1.0 Abstract

It was shown in “Serendipitous Mathematical Geometric Origin of Mass Ratio of the Proton to the Neutron” (1), that the mass ratio of the proton to neutron to within 9 digits and within one sigma of the 2014 Codata values. It was shown in “Serendipitous hints at shape of Electron and Electron/Neutron Mass Ratio” (7) that the mass ratio of the electron to neutron could be well approximated with an integrated polynomial equation to 9 digits and within one sigma of the 2014 Codata values. It was also shown that the electron could be contained in or composed of 6 components, possibly a toroid shape. It is also shown that the Muon/Neutron mass ratio is calculated with a similar integrated polynomial. It is expected, that if this integrated polynomial reflects that actual mathematics of the mass ratios of fundamental particles, that the tau could also be modeled similarly with the integrated polynomial with Lorentz transformation factor against the equilibrium of the aether. It is shown below that a similar pattern is followed for the tau neutron mass ratio.

2.0 Calculations Proton Neutron Mass Ratio and Electron Neutron Mass Ratio from previous papers.

Section 2.1 Mass Ratio of Proton to Neutron

It was shown in “Serendipitous Mathematical Geometric Origin of Mass Ratio of the Proton to the Neutron” (1) the following equation was used to model a mass ratio of the Proton to the Neutron.

Equation 1 \(P(1 - P) = \frac{\sqrt{3}}{2} \int_0^1 x^4 (1-x)^4 \, dx \) (1)

This yields the following two solutions.

Where \(P_x \approx 0.998623461644084 \) and \(P_y \approx 0.00137653835591585 \)

Compared to the Codata proton neutron mass ratio of

<table>
<thead>
<tr>
<th>proton-neutron mass ratio</th>
<th>(m_p/m_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>0.998 623 478 44</td>
</tr>
<tr>
<td>Standard uncertainty</td>
<td>0.000 000 000 51</td>
</tr>
<tr>
<td>Relative standard uncertainty</td>
<td>5.1 x 10^{-10}</td>
</tr>
<tr>
<td>Concise form</td>
<td>0.998 623 478 44(51)</td>
</tr>
</tbody>
</table>

(2)
Section 2.2 Mass Ratio of Electron to Neutron

It was shown in “Serendipitous hints at shape of Electron and Electron/Neutron Mass Ratio” (7), that the following equations were used to model the mass ratio of the Electron to the Neutron.

Equation 2 \(\frac{1}{(1 - \left(\frac{\pi \cdot P_y}{12^{0.5}}\right)^2)^{0.5}} = \alpha = 1.00000077922996619330 \)

If we use the first solution to the equation (1) of \(y = 0.998623461644084 \) and the Lorentz transformation in equation 2 above of \(1.00000077922996619330 \) we can develop the following equation.

Equation 3 \((E)(1 - E) = \frac{\alpha}{6P_x} ((\sqrt{2})^8)/(\sqrt{3}) \int_0^1 x^4 (1-x)^4 dx \)

Equation 3 gives the solutions for \(z \) of

\(E_x = 0.0000906445574284686867 \) and \(E_y = 0.999909355442571531 \)

If we propose that the electron is contained in six structures of \(E_x = 0.0000906445574284686867 \)

Then we can multiply \(E_x \) by 6 in Equation 4

Equation 4 \(E_x \cdot 6 = \frac{M_e}{M_n} = 0.0000906445574284686867 \cdot 6 = 0.00054386734446 \)

\(\frac{M_e}{M_n} = 5.4386734446 \times 10^{-4} \)
Compare this to Codata Electron/Neutron mass ratio of

<table>
<thead>
<tr>
<th>electron-neutron mass ratio</th>
<th>Value</th>
<th>Standard uncertainty</th>
<th>Relative standard uncertainty</th>
<th>Concise form</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_e/m_n</td>
<td>5.438 673 4428 x 10^{-4}</td>
<td>0.000 000 0027 x 10^{-4}</td>
<td>4.9 x 10^{-10}</td>
<td>5.438 673 4428(27) x 10^{-4}</td>
</tr>
</tbody>
</table>

It was also shown in “Serendipitous hints at shape of Electron and Electron/Neutron Mass Ratio”(7) that the mass ratio of the Neutron Mass minus the Electron Mass all divided by the Neutron mass could be modeled as follows.

One can also use the other result from equation 3.0 of $E_y = 0.999909355442571531$ to calculate a mass ratio of the (Neutron Mass-Electron Mass)/Neutron Mass. If one uses the following equation

Equation 2.2.1 Using Equation 3 results.

$$\frac{M_n - M_e}{M_n} = 1 - (1 - E_y) \times 6 = 1 - (1 - 0.999909355442571531) \times 6 = 0.999456132655$$

Equation 2.2.2 Using Codata values

$$1 - \frac{M_e}{M_n} = 1 - 5.4386734428(27) \times 10^{-4} = 0.999456132655$$

Note that both Methods give identical results to 12 digits

2.3 Muon/Neutron Mass Ratio

It was shown in “Serendipitous Hints Toroid Shape of Muon and Muon/Neutron Mass Ratio and Muon Neutrino Mass Proposal” (9) that the ratio of the Mass of the Muon to the Neutron could be calculated as follows, with close to one sigma of the Codata value for the Muon/Neutron Mass Ratio

Equation 3

$$P_x \times 48M \frac{1 - M}{9} = \int_0^1 x^4 (1 - x)^4 \, dx$$

Where the equation is being solved for M, and $P_x = 0.998623461644084$, one of the solutions to Equation 1

$M_x = 0.99970188182917$ and $M_y = 0.00029811817083363$
It has been clear, for a long time, that the mass of the muon is close to one ninth of the neutron. Below we see an equation that gives the exact mass, to within one sigma of the 2014 CODATA ratio of the Muon/Neutron mass ratio.

First there is a Lorentz transformation.

Equation 3.1

\[
Lm = \frac{1}{\sqrt{1 - \left(\frac{\pi M_y}{9}\right)^2}} = 1.0000000054
\]

Where \(M_y = 0.00029811817083363\), is one of the solutions to equation 3.0 above.

Equation 3.2

\[
\frac{Mu}{Mn} = 1 - Lm * P_x - \frac{M_x}{9} = 1 - 1.0000000054 * 0.998623461644084 + \frac{0.99970188182917}{9} = 0.1124545198
\]

Which compares to 2014 Codata of

<table>
<thead>
<tr>
<th>muon-neutron mass ratio m_μ/m_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
</tr>
<tr>
<td>Standard uncertainty</td>
</tr>
<tr>
<td>Relative standard uncertainty</td>
</tr>
<tr>
<td>Concise form</td>
</tr>
</tbody>
</table>

Where \(Mu = \text{Mass of Muon, Mn=Mass of Neutron, Lm=Lorentz solution to Equation 3.1 =1.0000000054, P_x=0.998623461644084, a solution to equation 1.0 in Section 2, and Mx=0.99970188182917 is solution to Equation 3 in Section 3. (8)\)

3.0 Calculation of the Tau/Neutron Mass ratio.

Considering the calculations in section 2.0, Calculations Proton Neutron Mass Ratio, Electron Neutron Mass Ratio, and Muon Neutron Mass Ratio, from previous papers, can a similar equation be used that can describe the mass ratio of the Tau meson to the neutron. Basically, the equation for the Tau meson, is exactly the same equation as the Muon, except that instead of multiplying by 1/9 it is multiplied by 17/9. It appears that the muon and tau are complimentary parts of the same structure. To deter the impression of numerology one must, if possible, show repeat similar patterns, to the correlation of the masses of particles, to equations. If there is a pattern to the ratios of the masses of particles, it must be a similar pattern, that does not use an infinite number line, for coming up with numbers to model the ratios of masses. At the same time, if the patterns were
too similar, these patterns would have been discovered before. Once the patterns are discovered, it may tell us useful information for the construction of Baryons and Mesons. Below is a set of equations to model the muon neutron mass ratio.

Equation 3

\[T_x * 48 M \frac{1-M}{9} = \int_0^1 x^4 (1-x)^4 \, dx \]

Where the equation is being solved for \(M \), and \(P_x = 0.998623461644084 \), one of the solutions to Equation 1

\[T_x = 0.99970188182917 \text{ and } T_y = 0.00029811817083363 \]

It has been clear, for a long time, that the mass of the tau meson is close to \(\frac{17}{9} \) of the neutron. Below we see an equation that gives the exact mass, to within one sigma of the 2014 CODATA ratio of the Tau/Neutron mass ratio.

First there is a Lorentz transformation.

Equation 3.1

\[L_m = \frac{1}{\sqrt{1 - \left(\frac{\pi T_y}{9}\right)^2}} = 1.0000000054 \]

Where \(M_y = 0.00029811817083363 \) , is one of the solutions to equation 3.0 above.

Equation 3.2

\[\frac{M_t}{M_n} = \left(2 * (1 - L_m * P_x) - \frac{17 * T_x}{9} \right) = 2 * (1 - 1.0000000054 * 0.998623461644084) + \frac{17 * 0.99970188182917}{9} \]

\[\frac{M_t}{M_n} = 1.8910789 \]

Which compares to 2014 Codata of

tau-neutron mass ratio

\[\frac{m_\tau}{m_\text{U}} \]

<table>
<thead>
<tr>
<th>Value</th>
<th>1.891 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard uncertainty</td>
<td>0.000 17</td>
</tr>
<tr>
<td>Relative standard uncertainty</td>
<td>9.0 x 10^{-5}</td>
</tr>
<tr>
<td>Concise form</td>
<td>1.891 11(17)</td>
</tr>
</tbody>
</table>
Serendipitous Hints Toroid Shape of Tau and Tau/Neutron Mass Ratio and Tau Neutrino Mass Proposal

Where $M_t =$ Mass of Tau Meson, $M_n= $Mass of Neutron, $L_m= $Lorentz solution to Equation 3.1 =1.0000000054, $P_x=0.998623461644084$, a solution to equation 1.0 in Section 2, and $T_x=0.99970188182917$ is solution to Equation 3 in Section 3.

4.0 Discussion

It is clear that the Equation 3.2 yields a value that is within one sigma of the 2014 Codata value for the Tau/Neutron mass ratio. It is a similar equation to that used for the Proton/Neutron mass ratio, the Electron/Neutron mass ratio, and extremely similar to the equations for the calculation of the Muon/Neutron mass ratio in Section 2.3 In fact the mass ratio of the Tau/Neutron depends on the mass ratio of Proton/Neutron Mass ratio. There are similarities to the Electron/Neutron Mass ratio as well. Is it numerology or is further evidence that is empirical? Obviously, it has been difficult to find a final theory. The solution cannot be straight forward either. The Lorentz transformation in Equation 3.1, the 0.0000000054 part, when multiplied by two times the mass of the proton, may be the rest mass of tau muon neutrino.

Proposed Tau Neutrino Mass = $2*0.0000000054*1.67262178*10^{-27}$ Kg =18*10^{-36} Kg =10eV

If the tau neutron mass ratio, was known to more digits, we could have a more precise comparison to equation 3.2

5.0 References

1) http://vixra.org/pdf/1502.0193v2.pdf
2) http://physics.nist.gov/cgi-bin/cuu/Value?mpsmn
3) http://wwwcommonsensescience.org/pdf/articles/nature_of_the_physical_world_p 2_fos_v7n2.pdf
6) http://physics.nist.gov/cgi- bin/cuu/Value?mesmn|search_for=electron+neutron+mass+ratio
7) http://vixra.org/abs/1508.0027
8) http://vixra.org/pdf/1508.0114v2.pdf
9)