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ABSTRACT 

 
 An expression for the magnetic moment of a massive Dirac neutrino was 

deduced in the context of the electroweak interactions at the one-loop level in 1977. 
A linear dependence on the neutrino mass was found. In addition, a magnetic 
moment for a massive neutrino arising from gravitational origin is predicted by the 
so-called Wilson-Blackett law. The latter relation may also be deduced from a 
gravitomagnetic interpretation of the Einstein equations. Both formulas for the 
magnetic moment can be combined, yielding the value of the neutrino mass. 
 The gravitomagnetic moment, i.e., the magnetic moment from gravitational 
origin, may contain different g-factors for the massive neutrino eigenstates m1, m2 
and m3, respectively. Starting from the Dirac equation, a g-factor g = 2 has been 

deduced for a neutrino in first order, related to the derivation of the g-factor of 
charged leptons. When a value g = 2 is inserted, a value 1.530 meV results for the 
lightest neutrino mass m1, the main result of this work. In addition, the remaining 
neutrino masses can be calculated from observed neutrino oscillations. 
 Our results for the neutrino masses are compatible with the three-parameter 
semi-empirical neutrino mass formulas obtained by Królikowski. In addition, an 
empirical relation between the three neutrino masses proposed by Sazdović yields 
neutrino masses in fair agreement with our results. 

 
1. INTRODUCTION 
 
 Although a massive neutrino is electrically neutral, it may have electromagnetic 

properties through electroweak interactions with photons. The neutrino magnetic moment 

arises at the one-loop level from a minimal extension of the standard model with right-

handed neutrinos [1, 2]. For a left-handed Dirac neutrino with a positive mass mν the 
following electromagnetic moment μν(em) was deduced 
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where GF = 1.16638×10

–5
 GeV

–2
 is the Fermi coupling constant, c is the velocity of light, 

ħ is the Planck constant divided by 2π and μB = |e|ħ/2me is the Bohr magneton. The unit 

vector s lying along the rotation axis of the neutrino of mass mν and the direction of 
μν(em) are found to be parallel. Note that the neutrino magnetic moment is proportional 

to the neutrino mass mν, but the value of mν does not follow from the calculation. The 

value of μν(em) has been calculated from the one-loop contributions to the neutrino 
electromagnetic vertex function. To leading order in ml

2
/mW

2
, the result is independent of 

the charged lepton masses ml (l = e, μ, τ) and of the lepton matrix U [1, 2]. 

 Observed neutrino oscillations from different sources (Sun, Earth ’s atmosphere 

and in the laboratory) provide strong indications for the existence of massive neutrinos. A 
description of neutrino oscillations [3, 4] is possible by connecting three neutrino flavour 

states neutrinos να (α = e, μ, τ) to three massive eigenstates νi with active masses mi (i = 1, 

2, 3). In that case three different magnetic moments μν(em) may exist, corresponding to 
three neutrino masses mi. 
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 In this work the electromagnetic moment μν(em) of (1.1) for the neutrino will be 

compared with the so-called gravitomagnetic moment μν(gm). As will be discussed in 

section 2, it is assumed that μν(em) and μν(gm) are equal. For an elementary particle like 

a neutrino μν(gm) may be written as 
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where G is the gravitational constant and k = (4πε0)
–1

 is the constant in Coulombʼs law. 
The parameter gν or gi (i = 1, 2, 3) is a dimensionless quantity of order unity, related to 

the gl -factor for charged leptons (l = e, μ, τ). Note that μν(gm) does not explicitly depend 

on neutrino mass. 

 The gravitomagnetic moment μν(gm) of (1.2) for a neutrino with mass mi (i = 1, 2, 

3) may be distinguished by a different gν = gi-factor. Starting from the Dirac equation, 

however, the same factor gν = +2  is deduced in section 3 for all neutrinos mi, analogously 

to the factor gl = +2 for all charged leptons. Additional contributions may cause 

deviations from the canonical value gν = +2, however. Note that the formula for μν(gm) 

also contains an additional unknown dimensionless constant β. 
 When the magnetic moments μν(em) from (1.1) and μν(gm) from (1.2) are taken 

equal, the following expression for mass mν results 
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Note that μν(em) of (1.1) and μν(gm) of (1.2) have the same direction for a negative value 

of the product gνβ . Since gν is positive (a factor gν = +2  is deduced from the Dirac 

equation in section 3), β must be negative. This is already an important result, for the sign 
of the β-factor was unknown, so far. Insertion of the value g1 = +2 and a value β = –1 

into (1.3) yields a value of 1.530 meV for neutrino mass m1, the main result of this work. 

 At present, no magnetic moment of any neutrino has been measured. The tightest 
constraint on μν comes from studies of a possible delay of helium ignition in the core of 

red giants in globular clusters. From the lack of observational evidence of this effect a 

limit of μν < 3×10
–12

μB has been extracted [5]. This limit still exceeds the value μν = 
3.2×10

–22
(mν /meV)μB from (1.1) by many orders of magnitude. Conformation of the 

proposed value of mass m1, however, may provide a first indication of the existence of 

non-zero neutrino magnetic moments (1.1) and (1.2). 

 According to the neutrino oscillation theory [3, 4], the masses of the three neutrino 
flavour states να (α = e, μ, τ) can be expressed as superpositions of three massive 

eigenstates νi with masses mi (i = 1, 2, 3). In addition, mass-squared splittings Δm21
2
 ≡ m2

2
 

– m1
2
 and Δm31

2
 ≡ m3

2
 – m1

2
 follow from observations. So, two relations between the 

masses m1, m2, and m3 are available, whereas three masses mi are initially unknown. Thus, 

if the neutrino mass m1 is known, the remaining masses m2 and m3 can be calculated. In 

section 4 such a calculation has been performed. In section 5 our results are compared 

with results following from relations between neutrino masses proposed by other authors. 
Conclusions are drawn in section 6. In section 2, however, we first consider the deduction 

of relation (1.2) and the corresponding electromagnetic magnetic moments. 

 

2. GRAVITO- AND ELECTROMAGNETIC MAGNETIC MOMENTS 

 

 Since 1891 many authors have discussed a gravitational origin of the magnetic 
field of rotating celestial bodies. Particularly, the so-called Wilson-Blackett formula has 

often been considered [6–14] 
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where μ(gm) is the gravitomagnetic dipole moment of the massive body with angular 

momentum S. For a sphere with a homogeneous mass density the angular momentum S is 

given by S = 2/5 mr
2
ω, where m is the mass of the sphere of radius r and ω its angular 

velocity. Note that μ(gm) is proportional to the mass m. The parameter  is an unknown 
dimensionless constant of order unity. See ref. [14] for an ample discussion of its value. 

 Analogously to its electromagnetic counterpart μ(em) of (1.1), the gravitomagnetic 

moment μ(gm) leads to a dipolar gravitomagnetic field at distance R of magnitude 
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According to the Wilson-Blackett relation, the field B(gm) may be identified as an 

electromagnetic induction field. In that case the magnetic moments μ(em) of (1.1) and 
μ(gm) of (1.2) are equivalent. 

 Attempts to derive (2.1) from a more general theory have been given by several 

authors (see, e.g., [10–15] and references therein). For example, Bennet et al. [10] 
already gave a five-dimensional theory resulting into (2.1). Luchak [11] found a relation 

related to (2.1) by proposing a five-dimensional theory, based on a relativistic 

generalization of the Maxwell equations, in order to include gravitational fields. Other 

authors like Biemond [12–14] and Widom and Ahluwalia [15], tried to explain equation 
(2.1) as a consequence of general relativity. The former author [12–14] started from the 

Einstein equations in the slow motion and weak field approximation and deduced a set of 

four gravitomagnetic equations, analogous to the four Maxwell equations. The so-called 
“magnetic-type” gravitational field in these equations is identified as a magnetic induction 

field, resulting into the gravitomagnetic dipole moment μ(gm) of (2.1). 

 Since charges in rotating bodies may affect the value of the parameter β in many 
different ways, one can hardly expect that the observed value of β is a constant. Different 

values for the empirical value of β have indeed been found for about fourteen rotating 

bodies: metallic cylinders in the laboratory, moons, planets, stars and the Galaxy [13, ch. 

1]. For pulsars a separate analysis has been given in ref. [16]. From a linear regression 
analysis of the series of the fourteen rotating bodies an almost linear relationship between 

the observed magnetic moment |μ(obs)| and the angular momentum |S| was found. Such a 

linear relationship between μ(gm) and S is predicted by (2.1). From this analysis an 
average value of |β | = 0.076 was calculated. Although this result is distinctly different 

from a gravitomagnetic prediction for a theoretical value like |β | = 1 in (2.1), the correct 

order of magnitude of β for so many, strongly different, rotating bodies is amazing 
(|μ(obs)| and |S| vary over an interval of sixty decades!). So, the gravitomagnetic 

hypothesis, embodied in the Wilson-Blackett law (2.1), may basically be valid. 

 For a macroscopic rotating sphere of mass m with a homogeneous charge density, the 

magnetic dipole moment from the total charge Q is given by (see, e.g., ref. [17, 18]) 
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It is noted that the derivation of (2.3) from the Maxwell equations and the deduction of 

(2.1) from the gravitomagnetic equations are analogous. 
 For elementary particles like charged leptons l (l = e, μ, τ) the angular momentum S 

is given by S = ½ħs, where s is a unit vector in the direction of S, as has been discussed 
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by Pauli [19]. As an example, for an electron with mass me and charge e the 

electromagnetic moment μ(em) of (2.3) transforms into 
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where μ(em) and s are taken antiparallel for an electron (e < 0). Since more contributions 

to the dimensionless factor gl can be distinguished, the gl-factor is usually written as a series 

expansion 
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where α = ke

2
/ħc = 1/137.036 is the fine-structure constant. The leading term in the series 

expansion of gl, gl = +2 , has been deduced by Dirac [20]. Later on, Schwinger [21] 

deduced the first and largest one-loop correction α/(2π) to gl that follows from quantum 
electrodynamics (QED). 

 Analogous to μ(em) of (2.4), the following gravitomagnetic moment μ(gm) can be 

obtained from (2.1), both for charged leptons and neutrinos 
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Whereas μν(em) of (1.1) is proportional to neutrino mass mν, μ(gm) of (2.6) does not 

explicitly depend on mass. Other effects that influence the g-factor may be present, 

however. 
 As an example, for neutrino mass m1 we choose β = –1 and g = g1 = +2 in (2.6), 

and for an electron ge = +2 in (2.4). One then obtains for the ratio |μ(gm)|/|μ(em)| 
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It appears that the gravitomagnetic moment |μ(gm)| for the neutrino is extremely small 

compared to the electromagnetic moment |μ(em)| of the electron. Note that G
½
me and k

½
e 

in (2.7) have the same dimension. 

 The leading QED correction to μ(em) in (2.4) (see (2.5)) equals to δμ(em) ≈ (α/2π) 
μ(em). When β = –1 and g1 = +2  are again substituted into (2.6), and ge = +2  is again 

inserted into (2.4), the ratio |μ(gm)|/|δμ(em)| appears to be 

 

 

1
2

19| (gm)| 2
4.22 10 .

| (em)| | |

emG

k e



 

 
    
 

μ

μ
 (2.8) 

 

So, for the electron the gravitomagnetic moment |μ(gm)| is still much smaller than the 

contribution δμ(em). In next section the gν-factor for neutrinos will, however, be 

considered more in detail. 
 

3. CALCULATION OF THE g-FACTOR FOR LEPTONS 

 
 For comparison, we first review the derivation of the gl-factor for a charged lepton 

before considering the gν-factor of a neutrino. For a system of particles of mass m and 

charge e moving with speed v in an external constant uniform magnetic induction field 
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B(em), the following term has to be added to the Lagrangian (see, e.g., Landau and 

Lifshitz [22, ch. 5] 

 

  (em) (em) ( ) (em).
2 2

e e
L e          A v B r v r v B  (3.1) 

 

In deriving (3.1), use has been made of the relation B(em) = A(em) and of the 
expression for the external uniform electromagnetic vector potential A(em) = ½B(em)×r. 

If all charges of the system have the same ratio of charge to mass and the velocities |v| of 

all charges are much smaller than c, then mv is the momentum of the particle with charge 
e. In that case (3.1) can be rewritten as 

 

 ( ) (em) (em) (em) (em),
2 2

e e
L m

m m
        r v B S B μ B  (3.2) 

 

where S is the angular momentum of the system and μ(em) its magnetic moment. 

 For a lepton with charge e (e < 0) and mass m the contribution to the Hamiltonian, 
H′, corresponding to (3.2), is given by 
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where S = ½ħs is now the angular momentum of the charged lepton and μl(em) its 
magnetic moment. In order to calculate gl-value in (3.3) the Dirac equation will now be 

considered below. 

 The Dirac equation in the presence of an external electromagnetic covariant four-

vector potential Aμ(em) = {A0(em), – A(em)} (or alternatively written in terms of the 
contravariant four-vector A

μ
(em) = {A

0
(em), A(em)}) for a charged lepton is given by [20] 
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Here the matrices γ

μ
 (μ = 0, 1, 2, 3) are 4×4 matrices and pμ is a four-vector defined by pμ 

≡ iħ∂/∂x
μ
 with x

μ
 = (ct, r), whereas the wave function ψ is a four-component column 

matrix. When the electromagnetic vector potential A(em) = {A
1
(em), A

2
(em), A

3
(em)} 

and the scalar potential A0(em) = A
0
(em) = ϕ in (3.4) are relatively small, the components 

of the wave functions ψ are approximately solutions of the Dirac equation for the free 

particle (this approximation is usually denoted as the principle of minimal coupling). 
Analogously to the Schrӧdinger equation, the Dirac equation (3.4) can be written as a 

differential equation first order in time 
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Here the components of α are defined by the 4×4 matrices α
i
 ≡ γ

0
γ

i
 (i = 1, 2, 3) and the 

components of momentum p by p
i
 ≡ (p

1
, p

2
, p

3
), respectively. Note that α

i
 is no spatial 

part of a four-vector (there is no α
0
), so, its superscript index is no contravariant index. 

The 4×4 matrix β is defined by β ≡ γ
0
 and A(em) is the vector potential. From (3.5) the 

expression for the Dirac Hamiltonian HD follows. 

 Since the time dependence of the wave function is governed by the energy (energy 

eigenstates have the time dependence e
–iEt/ħ

), a factor of e
–imc2t/ħ

 may be split off from the 

Dirac wave function ψ in first order. In addition, the four-component spinor ψ may be 
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decomposed into two two-component spinors φ and χ. So, ψ will be written as 
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In addition, the four 4×4 matrices γ

μ
 in the so-called Dirac representation and α

i
 are 

partitioned into 2×2 matrices 
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where σi are the Pauli 2×2 matrices and 12 is a 2×2 unit matrix. These matrices are given by 
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 Utilizing (3.6), (3.7) and (3.8), equation (3.5) transforms into 
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where the 4×4 matrices of α are replaced by the 2×2 Pauli matrices σ1, σ2 and σ3, or by a 
vector σ, and the 4×4 matrix β is replaced by the 2×2 matrix 12. The generalized momentum 

π is defined by π ≡ p – (e/c) A(em). Evaluation of (3.9) leads to two coupled equations 
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When in the weak field limit eϕ is small compared to rest energy mc
2
 and the function χ 

slowly varies in time, i.e. iħ∂χ/∂t ≈ 0, relation (3.11) reduces to 
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.
2mc
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In the non-relativistic limit σ π << mc, so that χ << φ. Substitution of (3.12) into (3.10) 

yields 
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This differential equation is known as the Pauli equation [19]. 

 Equation (3.13) can be evaluated by the Pauli vector identity 
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In addition, the quantity (π×π)φ can be shown to be 
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Combining equations (3.13), (3.14) and (3.15) yields 
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Insertion of S = (ħ/2)σ into (3.16) leads to the Pauli Hamiltonian HP 
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From comparison of the spin-dependent term in HP of (3.17a) and that of H′ in (3.3a) 

follows that for a charged lepton gl = +2 in first order. 
 As follows from section 2.2 in ref. [13] and section 2 in ref. [14], the Lagrangian 

for a system of masses m in an external constant uniform gravitomagnetic vector potential 

A(gm) contains the additional term 
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where the three components of A(gm) are given by A
α
(gm) (α = x, y, z). The components 

A
α
(gm) can be connected to the metric components g0α and have been deduced in the 

weak field and slow motion limit [13, 14]. 

 Utilizing the relation for the gravitomagnetic induction field B(gm) = A(gm), 
the expression for the vector potential A(gm) = ½B(gm)×r and (2.1), equation (3.18) can 

be rewritten as 
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where S is the angular momentum of the system and μ(gm) its gravitomagnetic moment. 

 For an elementary particle like a neutrino, the contribution to the Hamiltonian, H′, 

corresponding to (3.19) is given by 
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where S is now the angular momentum and μν(gm) the gravitomagnetic moment of the 

neutrino, respectively. When μν(gm) and B(gm) are equivalent to their electromagnetic 

counterparts μν(em) and B(em), a deduction analogous to the present one will lead to 

gravitomagnetic results, analogous to (3.3a) and (3.17a). In that case a value gν = +2 will 
be obtained for all neutrinos in first order. The gν-factor, however, may deviate from this 

value by additional contributions.  

 

4. CALCULATION OF THE NEUTRINO MASSES 

 

 In table 1 data deduced from the framework of three-neutrino oscillations are 

summarized. Best fit values are given for the two squared-mass differences Δm21
2
 and 

Δm31
2
 from Gonzalez-Garcia et al. [23], Forero et al. [24] and Capozzi et al. [25]. Three 

data series for the normal hierarchy are shown and one for the inverted hierarchy. 
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Table 1. Best fit Δm2 values (±1σ) from three-neutrino oscillation analyses. 
 

 

normal hierarchy 

[23] 

inverted hierarchy 

[23] 

normal hierarchy 

[24] 

normal hierarchy 

[25] 

Δm
2 

best fit ±1σ  best fit ±1σ best fit ±1σ  best fit ±1σ  

Δm21
2/10–5 eV2 7.45 7.45 7.60 7.54 

Δm31
2/10–3 eV2          + 2.417      – 2.411          + 2.48          + 2.468 

 

 Choosing a value β = –1 and a gν-factor g1 = +2  for the neutrino mass mν = m1 in 
(1.3), yields a value of m1 = +1.530 meV. Subsequently, the masses m2 and m3 have been 

calculated from the values of Δm21
2
 ≡ m2

2
 – m1

2
 and Δm31

2
 ≡ m3

2
 – m1

2
 for the three data 

series in the case of normal hierarchy given in table 1. Results are summarized in table 2. 

Note that all masses mi have a positive sign. Since the mass m1 is relativity small 
compared with masses m2 and m3, comparison of tables 1 and 2 shows, that the masses m2 

and m3 are approximately given by the roots of Δm21
2
 and Δm31

2
, respectively. In the case 

of normal hierarchy the alternative choices m2 = +1.530 meV or m3 = +1.530 meV can 
both be excluded, for they both lead to negative values for m1

2
. 

 When the calculated masses m2 and m3 are subsequently inserted into (1.3) and a 

value β = –1 is chosen, the empirical gi-factors g2 and g3 can be calculated, respectively. 
For comparison, the gi-factors have been expressed relative to g1 = +2  by defining the 

relative factor g′i ≡ gi /g1. So, g′1 = 1 and from (1.3) follows that g′i = mi /m1. In addition, 

the quantity g′i – g′1 can be expressed in units of the electroweak coupling constant αW = 

kg
2
/ħc, where the charge g is connected to the charge e and the weak angle θW by the 

relation g sinθW = e and Δg′i (αW)–1 is defined by Δg′i(αW)–1 ≡ (g′i – g′1)×αW. The on-shell 

value sin
2
θW = 0.22333 has been taken from ref. [26], resulting into a value of (αW)–1 = 

30.60. The values of g′i and Δg′i (αW)–1 are also shown in table 2. 
 
Table 2. Calculated neutrino masses m2, and m3 from data in table 1 for the normal hierarchy. All 

masses are given in units of meV. The g′i-factor is given by g′i = mi /m1 and the quantity Δg′i (αW
–1) 

by Δg′i (αW
–1) ≡ (g′i – g′1)×αW, respectively. 

 
ref. [23] [24] [25]  [23] [24] [25]  [23] [24] [25] 

mass        
a)    

m1/meV 1.530 1.530 1.530  g′1 1 1 1  Δg′1(αW)–1 0 0 0 

m2/meV 8.77 8.85 8.82  g′2 5.73 5.79 5.76  Δg′2(αW)–1 0.15 0.16 0.16 

m3/meV 49.2 49.8 49.7  g′3 32.2 32.6 32.5  Δg′3(αW)–1 1.02 1.03 1.03 
 
a The reciproke electroweak coupling constant (αW)–1 = 30.60 has been calculated from ref. [26]. 

 

 In case of the inverted hierarchy the choices m1 = 1.530 meV or m2 = 1.530 meV 
must be excluded, for the data from [23] in table 1 lead to negative values for m3

2
 and 

m1
2
, respectively. The choice m3 = 1.530 meV, however, leads to the values of m1 = 49.1 

meV and m3 = 49.9 meV, respectively, but we will not discuss this possibility further. 
 From calculated values mi in table 2 an average sum Σi mi = 60 meV can be 

calculated. This value can be compared with the sum Σi mi < 140 meV at 95% C. L. 

deduced by Palanque-Delabrouille et al. [27]. The latter figure is extracted by combining 
Baryon Oscillation Spectroscopic Survey (BOSS) and Planck Cosmic Microwave 

Background (CMB) data. 

 

5. DISCUSSION OF THE RESULTS 
 

 The origin of mass of elementary particles remains an important unsolved problem 

of physics. In order to find that origin, many relations between the masses of leptons and 
quarks have been proposed in the past. To start with an own suggestion, one may write 

the averaged values of the masses m2 and m3 obtained from table 2 in terms of the 
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electroweak coupling constant αW 

 

 1

2 1(1 0.16 ) ,Wm m    (5.1) 

 

 1

3 1(1 1.03 ) .Wm m    (5.2) 

 

It appears that mass m3, apart from a unity term, contains a contribution 1.03 (αW)
–1

 = 
1.03×30.60 = 30.9, close to the value of (αW)

–1
. This coincidence suggests an electroweak 

interaction within the neutrino, although no mechanism is known at present. 

 Another attempt to find relations between the three masses of charged leptons, 
neutrinos and up- and down quarks was given by Królikowski [28]. Using generalized 

Dirac-type equations in the Weyl representation and an extended Pauli exclusion 

principle, he obtained the following semi-empirical mass formula 
 

 2

2

1
1,2,3,i i i

i

m N i
N


 

 
     

 

 (5.3) 

 

where μ, ξ and ε are free parameters. The quantities Ni and ρi are given by 
 

 
1 2 3 1 2 3

1 4 24
1, 3, 5, , , .

29 29 29
N N N          (5.4) 

 

The quantities ρi (Σi ρi = 1) are the squares of the normalization constants of the three 

wave functions connected to N1, N2 and N3, respectively. 
 We first consider (5.3) for the case of the three charged leptons. Combination of 

(5.3) and (5.4) yields 
 

 4 24
( ), (80 9 ), (624 25 ).

29 29 9 29 25
em m m 

  
              (5.5) 

 

When ξ is neglected and μ and ε are eliminated from the relations in (5.5), the following 

approximate expression for the tauon mass mτ is obtained 
 

 
6

(351 136 ) 1776.80MeV,
125

em m m     (5.6) 

 

where the electron mass me = 0.51099893 MeV and the muon mass mμ = 105.65837 MeV 

are used as the only input (see data in ref. [26] and the discussions in refs. [28, 29]) for 

the calculation of mass mτ. The observed value mτ = 1776.82 MeV is close to the 
predicted one and is a justification for the approximation ξ = 0. From the observed 

masses me, mμ and mτ the values for μ, ε and ξ can also be calculated from the full 

relations of (5.5) (see ref. [28] for the explicit expressions of μ, ε and ξ) resulting into: μ = 

85.9942 MeV, ε = 0.172541 and ξ = 2.157×10
–4

. 
 In addition, the following ratio Rl for the triplet of charged leptons can be 

calculated from (5.5) 
 

 
 

 

22
80 950

,
243 ( ) 624 25

l

e

m
R

m m





 

   

 
 

  
 (5.7) 

 

where the parameter μ drops out of the relation for Rl. Substitution of the values of 
observed masses me, mμ and mτ, or the values ε = 0.172541 and ξ = 2.157×10

–4
 into (5.7), 

results into the same value Rl = 12.2954. 
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 Recently, Sazdović [30] also proposed empirical relations between the three masses 

of the leptons and quarks with the same electric charge, respectively, and between the three 

active masses of neutrinos. For the charged leptons he considered the empirical relation 

 

 5
2

2

12.1825.l

e

m
R e

m m





    (5.8) 

 

Compared to the value Rl = 12.2954 calculated from the observed masses me, mμ and mτ, 

Sazdović’s prediction (5.8) is 0.918 % lower. 
 For the mass of Dirac neutrinos mi

D
, the quantity ξ cannot be neglected and relation 

(5.3) can be rewritten as (compare to Królikowski’s eq. (31) in [28]) 
 

 
2

2

1
1 1,2,3.D i

i i

i

N
m i

N


 

 

 
     

 

 (5.9) 

 

Substitution of μ' ≡ – μξ and (5.4) into (5.9) then yields the following expressions for the 

active neutrino masses mi
D
 = mi 

 

 
1 2 3

1 1 4 9 1 24 25 1
1 , 1 , 1 .

29 29 9 29 25
m m m

     

     

         
            

     

 (5.10) 

 

In this work it will now be assumed that the Dirac neutrino masses mi
D
 = mi are positive, 

so that the mass mν = mi in relation (1.1) is also positive. As a consequence, for 
dominating unity terms in the expressions for mi in (5.10) the sign of μ' must be positive. 

Alternatively, Królikowski [28] chose a negative sign for the Dirac masses mi
D
. In 

addition, he made use of the popular seesaw relation and obtained a mass formula for the 

light Majorana neutrinos, analogous to (5.10). 
 As an example, the masses m1 = 1.530 meV, m2 = 8.77 meV and m3 = 49.2 meV 

from table 2 can be inserted into (5.10). The following values are then obtained for the 

parameters μ', ξ and ε (compare to ref. [28]): μ' = 69.7 meV, ξ = 189 and ε = 68.6, 
respectively. Substitution of these values into (5.10) yields 

 

 

 

 

 

1

2

3

2.40 1 0.005 0.358 1.53meV,

9.61 1 0.048 0.040 8.77 meV,

57.7 1 0.132 0.014 49.2meV.

m

m

m

   

   

   

 (5.11) 

 
Equation (5.11) shows, that the unity terms in the expressions for m1, m2 and m3 

dominate, but the other terms cannot be neglected. When the unity terms in (5.11) are 

only taken into account, one finds for the ratio m3/m1 = 24, whereas a ratio m3/m1 = 32.2 
is found from the full expressions of (5.10). 

 In addition, from (5.10) the following ratio Rν can be calculated for the three 

neutrinos 
 

 
 

  

22

2

1 3

9 8050
,

243 25 624

m
R

m m


 

   

 
 

  
 (5.12) 

 

Note that the parameter μ' drops out of equation (5.12). Direct substitution of m1 = 1.530 
meV, m2 = 8.77 meV and m3 = 49.2 meV from table 2 into (5.12) is completely 

compatible with substitution of the calculated values ε = 68.6 and ξ = 189 into (5.12). In 

both cases the same value Rν = 1.02 is obtained. 



11 

 For the triplet of neutrinos Sazdović [30] proposed the simple relation 

 

 
2

2

1 3

1,                                                              
m

R
m m

    (5.13) 

 
without giving a theoretical basis for this relation. The ratio (5.13) provides a third 

relation between the masses m1, m2 and m3, so that all masses can be calculated. Choosing 

the values for Δm21
2
 and Δm31

2
 for the normal hierarchy from [23] in our table 1, the 

following results can be calculated from (5.13): m1 = 1.56 meV, m2 = 8.77 meV and m3 = 

49.2 meV, close to the values following from our approach and given in our table 2. The 

proposed ratio Rν = 1 almost equals to the value Rν = 1.02 from (5.12), calculated from m1 

= 1.530 meV and Δm21
2
 and Δm31

2
 data for the normal hierarchy from [23] in our table 1. 

 Instead of introducing β = –1 into (1.3), one might choose a value like β = –2 . In 

that case the value of m1 doubles to m1 = 3.06 meV. Combination of this value for m1 and 

data from [23] in table 1 yields the values m2 = 9.16 meV and m3 = 49.3 meV. In that case 
a value of Rν = 0.56 follows from (5.12). If Sazdović ’s relation (5.13) is approximately 

valid, however, the choice β = –2 must be rejected, whereas the value β = –1 is 

acceptable. 
 Królikowski [28] and Sazdović [30] also gave related expressions for the masses of 

the up- and down quarks. Since the masses of the quarks are less accurately known in 

general, we will not consider these relations further. 

 

6. CONCLUSIONS 

 

 A value of 1.530 meV/c
2
 = 2.727×10

–39
 kg for the mass of the lightest neutrino m1 

is obtained in this work. This value is extracted from a combination of the magnetic 

moment of a massive Dirac neutrino [1, 2], deduced in the context of electroweak 

interactions at the one-loop level, ànd the magnetic moment from gravitational origin 

proposed by Wilson and Blackett [6–12]. The latter relation has also been obtained from a 
gravitomagnetic interpretation of the Einstein equations [12–14]. Combination with 

neutrino oscillation data yields the other masses m2 and m3 (see table 2). Note that the 

ratio m3/m1 is in the range of the reciprocal value of the electroweak coupling constant. 
 Our results for the neutrino masses are compatible with the three-parameter semi-

empirical neutrino mass formulas deduced by Królikowski [28], utilizing generalized 

Dirac-type equations in the Weyl representation and an extended Pauli exclusion principle. 
 Sazdović [30] recently proposed the empirical relation Rν = (m2)

2
/(m1m3) = 1 for 

the three active masses of the neutrinos and found about the same set of masses m1, m2 

and m3 obtained in this work. From Królikowski’s theoretical treatment also follows an 

expression for Rν. His approach and ours yield the same value Rν = 1.02, when our set of 
neutrino masses is chosen. It is remarkable that three different approaches lead to about 

the same value of Rν. 

 

REFERENCES 

 
[1] Lee, B. W. and Shrock, R. E., "Natural suppression of symmetry violation in gauge theories: muon- and 

electron-lepton-number nonconservation", Phys. Rev. D 16, 1444-1473 (1977). 
[2] Fujikawa, K. and Shrock, R. E., "Magnetic moment of a massive neutrino and neutrino-spin rotation", 

Phys. Rev. Letters 45, 963-966 (1980) and references therein. 
[3] Maki, Z., Nakagawa, M. and Sakata, S., "Remarks on the unified model of elementary particles", Prog. 

Theor. Phys. 28, 870-880 (1962). 

[4] Kobayashi, M. and Maskawa, T., "CP violation in the renormalizable theory of weak interaction.", 
Prog. Theor. Phys. 49, 652-657 (1973). 

[5] Raffelt, G. G., "New bound on neutrino dipole moments from globular-cluster stars", Phys. Rev. Lett., 
64, 2856-2858 (1990). 



12 

[6] Schuster, A., "A critical examination of the possible causes of terrestrial magnetism", Proc. Phys. Soc. 

Lond. 24, 121-137 (1912). 
[7] Wilson, H. A., "An experiment on the origin of the Earth's magnetic field", Proc. R. Soc. Lond. A 104, 

451-455 (1923). 
[8] Blackett, P. M. S., "The magnetic field of massive rotating bodies", Nature 159, 658-666 (1947). 
[9] Sirag, S-P., "Gravitational magnetism", Nature 278, 535-538 (1979). 
[10] Bennett, J. G., Brown, R. L. and Thring, M. W., "Unified field theory in a curvature-free five- 

dimensional manifold", Proc. R. Soc. Lond. A 198, 39-61(1949). 
[11] Luchak, G., "A fundamental theory of the magnetism of massive rotating bodies", Can. J. Phys. 29, 

470-479 (1951). 
[12] Biemond, J., Gravi-magnetism, 1st ed. (1984). Postal address: Sansovinostraat 28, 5624 JX Eindhoven, 

The Netherlands. E-mail: j.biemond@gravito.nl Website: http://www.gravito.nl 
[13] Biemond, J., Gravito-magnetism, 2nd ed. (1999). See also ref. [12]. 
[14] Biemond, J., "Which gravitomagnetic precession rate will be measured by Gravity Probe B?", 

arXiv:physics/0411129v1 [physics.gen-ph], 13 Nov 2004. 
[15] Widom, A. and Ahluwalia, D. V., "Magnetic moments of astrophysical objects as a consequence of 

general relativity", Chin. J. Phys. 25, 23-26 (1987). 
[16] Biemond, J., "The origin of the magnetic field of pulsars and the gravitomagnetic theory". In: Trends in 

pulsar research (Ed. Lowry, J. A.), Nova Science Publishers, New York, Chapter 2 (2007) (updated 
and revised version of arXiv:astro-ph/0401468v1, 22 Jan 2004). 

[17] Biemond, J., "Quasi-periodic oscillations, charge and the gravitomagnetic theory", arXiv:0706.0313v2 
[physics.gen-ph], 20 Mar 2009. 

[18] Biemond, J., "The gravitomagnetic field of a sphere, Gravity Probe B and the LAGEOS satellites", 
arXiv:physics/0802.3346v2 [physics.gen-ph], 14 Jan 2012. 

[19] Pauli, W., "Zur Quantenmechanik des magnetischen Elektrons", Zeit. f. Phys. 43, 601-623 (1927). 
[20] Dirac, P. A. M., "The quantum theory of the electron", Proc. R. Soc. Lond. A 117, 610-624 (1928). 

[21] Schwinger, J., "On quantum-electrodynamics and the magnetic moment of the electron", Phys. Rev., 
73, 416-417 (1948). 

[22] Landau, L. D. and Lifshitz, E. M., The classical theory of fields, 4th rev. ed., Pergamon Press, Oxford 
(1975). 

[23] Gonzalez-Garcia, M. C. "Global analyses of oscillation neutrino experiments", Phys. Dark Universe 4, 
1-5 (2014). See also: Gonzalez-Garcia, M. C., Maltoni, M. and Schwetz, T. "Updated fit to three 
neutrino mixing: status of leptonic CP violation", J. High Energy Phys., 11, 052, (2014); 
arXiv:1409.5439v2 [hep-ph], 16 Dec 2014. 

[24] Forero, D. V., Tórtola, M. and Valle, J. W. F. "Neutrino oscillations refitted", Phys. Rev. D 90, 093006 
(2014); arXiv:1405.7540v3 [hep-ph], 21 Nov 2014. 

[25] Capozzi, F., Fogli, G. L., Lisi, E., Marrone, A., Montanino, D. and Pallazo, A. "Status of three-neutrino 
oscillation parameters, circa 2013", Phys. Rev. D 89, 093018 (2014); arXiv:1312.2878v2 [hep-ph], 5 
May 2014. 

[26] Olive, K. A, et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014) Website: http://pdg.lbl.gov/ 
[27] Palanque-Delabrouille, N., Yèche, C., Lesgourgues, J. et al. "Constraint on neutrino masses from 

SDSS-III/BOSS Lyα forest and other cosmological probes", J. Cosmol. Astropart. Phys. 02, 045 

(2015); arXiv:1410.7744v2 [astro-ph.CO], 12 Jan 2015. 
[28] Królikowski, W., "A universal shape of empirical mass formula for all leptons and quarks", Acta Phys. 

Pol. B 37, 2601-2613 (2006) and references therein. 
[29] Królikowski, W., "How the tau-lepton mass can be understood", arXiv:1009.2388v2 [hep-ph], 24 Sep 

2010. 
[30] Sazdović, B., "Charge dependent relation between the masses of different generations and neutrino 

masses", arXiv:1501.07617v1 [hep-ph], 29 Jan 2015. 

mailto:j.biemond@gravito.nl
http://www.gravito.nl/
http://pdg.lbl.gov/

