave equation is given by: 

 

∇∗∇𝜓 = ∇0∇0𝜓 + ⟨𝛁, 𝛁⟩𝜓 =
𝜕2𝜓

𝜕𝜏2
+

𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
+

𝜕2𝜓

𝜕𝑧2
= 0 

(4) 

(5) 

(6) 

(1) 

(2) 

(3) 

(4) 

(5) 

(1) 
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∇∗∇𝜓0 = 0 

 

Equation (2) has three-dimensional spherical wave fronts as one group of its solutions. 𝜓0 is a 

scalar function. By changing to polar coordinates it can be deduced that a solution is given by: 

 

𝜓0(𝑟, 𝜏) =
𝑓0(𝒊𝑟 − 𝑐𝜏)

𝑟
 

 

Where 𝑐 = ±1 and 𝒊 represents a base vector in radial direction. In fact the parameter 𝒊𝑟 − 𝑐𝜏 of 
𝑓0 can be considered as a complex number valued function. 

 

∇∗∇𝝍 = 0 

 

Here 𝝍 is a vector function. 

Equation (4) has one-dimensional wave fronts as one group of its solutions: 

 

𝝍(𝑧, 𝜏) = 𝒇(𝒊𝑧 − 𝑐𝜏) 

 

Again the parameter 𝒊𝑧 − 𝑐𝜏 of 𝒇 can be interpreted as a complex number based function. 

The imaginary 𝒊 represents the base vector in the 𝑥, 𝑦 plane. Its orientation 𝜃 may be a function 

of 𝑧. 

That orientation determines the polarization of the one-dimensional wave front. 

(2) 

(3) 

(4 

(5) 
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9 Regeneration and detection 
The regeneration of an elementary particle by the controlling mechanism involves the creation 

of a new embedding location. Detection stops this regeneration process. At detection, the set 
{𝑎𝑖

𝑥} is no longer filled by taking locations from the members of the set {𝖘𝑖
𝑥}.  

After regeneration of the complete set {𝑎𝑖
𝑥}, the members are reordered from the stochastic 

generation order to the ordering of parameter space ℛ⓪ and during the map onto ℭ they are 

blurred with the Green’s function of this embedding continuum. This transfers the operator ℴ, 

which describes the regeneration in the symmetry center 𝕾𝑥 into a differently ordered operator 
𝜌 that resides in the Gelfand triple ℋ. The defining function 𝜌(𝑞) of operator 𝜌 describes the 

triggers in the non-homogeneous wave equation, which describes the behavior of ℭ. Function 

𝜌(𝑞) uses ℜ⓪ as its parameter space. ℴ describes the hopping of the point-like object, while 𝜌 

describes the density distribution of the corresponding location swarm. 

10 Photons 
Photons are configured by solutions of the wave equation. For odd numbers of participating 

dimensions the solutions of the homogeneous wave equation are combinations of wave fronts. 

In three dimensions the spherical wave fronts diminish their amplitude as 1/𝑟 with distance 𝑟 of 

the trigger point. One-dimensional wave fronts keep their amplitude. As a consequence these 

wave fronts can travel huge distances through the field that supports them. Each wave front can 

carry a bit of information and/or energy. In order to reach these distances the carrying field 

must exist long enough and it must reach far enough.  

The symmetry related field 𝜑 does not fulfil the requirements for long distance travel. It depends 

on the nearby existence of symmetry related charges and its amplitude also diminishes as 1/r 

with distance from the charge. 

The embedding field ℭ is a better candidate for long distance transfer of energy and information. 

ℭ exists always and everywhere. One-dimensional wave fronts vibrate the ℭ field, but do not 

deform this field. They just follow existing deformations.  

Creating a string of one-dimensional wave fronts requires a recurrent wave front generation 

process. Such processes do not underlay the generation of symmetry related charges that 

support the 𝜑 field. However, such processes exist during the recurrent embedding of artifacts 

that occurs in the ℭ field. 

Recurrent generation of spherical wave fronts is capable to deform the corresponding field. It 

has similar effects as a stationary deformation by a point-like artifact has. 

The fixed speed of wave fronts translates in the same fixed speed for the photons. A string of 

one-dimensional wave fronts can carry a quantized amount of energy. The relation 𝐸 = ℎ 𝜈 and 

the fixed speed of photons indicate that at least at relative short range the string of wave fronts 

takes a fixed amount of progression steps for its creation, passage and absorption.  

However, observations of long range effects over cosmological distances reveal that these 

relations do not hold over huge distances. Red-shift of patterns of “old” photons that are emitted 

by atoms and arrive from distant galaxies indicate that the spatial part of field ℭ is extending as a 

function of progression. 

With the interpretation of photons as strings of wave fronts this means that the duration of 

emission and the duration of absorption are also functions of progression. As a consequence, 

some of the emitted wave fronts are “missed” at later absorption. The detected photon 
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corresponds to a lower energy and a lower frequency than the emitted photon has. According to 

relation 𝐸 = ℎ 𝜈 that holds locally, the detected photon appears to be red-shifted. The energy of 

the “missed” wave fronts is converted into other kinds of energy or the missed wave fronts keep 

proceeding as lower energy photons. Spurious wave fronts may stay undetected. 

Thus, the wave equation may be valid in the vicinity of the images of symmetry centers inside ℭ, 

but does not properly describe the long range behavior of ℭ. Due to its restricted range and the 

non-recurrent generation of its charges, the 𝜑 field does not show the equivalents of photons 

and red-shift phenomena. 

The long range phenomena of photons indicate that the parameter space ℜ⓪ of ℭ may actually 
own an origin. For higher progression values and for most of the spatial reach of field ℭ, that 

origin is located at huge distances. Information coming from low progression values arrives with 

photons that have travelled huge distances. They report about a situation in which symmetry 

centers were located on average at much smaller inter-distances. 

11 Conclusion 
By introducing a background space and a set of symmetry center types, this paper exploits the 

way in which quaternionic number systems can be ordered. This distinguishes between 

Cartesian ordering and spherical ordering and it reveals that these ordered versions of the 

number systems exist in several distinct symmetry flavors. Locally, the background space needs 

no origin and as a consequence it does not feature spin. The coupling of symmetry centers onto 

the background space offers the possibility to define an algorithm that computes corresponding 

symmetry related charges that are in agreement with the short list of electric charges and other 

discrete properties of elementary particles. For example, also the diversity of color charge and 

spin can be explained in this way. This indicates that elementary particles inherit these 

properties from the space in which they reside. 

An important role is played by controlling mechanisms that are not part of the Hilbert spaces, 

but that make use of the Hilbert spaces as a structured storage medium. The elementary 

particles inherit their properties both from the Hilbert space and from these controlling 

mechanisms. 

This paper considers the embedding field ℭ because it uses the same parameter space ℜ as the 

symmetry related field 𝜑 does. The embedding field obeys the same quaternionic differential 

calculus as the symmetry related field, but the triggers that cause discontinuities differ 

fundamentally between these fields. That is why these fields behave differently. Still both fields 

determine the kinematics of elementary particles. This is treated in more detail in [14]. 

The section about photons indicates that in contrast to what is usually suggested photons are 

not waves of the electric field 𝜑. Instead they vibrate the embedding field ℭ and follow its 

deformations. They do not themselves deform this field. 

The behavior of “old” photons indicates that the validity range of the wave equation is restricted. 
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