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In this article we try to make a comprehensive introduction to the Eigenstate Thermalization
Hypothesis.We will first review thermalization mechanism in classical systems, then introduce eigen-
state thermalization as a possible explanation for thermal behavior in quantum systems.

INTRODUCTION

It is widely known that the fundamental postulate
of equilibrium statistical mechanics is sufficient to
derive all of equilibrium in statistical mechanics. The
postulate may be stated as follows:

In a state of thermal equilibrium, all the acces-
sible micro-states of the system are equally likely.

Now our objective is to break down the postulate
and understand each of the terms.

Thermal equilibrium: In a system which is in ther-
mal equilibrium, the long-time averages of the macro-
scopic quantities are time-independent (e.g. tempera-
ture, pressure, chemical potential).The probability dis-
tribution from which the average is taken is also time-
independent.

Micro-states: If the generalized coordinate and mo-
menta of each particle maybe determined, then that
would be called a micro-state.On the other hand total
momenta would be a macro-state of the system.

Accessible Micro-states: If the total energy of the
system is E, no individual particle can have a kinetic
energy greater than that.Therefore some micro-states
are not accessible to the system. If we increase E, then
more micro-states will be accessible to the particle.
Now, how all microscopic states become equally likely
is an area of active current research. There is no
general proof, because although this assumption is an
extremely successful one in statistical mechanics, it
doesn’t always happen. A lot of modern research tests
its limits: like, if you begin with an isolated system in a
highly non-equilibrium state, will it actually evolve such
that a description in terms of something remarkable
like a micro-canonical ensemble eventually becomes
appropriate ?

In the micro-canonical ensemble, we usually assume,
that all microscopic configurations, that are consistent
with global energy and particle number conservation,
become equally likely. If the system requires it, we can
also extend the treatment to additional global conserva-
tion laws like, restricting the set of possible microscopic

configurations further, but keep the assumption of equal
likelihood of the remaining configurations. Taking this
to the extreme though, there are some models that
have as many conservation laws as they have degrees
of freedom. These are called integrable systems, and
their highly-constrained evolution prevents them from
approaching anything close to resembling a microcanon-
ical ensemble.

One curious thing about closed quantum systems in
particular is that, in a sense, they always have as many
conserved quantities as the size of the state space. In
the eigen-basis |ϕj⟩ of the time-independent (since the
system is closed) Hamiltonian:

|ψ(t)⟩ =
∑
j

cj exp(
−iEt
~

) |ϕj⟩

and the amplitudes |cj |2 are invariant in time. This is a
different notion than the more familiar conservation laws
that are mentioned above, but it still demonstrates that
|ψ(t)⟩ can’t fully explore the state space . To reconcile
this with the ergodicity that’s needed for thermalization
(essentially, the ability to eventually sample the whole
configuration space), researchers in the 90s proposed the
Eigenstate thermalization hypothesis (ETH). In
systems that satisfy the ETH, thermal distributions are
actually encoded in each eigenstate of the Hamiltonian.
The quantum dynamics mentioned above then play an
auxiliary role of revealing the thermal distribution by
destroying the special phase relations that characterize
the initial non-equilibrium state.

The ETH has been verified theoretically in specific
model systems.
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THERMALIZATION IN CLASSICAL SYSTEMS

We take an isolated system1.An isolated system
obeys the conservation law that its total energy mass
stays constant. consisting of N particles with total
energy E confined within volume V . It’s state is a point
in phase space Γ :

(p, q) = (p1, ..., p3N , q1, ..., q3N ) ∈ Γ

Dynamics are specified by the Hamiltonian H = H(p, q)
via

q̇i =
∂H
∂pi

ṗi = −∂H
∂qi

This system is a part of microcanonical ensemble as
suggested by the conservation of triple N,V,E. Classical
thermodynamics is usually presented as postulating
the existence of isolated systems. It is also usually
presented as the fruit of experience. Obviously, no
experiment has reported an ideally isolated system.
Classical thermodynamics is usually also presented as
postulating that an isolated system can, and indeed it
eventually always does, reach its own state of internal
thermodynamic equilibrium.
Now that we have introduced the desired isolated
system, let us have a look at the the fundamental
postulate of statistical mechanics more formally :

Let all states of the isolated system satisfying the
macroscopic boundary conditions be on the hypersurface
ΓN,V,E . In equilibrium all have an equal a-priori
probability, i.e. they are uniformly distributed with a
(stationary) density:

ρmc(p, q) =

{
const. if (p, q) ∈ Γ(N,V,E)

0 otherwise

where ρmc is the density function of the microcanonical
ensemble.
We denote by Γ(N,V,E) the volume of the phase space

1 An isolated system is either: (1) a thermodynamic system which
is completely enclosed by walls through which can pass neither
matter nor energy, though they can move around inside it; or (2)
a physical system so far removed from others that it does not
interact with them.
The walls of an isolated thermodynamic system are adiabatic,
rigid, and impermeable to matter.

occupied by the microcanonical ensemble as:

Γ(N,V,E) =

∫
Γ

d3Nq d3Np ρmc(p, q) [Θ(H(p, q)− E

+∆E)−Θ(H(p, q)− E −∆E)]

=

∫ ∫
E−∆E≤H(p,q)≤E+∆E

d3Nq d3Np ρmc(p, q)

This is the volume enclosed by the two energy surfaces
with energy E −∆E and E +∆E.
If Φ(E) denotes the volume of the phase space enclosed
by the energy surface E, then

Γ(E) = Φ(E +∆E)− Φ(E)

and for ∆E ≪ E,

Γ(E) =
∂Φ(E)

∂E
∆E ≡ Ω(E)∆(E)

The quantity Ω(E) is the density of states at energy E.
Now in terms of the density of states, ρmc is given by:

ρmc(p, q) =

{
1

Ω(E)∆E if H(p, q) ∈ [E −∆E , E +∆E]

0 otherwise

Chaos theory concerns deterministic systems whose
behavior can in principle be predicted. Chaotic systems
are predictable for a while and then appear to become
random. A chaotic system must be sensitive to initial
conditions. Sensitivity to initial conditions means
that each point in a chaotic system is arbitrarily closely
approximated by other points with significantly different
future paths, or trajectories. Thus, an arbitrarily small
change, or perturbation, of the current trajectory may
lead to significantly different future behavior. For
chaotic systems it is useful to:
1. Address the issue of possible relaxation of certain
measurable quantities to stationary values (thermaliza-
tion)
2. Attempt at a statistical description of a system in
such thermal equilibrium
Equilibrium is now conceived as most probable macro-
state instead of stationary macro-state (in time). It
is highly probable for a system initially in a non-
equilibrium state to move towards equilibrium state
(real space density distribution in accordance with ex-
ternal conditions or potentials and Maxwellian velocity
distribution) as the phase space volume of the equilib-
rium macro-state is fantastically large as compared to
non-equilibrium state. Thus the equilibrium is most
probable state but arbitrary deviations from it are
also probable, but it turns out that the probability is
fantastically small. This gives birth to the notions of
typicality.
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Now we come to the famous Ergodic Hypothesis,
which simply states that to take the mean value of one
micro state with respect to time or take the mean of the
whole ensemble are equivalent operations.
Definition : Let A(p, q) be an integrable function, and
γ be a trajectory on the hypersurface ΓN,V,E . Let the
long-time and microcanonical averages of A be defined
respectively as:

Ā = lim
T→∞

∫ T

0

dt A(p(t), q(t))

⟨A⟩mc =
1

ΓE

∫
Γ

d3Nq d3Np A(p, q) ρmc(p, q)

By ergodic hypothesis Ā = ⟨A⟩mc. The basic no-
tions of ergodic theory, in particular ergodicity
and mixing, are believed to play a crucial role in the
foundations of statistical mechanics. Ergodicity, roughly
speaking the absence of constants of the motion other
than functions of the energy H, implies the equality
of time-averages and phase-space averages, i.e., of the
long-time average of a quantity as it changes under the
dynamics and the uniform average of that quantity. This
is supposed to justify the use, to define the equilibrium
values of thermodynamic quantities, of such phase-space
averages with respect to the microcanonical ensemble,
the uniform distribution over the energy surface, the idea
being that the observed values of these quantities are
time-averages, since measurement takes time. There are
objections to this use of ergodicity. Boltzmann figured
out that once we specify the energy of a system, the
maximum number of phase points corresponding to that
energy are equilibrium phase points, all of which looks
the same macroscopically. This means that the value
of any thermodynamic quantity, a physical observable,
is constant on that energy surface, and averaging over
the energy surface will thus reproduce that constant
value, regardless of whether or not the system is er-
godic. There is another problem associated this use
of ergodicity,which regards a mismatch of time-scales.
The time scale appropriate for the ergodicity of a gas
in a box is, roughly speaking, the time necessary for a
trajectory for the motion in phase space to to traverse
all across it, hence of order 1010

20

in any unit of time,
a time far far larger than that believed to be the age
of the universe. Thus ergodicity could not possibly be
very relevant to an account of phenomena, such as those
with which thermodynamics is concerned, taking place
on reasonable time scales.
The concept of mixing is supposed to explain why
systems evolve to a state of equilibrium. The idea here
is that,since such a state is in a sense,characterized by
a special probability distribution, the microcanonical
ensemble, evolution of the system to its equilibrium

amounts to the convergence of a generic (nonequi-
librium) distribution to the special one, under the
dynamics on probabilities arising from the phase space
motion. Since the energy surface corresponding to a
energy E consists almost entirely of a single macrostate,
the equilibrium macrostate Γeq, the mixing property
of the evolution on the energy surface pretty much
amounts to the condition that even small subregions of
Γeq become uniformly spread over Γeq after a sufficiently
long time. But this could not possibly be relevant to the
problem of approach to equilibrium, since it concerns
only phase points that describe a system that is already
in equilibrium. Approach to equilibrium concerns the
passage of a nonequilibrium phase point, lying outside of
Γeq, into Γeq, and this tends to happen, in fact typically
rather quickly, merely because Γeq is so extremely large.

THE EIGENSATE THERMALIZATION
HYPOTHESIS

The Eigenstate Thermalization Hypothesis (or
ETH) is a set of ideas which purports to explain when
and why an isolated quantum mechanical system can
be accurately described using equilibrium statistical
mechanics. In particular, it is devoted to understanding
how systems which are initially prepared in far-from-
equilibrium states can evolve in time to a state which
appears to be in thermal equilibrium. However the
mechanism of dynamical chaos is absent in Quantum
Mechanics due to the linear time evolution of the quan-
tum systems, due to the strictly linear time-evolution of
the Schrodinger equation,

i~
∂ |ψ(t)⟩
∂t

= Ĥ |ψ(t)⟩

where Ĥ is the Hamiltonian of the system and |ψ(t)⟩ is
the state-vector at any time t. Thus it becomes an open
question as to whether as isolated quantum system pre-
pared in an arbitrary initial state which resembles ther-
mal equilibrium.While one may naively expect, on the
basis of the linear evolution of the Schrödinger equation,
that such a situation is not possible, a variety of experi-
ments in cold atomic gases have indeed observed thermal
relaxation in systems which are, to a very good approxi-
mation, completely isolated from their environment, and
for a wide class of initial states.

THE SETTING

Quantum System: We shall consider isolated,
bounded quantum systems with Hamiltonian H and pre-
pared in an initial state: |ψ(t = 0)⟩ ≡ |ψ(0)⟩ Here
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bounded-ness implies a discrete energy spectrum. Let

Ĥ |ψα⟩ = Eα |ψα⟩

where {|ψα⟩}α is a complete orthonormal state. Then:

|ψ(0)⟩ =
∑
α

Cα |ψα⟩ , Cα = ⟨ψα|ψ(0)⟩ ,
∑
α

|Cα|2 = 1

For total energy of the system we obtain :

⟨E⟩ = ⟨ψ(0)|Ĥ|ψ(0)⟩ =
∑
α

|Cα|2Eα

Generic Initial State: We restrict our attentions to
initial states |ψ(0)⟩ sufficiently narrow in energy i.e. the

distribution of |Cα|2 will be narrow. More precisely

∆E =

(∑
α

|Cα|2Eα
2 − ⟨E⟩2

) 1
2

=

(∑
α

|Cα|2 (Eα − ⟨E⟩)2
) 1

2

≪ ⟨E⟩

For our purposes such a initial state shall be called
generic.
Time Evolution :The temporal evolution of the state
vector is given by :

|ψ(t)⟩ =
∑
α

Cαe
−iEαt

~ |ψα⟩

We want to understand how thermal behavior is en-
coded into this equation. The time-dependence of the
expectation value of any observable A is given by :

⟨A(t)⟩ = ⟨ψ(t)|A|ψ(t)⟩ =
∑
α,β

C∗
αCβAαβe

−i
(Eβ−Eα)t

~

where we define ⟨ψα|A|ψβ⟩ ≡ Aαβ .

Equivalence of the Diagonal and Microcanonical
Ensembles : We can define a long time average of
the expectation value the operator Â according to the
expression:

Ā = lim
T→∞

1

T

∫ T

0

⟨ψ(t)|A|ψ(t)⟩ dt

Explicitly we can write :

Ā = lim
T→∞

1

T

∫ T

0

∑
α,β

C∗
αCβAαβe

−i
(Eβ−Eα)t

~

 dt

When the integration is explicitly performed it gives
the following result :

Ā =
∑
α

|Cα|2Aαα +

i~ lim
T→∞

∑
α ̸=β

CαCβAαβ

Eβ − Eα

(
e−i

(Eβ−Eα)T

~ − 1

T

)
When we take the limit to infinity, the terms in the sec-
ond sum will vanish, provided that the phase coherence
between the different exponential terms in the second
sum does not ever become large enough.2

Thus the long-time average expectation value is given by

Ā =
∑
α

|Cα|2Aαα

This result is explicitly dependent on how the system
is prepared now that the Cα’s are retained.
Quantum Ergodicity : Now, because the system is
truly isolated the quantum statistical average is the
microcanonical ensemble:

⟨A⟩mc(⟨E⟩) = 1

N⟨E⟩,∆E

∑
α

Aαα,

where α belongs to an energy window equivalent to
[⟨E⟩ −∆E , ⟨E⟩+∆E] and N⟨E⟩,∆E is the number of
microstates contributing to the microcanonical average.
If A behaves thermally then, it should settle down to the
prediction of the microcanonical ensemble, i.e.:

Ā = ⟨A⟩mc (E)

=⇒
∑
α

|Cα|2Aαα =
1

N⟨E⟩,∆E

∑
α

Aαα

Now our concern is to explain the thermodynamic
universality in this equation. The L.H.S. of the above
equation depends on the initial conditions via ⟨ψα|ψ(0)⟩
while R.H.S. depends only on ⟨E⟩ .
ETH is based on the intuition that Aαα are effectively
constant over the relavant energy-window and there is
negligible fluctuations between the eigenstates. If this is
true let Aαα be equal to a constant A. Then

Ā =
∑
α

|Cα|2Aαα ≈ A
∑
α

|Cα|2 = A

2 An alternate, although näıve, justification for the vanishing term

may be found by considering that | (e−
i(Eβ−Eα)T

~ − 1) | al-
ways fluctuates between two finite quantities. Thus as T → ∞

,
(e

−i
(Eβ−Eα)T

~ −1)
T

→ 0.
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where we have assumed that the initial state is nor-
malized appropriately. Also the prediction of the
microcanonical ensemble becomes

⟨A⟩mc =
1

N

∑
α

Aαα ≈ 1

N

∑
α

A = A

The two ensembles are therefore in agreement. Now
let’s formally state the Eigenstate Thermalization
Hypothesis :

The Eigenstate Thermalization Hypothesis says that for
an arbitrary initial state, the expectation value of Â
will ultimately evolve in time to its value predicted by
a microcanonical ensemble, i.e.Aαα = ⟨A⟩mc (E) for all
α′s and thereafter will exhibit only small fluctuations
around that value, provided that the following two
conditions are met:
1. The diagonal elements of the matrix, Aαα vary
smoothly as a function of energy, with the difference
between neighboring values, Aα+1α+1 −Aαα , becoming
exponentially small with respect to the system size.
2. The off-diagonal matrix elements Aαβ , with α ̸= β,
are much smaller than the diagonal matrix elements,
and in particular are themselves exponentially small in
the system size.

The Auxiliary Role of time evolution: There is
no time variable in the equation.Due to time evolution,
the coherence between Aαβ is destroyed and Ā is
reached. Time evolution does not construct the thermal
state, it only reveals it. The thermal state exists at t=0,
but the coherence hides it.

Alternatives to Eigenstate Thermalization
Hypothesis :
(i) Even for eigenstates close in energy, there are
large eigenstate-to-eigenstate fluctuations of both the
eigenstate expectation values Aαα and of the eigenstate
occupation numbers |Cα|2. However,for physically
interesting initial conditions, the fluctuations in the two
quantities are uncorrelated. A given initial state then
performs an unbiased sampling of the distribution of
the eigenstate expectation values Aαα, resulting in the

equivalence.
(ii) For physically interesting initial conditions, the

eigenstate occupation numbers |Cα|2 practically do not
fluctuate at all between eigenstates that are close in
energy. Again,the equivalence immediately follows.

However in some specific cases, calculations have
shown that (ii) is not possible because the fluctuations

in the eigenstate probabilities |Cα|2 are large. Thermal
behavior also requires that both the diagonal and the
chosen thermal ensemble have sufficiently narrow energy
distributions ruling out the possibility of (i) that there
could be large eigenstate to eigenstate fluctuations of
the eigenstate values. ETH is in fact the accepted
mechanism responsible for the thermal behaviour in
specific quantum systems. So although at present there
are no general theoretical arguments supporting the
ETH, some results do exist for restricted classes of
systems supporting it.
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