Two conjectures in number theory

Dao Thanh Oai

August 3, 2015

Abstract

In this note, I propose a conjecture of generalization of the Lander, Parkin, and Selfridge conjecture; and a conjecture of generalization of the Beal's conjecture.

Conjecture 1. Let k, n, m be three positive integers such that $k>m+n$ and $m \neq n$. Let $a_{1}, a_{2}, a_{3}, \ldots, a_{k}$ be the integers, with $a_{k}>0$ and $M=\operatorname{Max}\left\{\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{k}\right|\right\}$. Let a polynomial $f(x)=a_{k} x^{k}+a_{k-1} x^{k-1}+\ldots .+a_{0}$, then no $(n+m)$ positive integers x_{1}, x_{2}, $x_{n}, y_{1}, y_{2}, \ldots, y_{m}$ greater than M can satisfy an equation as follows: $$
\begin{equation*} f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n}\right)=f\left(y_{1}\right)+f\left(y_{2}\right)+\ldots+f\left(y_{m}\right) \tag{1} \end{equation*}
$$

Conjecture 2. Let n, m be two positive integers such that $m \neq n$. Let $k_{1}, k_{2}, \ldots, k_{n}$, $h_{1}, h_{2}, \ldots, h_{m}$ be $(n+m)$ positive integers, such that $k_{i}>n+m$ for $i=1,2, \ldots, n$ and $h_{j}>n+m$ for $j=1,2, \ldots, m$. Let $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{m}$ be $(n+m)$ positive integers satisfy an equation as follows: $$
\begin{equation*} x_{1}^{k_{1}}+x_{2}^{k_{2}}+\ldots .+x_{n}^{k_{n}}=y_{1}^{h_{1}}+y_{2}^{h_{2}}+\ldots .+y_{m}^{h_{m}} \tag{2} \end{equation*}
$$

Then $x_{1}, x_{2}, \ldots x_{n}, y_{1}, y_{2}, \ldots, y_{m}$ have a common prime factor.

References

[1] L. J. Lander, T. R. Parkin, J. L. Selfridge; Parkin; Selfridge (1967). A Survey of Equal Sums of Like Powers. Mathematics of Computation 21 (99): 446459. doi:10.1090/S0025-5718-1967-0222008-0.
[2] Frits Beukers (January 20, 2006). The generalized Fermat equation. Staff.science.uu.nl. Retrieved 2014-03-06, available at http://www.staff.science.uu.nl/ beuke106/Fermatlectures.pdf
Dao Thanh Oai: Cao Mai Doai-Quang Trung-Kien Xuong-Thai Binh-Viet Nam E-mail address: daothanhoai@hotmail.com

