
NEW FINITE AND INFINITE SUMMATION IDENTITIES INVOLVING
THE GENERALIZED HARMONIC NUMBERS

KUNLE ADEGOKE AND OLAWANLE LAYENI

Abstract. We state and prove a general summation identity. The identity is then applied to
derive various summation formulas involving the generalized harmonic numbers and related
quantities. Interesting results, mostly new, are obtained for both finite and infinite sums.
The high points of this paper are perhaps the discovery of several previously unknown infinite
summation results involving non-linear generalized harmonic number terms and the derivation
of interesting alternating summation formulas involving these numbers.

1. Introduction

Harmonic numbers have been studied since ancient times. Numerous interesting results,
especially infinite summation involving these special numbers are scattered in the literature.
References [1, 4, 5, 2, 9] and further references therein are good sources of information on
the subject. In this paper, the generalized harmonic number of order m is denoted by HN,m,
defined as usual by

HN,m =
N∑

r=1

1
rm

,

where HN,1 = HN is the N−th harmonic number. The generalized harmonic number converges
to the Riemann Zeta function, ζ(m):

lim
N→∞

HN,m = ζ(m), <[m] > 1 ,

since

ζ(m) =
∞∑

r=1

1
rm

.

We define the generalized associated harmonic number by

hN,m =
N∑

r=1

1
(2r − 1)m

, (1.1)

with hN,1 ≡ hN and note that

lim
N→∞

hN,m = (1− 2−m)ζ(m), <[m] > 1 .

To establish the connection between HN,m and hN,m we first make the following elementary
observation:

Key words and phrases. Harmonic numbers, generalized harmonic numbers, infinite series, finite summation,
polylogarithm.
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r∑

s=1

fs =
(r−ar)/2∑

s=1

f2s +
(r+ar)/2∑

s=1

f2s−1 , (1.2)

where we have introduced the symbol ar = r mod 2.

Taking fs = 1/sm in the identity (1.2) allows us to write

Hr,m =
1

2m
H(r−ar)/2,m +

(r+ar)/2∑

s=1

1
(2s− 1)m

,

which gives, on evaluation at r = 2N and at r = 2N − 1, respectively,

N∑

s=1

1
(2s− 1)m

= H2N,m − 1
2m

HN,m = hN,m (1.3)

and

N∑

s=1

1
(2s− 1)m

= H2N−1,m − 1
2m

HN−1,m = hN,m . (1.4)

In what follows, various summation formulas involving H(r,m) and h(r,m) will be derived.
Most of these formulas are new and many known results are particular cases of those obtained
here. In particular we will derive the following presumably previously unknown summation
identities, whose summands contain terms quadratic in H(r, 2), H(r, 3) and h(r, 2):

∞∑

r=1

H2
r,2

r2
=

19
22680

π6 + ζ(3)2,
∞∑

r=1

H2
r,2

(r + 1)2
=

59
22680

π6 − ζ(3)2 ,

∞∑

r=1

H2
r,2

r(r + 1)
= π2 ζ(3)− 10 ζ(5),

∞∑

r=1

H2
r,3

r(r + 1)
= −10π2

3
ζ(5) + 35 ζ(7)

and

∞∑

r=1

h2
r,2

4r2 − 1
=

3π2

64
ζ(3) .

We will also deduce the following remarkable formulas:

2
∞∑

r=1

(−1)r−1Hr,n =
(

1− 1
2n−1

)
ζ(n), n 6= 1 ,

2
∞∑

r=1

(−1)r−1hr,2n = β(2n) , 2
∞∑

r=1

(−1)r−1hr,2n−1 =
|E2n−2|

22nΓ(2n− 1)
π2n−1 ,

2
∞∑

r=1

(−1)r−1Hr,nHr−1,n = −(22n−1 − 1)
(2n)!

|B2n|π2n, 2
∞∑

r=1

(−1)r−1hr,nhr−1,n = −β(2n) ,
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where Bm is the mth Bernoulli number, Em is the mth Euler number and

β(m) =
∞∑

s=1

(−1)s−1

(2s− 1)m
.

Special cases of the above alternating sums include:

2
∞∑

r=1

(−1)r−1Hr,2 =
π2

12
, 2

∞∑

r=1

(−1)r−1hr =
π

4
, 2

∞∑

r=1

(−1)r−1hr,2 = G ,

2
∞∑

r=1

(−1)r−1H2
r =

π2

12
−log2 2 , 2

∞∑

r=1

(−1)r−1hrhr−1 = −G , 2
∞∑

r=1

(−1)r−1h2
r =

π log 2
4

,

where G = β(2) is Catalan’s constant.

In section 3.1 numerous finite summation formulas will be derived.

2. Summation Formula

Theorem. Given a non-singular summand, frs, r, s ∈ Z+, 1 ≤ r, s ≤ N , N ∈ Z+, the follow-
ing summation identity holds:

N∑

r=1

r∑

s=1

(frs + fsr) =
N∑

r=1

frr +
N∑

r=1

N∑

s=1

fsr . (2.1)

Proof. The proof is by mathematical induction on N . The theorem is obviously true for N = 1.
Assume that the proposition is true for N = K ∈ Z+, so that

PK :
K∑

r=1

r∑

s=1

(frs + fsr) =
K∑

r=1

frr +
K∑

r=1

K∑

s=1

fsr .

We now show that PK+1 is valid whenever PK holds.

PK+1 :
K+1∑

r=1

r∑

s=1

(frs + fsr) =
K+1∑

r=1

frr +
K+1∑

r=1

K+1∑

s=1

fsr .
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K+1∑

r=1

r∑

s=1

{frs + fsr}

=
K∑

r=1

r∑

s=1

{frs + fsr}+
K+1∑

s=1

{fK+1,s + fs,K+1}

=
K∑

r=1

r∑

s=1

{frs + fsr}+
K+1∑

r=1

fK+1,r +
K+1∑

s=1

fs,K+1

We now invoke PK

=
K∑

r=1

K∑

s=1

fsr +
K∑

r=1

frr +
K+1∑

r=1

fK+1,r +
K+1∑

s=1

fs,K+1

=
K∑

r=1

K∑

s=1

fsr +
K+1∑

r=1

frr +
K∑

r=1

K+1∑

s=K+1

fsr +
K+1∑

r=K+1

K+1∑

s=1

fsr

=
K∑

r=1

K+1∑

s=1

fsr +
K+1∑

r=K+1

K+1∑

s=1

fsr +
K+1∑

r=1

frr

=
K+1∑

r=1

K+1∑

s=1

fsr +
K+1∑

r=1

frr

.

¤

Corollaries. 1. If the summand frs is symmetric in the summation indices r and s, that
is, if frs = fsr, then

2
N∑

r=1

r∑

s=1

frs =
N∑

r=1

frr +
N∑

r=1

N∑

s=1

frs . (2.2)

2. If frs is factorable, that is if frs = grhs, then

N∑

r=1

{
gr

r∑

s=1

hs

}
+

N∑

r=1

{
hr

r∑

s=1

gs

}
=

N∑

r=1

grhr +

(
N∑

r=1

gr

)(
N∑

r=1

hr

)
. (2.3)

In particular, if frs = grgs, then

2
N∑

r=1

{
gr

r∑

s=1

gs

}
=

N∑

r=1

(gr)
2 +

(
N∑

r=1

gr

)2

. (2.4)

3. Setting frs = gs in identity (2.1) gives

N∑

r=1

r∑

s=1

gs = (N + 1)
N∑

r=1

gr −
N∑

r=1

rgr . (2.5)
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3. Applications

3.1. General finite summation formulas involving the generalized harmonic num-
bers.

Example 3.1. Choosing gs = 1/sn in identity (2.5) gives

N∑

r=1

Hr,n = (N + 1)HN,n −HN,n−1 , (3.1)

while setting gs = Hs,n in identity (2.5) and using identity (3.1) gives

2
N∑

r=1

rHr,n = N(N + 1)HN,n + HN,n−1 −HN,n−2 . (3.2)

In particular

N∑

r=1

Hr = (N + 1)HN −N (3.3)

and

N∑

r=1

rHr =
1
2
N(N + 1)HN − 1

4
N(N − 1) (3.4)

Taking gs = sHs,n in identity (2.5) and using identities (3.1) and (3.2), we find

N∑

r=1

r2Hr,n =
N(N + 1)(2N + 1)

6
HN,n

− 1
6
HN,n−1 +

1
2
HN,n−2 − 1

3
HN,n−3 .

(3.5)

In particular
N∑

r=1

r2Hr =
N(N + 1)(2N + 1)

6
HN − N(N − 1)(4N + 1)

36
. (3.6)

If we set gs = Hs,n/sn in equation (2.5) and make use of equation (3.25), we obtain the
identity

N∑

r=1

H2
r,n = (N + 1)H2

N,n + HN,2n−1 − 2
N∑

r=1

Hr,n

rn−1
. (3.7)

Upon setting n = 1 in equation (3.7) we obtain the interesting result

N∑

r=1

H2
r = (N + 1)H2

N − (2N + 1)HN + 2N . (3.8)

Identity (3.1) appeared in [8] (Equation (43)) and is listed in Wikipedia [5]. The particular
cases, identities (3.3) and (3.4) are also derived in [3], (equation 2.36, page 41 and equa-
tion 2.57, page 56).

Using identity (1.2) we write
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N∑

r=1

Hr,n =
(N−aN )/2∑

r=1

H2r,n +
(N+aN )/2∑

r=1

H2r,n − 1
2n

H(N+aN )/2,n

from which upon using identity (3.1), we get

2
N∑

r=1

H2r,n = 2(N + 1)H2N,n −H2N,n−1 − hN,n . (3.9)

Example 3.2. The choice of frs = (2r − 1)−ms−n in the identity (2.3) leads to

N∑

r=1

hr,m

rn
+

N∑

r=1

Hr−1,n

(2r − 1)m
= hN,mHN,n . (3.10)

On setting n = 0 in identity (3.10) we obtain

N∑

r=1

hr,m =
(

N +
1
2

)
hN,m − 1

2
hN,m−1 . (3.11)

In particular,

N∑

r=1

hr =
(

N +
1
2

)
hN − N

2
. (3.12)

Using the identities (1.2) and (3.48) gives

2
N∑

r=1

hr,n = 2
(N−aN )/2∑

r=1

h2r,n + 2
(N+aN )/2∑

r=1

h2r,n − hN+aN ,n + h̄N+aN ,n

which, together with identity (3.11) then gives

4
N∑

r=1

h2r,n = 2(2N + 1)h2N,n − h2N,n−1 − h̄2N,n . (3.13)

Substituting gs = hs,m in identity (2.5) and using identity (3.11) gives

N∑

r=1

rhr,m =
(

N(N + 1)
2

+
1
8

)
hN,m − 1

8
hN,m−2 . (3.14)

In particular

N∑

r=1

rhr =
(

N(N + 1)
2

+
1
8

)
hN − N2

8
. (3.15)

Taking gs = hs,n(2s− 1)−n in identity (2.5) and using the result (3.31) we find

2
N∑

r=1

h2
r,n = (2N + 1)h2

N,n + hN,2n−1 − 2
N∑

r=1

hr,n

(2r − 1)n−1
. (3.16)

Now setting n = 1 in equation (3.16) we obtain
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2
N∑

r=1

h2
r = (2N + 1)h2

N − 2NhN + N . (3.17)

Example 3.3. The choice frs = HrHs in identity (2.3) gives

2
N∑

r=1

{
Hr

r∑

s=1

Hs

}
=

N∑

r=1

H2
r +

(
N∑

r=1

Hr

)2

. (3.18)

The use of identities (3.3), (3.4) and (3.8) in identity (3.18) leads to

N∑

r=1

rH2
r =

N(N + 1)
2

H2
N − (N2 −N − 1)

2
HN +

N(N − 3)
4

.

Similarly, the choice frs = hrhs in identity (2.3) gives

2
N∑

r=1

{
hr

r∑

s=1

hs

}
=

N∑

r=1

h2
r +

(
N∑

r=1

hr

)2

. (3.19)

The use of identities (3.12), (3.15) and (3.17) in identity (3.19) leads to

N∑

r=1

rh2
r =

(2N + 1)2

8
h2

N − (2N + 1)(2N − 1)
16

hN +
N2

16
.

Example 3.4. Let

fr,s =
xpryqs

(r + a)m(s + b)n
.

frs is factorable, so we apply equation (2.3), which gives immediately

N∑

r=1

{
xpr

(r + a)m

r∑

s=1

yqs

(s + b)n

}
+

N∑

r=1

{
yqr

(r + b)n

r∑

s=1

xps

(s + a)m

}

=
N∑

r=1

(xpyq)r

(r + a)m(r + b)n
+

(
N∑

r=1

xpr

(r + a)m

)(
N∑

r=1

yqr

(r + b)n

)
.

(3.20)

Various combinations of the parameters p, q, m, n, a, b and the variables x, y may be consid-
ered. As an example if we choose p = 0 = q, then we have the interesting result

N∑

r=1

Hr+b,n

(r + a)m
+

N∑

r=1

Hr+a,m

(r + b)n

= HN+a,mHN+b,n −Ha,mHb,n +
N∑

r=1

1
(r + a)m(r + b)n

.

(3.21)

In deriving the identity (3.21) we made use of the identity

s∑

t=1

1
(t + q)p

= Hs+q,p −Hq,p .
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Interesting special cases of identity (3.21) include

N∑

r=1

Hr,n

rm
+

N∑

r=1

Hr,m

rn
= HN,m+n + HN,mHN,n , (3.22)

N∑

r=1

Hr,n

(r + 1)m
+

N∑

r=1

Hr,m

(r + 1)n

= HN+1,nHN+1,m −HN,n+m − 1
(N + 1)n(N + 1)m

(3.23)

and

N∑

r=1

Hr,n

(r + 1)m
+

N∑

r=1

Hr,m

rn
= HN+1,mHN,n . (3.24)

The particular case m = n in equations (3.22) and (3.23) gives

2
N∑

r=1

Hr,n

rn
= HN,2n + H2

N,n (3.25)

and

2
N∑

r=1

Hr,n

(r + 1)n
= H2

N,n −HN,2n +
2HN,n

(N + 1)n
. (3.26)

The particular case corresponding to n = 1 in (3.26) is also found in [8] (page 850, Theo-
rem 16, example).

Equation (3.62) of reference [1] corresponds to setting n = 1 in identity (3.25).

Example 3.5. Substitution of frs = (2r + 2a− 1)−m(2s + 2b− 1)−n into equation (2.3) gives

N∑

r=1

hr+b,n

(2r + 2a− 1)m
+

N∑

r=1

hr+a,m

(2r + 2b− 1)n

= hN+a,mhN+b,n − ha,mhb,n +
N∑

r=1

1
(2r + 2a− 1)m(2r + 2b− 1)n

.

(3.27)

Note that in deriving the identity (3.27) we made use of the identity

s∑

t=1

1
(2t + 2q − 1)p

= hs+q,p − hq,p .

Interesting special cases of identity (3.27) include

N∑

r=1

hr,n

(2r − 1)m
+

N∑

r=1

hr,m

(2r − 1)n
= hN,n+m + hN,mhN,n , (3.28)
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N∑

r=1

hr,n

(2r + 1)m
+

N∑

r=1

hr,m

(2r + 1)n

= hN+1,nhN+1,m − hN,n+m − 1
(2N + 1)n(2N + 1)m

(3.29)

and

N∑

r=1

hr,n

(2r + 1)m
+

N∑

r=1

hr,m

(2r − 1)n
= hN+1,mhN,n . (3.30)

The particular case m = n in equations (3.28) and (3.29) gives

2
N∑

r=1

hr,n

(2r − 1)n
= hN,2n + h2

N,n (3.31)

and

2
N∑

r=1

hr,n

(2r + 1)n
= h2

N,n − hN,2n +
2hN,n

(2N + 1)n
. (3.32)

From identities (3.31) and (3.32) we have

N∑

r=1

hr,n

(2r − 1)n
+

N∑

r=1

hr,n

(2r + 1)n
= h2

N,n +
hN,n

(2N + 1)n
(3.33)

and
N∑

r=1

hr,n

(2r − 1)n
−

N∑

r=1

hr,n

(2r + 1)n
= hN,2n − hN,n

(2N + 1)n
. (3.34)

Again all the formulas derived in this example are new.

Example 3.6. Substitution of frs = r−nzs into identity (2.3) gives, after some rearrangement,

N∑

r=1

zrHr,n =
1

1− z

N∑

r=1

zr

rn
− zN+1

1− z
HN,n, z 6= 1 , (3.35)

while substitution of frs = (2r − 1)−nz(2s−1) into identity (2.3) yields

N∑

r=1

z2r−1hr,n =
1

1− z2

N∑

r=1

z2r−1

(2r − 1)n
− z2N+1

1− z2
hN,n, z 6= 1 . (3.36)

Example 3.7. If we choose frs = Hr,n/rnsm in the equation (2.3) we obtain the following
identity, valid for all complex numbers n,m and positive integers N :

2
N∑

r=1

Hr,nHr,m

rn
+

N∑

r=1

Hr,2n

rm
+

N∑

r=1

H2
r,n

rm

= 2
N∑

r=1

Hr,n

rm+n
+ HN,mHN,2n + HN,mH2

N,n .

(3.37)
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In particular, setting m = n and using also the identity (3.25) we obtain the beautiful result

3
N∑

r=1

H2
r,n

rn
− 3

N∑

r=1

Hr,n

r2n
= H3

N,n −HN,3n , (3.38)

or equivalently,

3
N∑

r=1

H2
r,n

rn
+ 3

N∑

r=1

Hr,2n

rn
= H3

N,n + 3HN,2nHN,n + 2HN,3n . (3.39)

Note that since

Hr,n = Hr+1,n − 1
(r + 1)n

,

identity (3.38) can also be written

3
N∑

r=1

H2
r,n

(r + 1)n
+ 3

N∑

r=1

Hr,n

r2n
= H3

N+1,n + 2HN,3n +
2

(N + 1)3n
− 3HN+1,n

(N + 1)2n
. (3.40)

Addition of identities (3.38) and (3.40) gives

3
N∑

r=1

H2
r,n

(r + 1)n
+ 3

N∑

r=1

H2
r,n

rn
= H3

N+1,n + H3
N,n + HN,3n

+
2

(N + 1)3n
− 3HN+1,n

(N + 1)2n
.

(3.41)

Example 3.8. The choice frs = hr,n(2r − 1)−n(2s− 1)−m in equation (2.3) yields the follow-
ing identity, which holds for all complex numbers n,m and positive integers N :

2
N∑

r=1

hr,nhr,m

(2r − 1)n
+

N∑

r=1

hr,2n

(2r − 1)m
+

N∑

r=1

h2
r,n

(2r − 1)m

= 2
N∑

r=1

hr,n

(2r − 1)m+n
+ hN,mhN,2n + hN,mh2

N,n .

(3.42)

In particular, setting m = n and using also the identity (3.31) we obtain the interesting
result

3
N∑

r=1

h2
r,n

(2r − 1)n
− 3

N∑

r=1

hr,n

(2r − 1)2n
= h3

N,n − hN,3n , (3.43)

or equivalently,

3
N∑

r=1

h2
r,n

(2r − 1)n
+ 3

N∑

r=1

hr,2n

(2r − 1)n
= h3

N,n + 3hN,2nhN,n + 2hN,3n . (3.44)
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Example 3.9. In this example we derive a couple of alternating summation formulas.

First we introduce the notations

H̄p,q =
p∑

s=1

(−1)s−1

sq
and h̄p,q =

p∑

s=1

(−1)s−1

(2s− 1)q
. (3.45)

Then, from the identity (1.2) we have

H̄N,n = − 1
2n

H(N−aN )/2,n + h(N+aN )/2,n ,

from which it follows that

H̄2N,n = − 1
2n

HN,n + hN,n (3.46)

and

H̄2N−1,n = − 1
2n

HN−1,n + hN,n . (3.47)

Similarly, using the identity (1.2) and the definitions of h and h̄, it is straightforward to
establish that

2
N∑

r=1

1
(4r − 1)n

= h2N,n − h̄2N,n =
2(−1)n−1

4nΓ(n)

{
ψn−1

(
N +

3
4

)
− ψn−1

(
3
4

)}
(3.48)

and

2
N∑

r=1

1
(4r − 3)n

= h2N,n + h̄2N,n =
2(−1)n−1

4nΓ(n)

{
ψn−1

(
N +

1
4

)
− ψn−1

(
1
4

)}
, (3.49)

where ψn(x) is the nth polygamma function defined by

ψn(x) =
dψ(x)
dxn

where

ψ(x) =
d

dx
log Γ(x)

is the digamma function and Γ(x) is the gamma function.
Using frs = (−1)s−1r−n in identity (2.3) we obtain

N∑

r=1

(−1)r−1Hr,n = − 1
2n

HN−aN
2

,n
+ aNHN,n (3.50)

from which we get the interesting results

2N∑

r=1

(−1)r−1Hr,n = − 1
2n

HN,n (3.51)

and
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2N−1∑

r=1

(−1)r−1Hr,n = hN,n . (3.52)

Similarly using frs = (−1)s−1(2r − 1)−n in identity (2.3) gives

N∑

r=1

(−1)r−1hr,n = −
(N−aN )/2∑

r=1

1
(4r − 1)n

+ aNhN,n ,

which leads to

2
2N∑

r=1

(−1)r−1hr,n = h̄2N,n − h2N,n (3.53)

and

2
2N−1∑

r=1

(−1)r−1hr,n = h̄2N,n + h2N,n . (3.54)

The particular case corresponding to n = 1 in identity (3.51) is also derived in [8] (Equa-
tion (39)).

Using frs = (−1)r−1(−1)s−1r−n in identity (2.3) yields

2N∑

r=1

(−1)r−1H̄r,n = HN,n/2n (3.55)

and

2N−1∑

r=1

(−1)r−1H̄r,n = hN,n . (3.56)

Taking frs = (−1)(s−1)Hs,nr−m in identity (2.3) gives

− 1
2m+n

(N−aN )/2∑

r=1

Hr,n

rm
+

(N+aN )/2∑

r=1

hr,n

(2r − 1)m

+
N∑

r=1

(−1)r−1Hr,nHr,m

=
N∑

r=1

(−1)r−1 Hr,n

rm
+ HN,m

N∑

r=1

(−1)r−1Hr,n .

(3.57)

Interchanging m and n in identity (3.57), adding the resulting identity to identity (3.57)
and using identities (3.22) and (3.28) we obtain
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− 1
2m+n

(
H(N−aN )/2,n+m + H(N−aN )/2,nH(N−aN )/2,m

)

+ h(N+aN )/2,n+m + h(N+aN )/2,nh(N+aN )/2,m

+ 2
N∑

r=1

(−1)r−1Hr,nHr,m

=
N∑

r=1

(−1)r−1

(
Hr,n

rm
+

Hr,m

rn

)

+ HN,m

N∑

r=1

(−1)r−1Hr,n

+ HN,n

N∑

r=1

(−1)r−1Hr,m ,

(3.58)

from which we finally get

2N∑

r=1

(−1)r−1

(
2Hr,nHr,m − Hr,n

rm
− Hr,m

rn

)

=
1

2m+n
(HN,m+n + HN,mHN,n)

− hN,m+n − hN,mhN,n

− H2N,mHN,n

2n
− H2N,nHN,m

2m

(3.59)

and

2N−1∑

r=1

(−1)r−1

(
2Hr,nHr,m − Hr,n

rm
− Hr,m

rn

)

=
1

2m+n
(HN−1,m+n + HN−1,mHN−1,n)

− hN,m+n − hN,mhN,n

+ H2N−1,mhN,n + H2N−1,nhN,m .

(3.60)

In particular

2
2N∑

r=1

(−1)r−1rHr,n = 2hN,n−1 − hN,n − 2NH2N,n −H2N,n−1 , (3.61)

2
2N−1∑

r=1

(−1)r−1rHr,n = 2hN,n−1 − hN,n − 2NH2N−1,n −H2N−1,n−1 , (3.62)

2N∑

r=1

(−1)r−1

(
2H2

r,n − 2
Hr,n

rn

)
=

HN,2n

22n
− hN,2n −H2

2N,n (3.63)
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and

2N−1∑

r=1

(−1)r−1

(
2H2

r,n − 2
Hr,n

rn

)
=

HN−1,2n

22n
− hN,2n + H2

2N−1,n . (3.64)

Corresponding to identities (3.63) and (3.64) we have, upon taking frs = (−1)(s−1)hs,n(2r − 1)−n

in identity (2.3)

2
2N∑

r=1

(−1)r−1

(
h2

r,n −
hr,n

(2r − 1)n

)
= −h2

2N,n − h̄2N,2n (3.65)

and

2
2N−1∑

r=1

(−1)r−1

(
h2

r,n −
hr,n

(2r − 1)n

)
= h2

2N−1,n − h̄2N−1,2n . (3.66)

3.2. Evaluation of infinite sums. In the limit N →∞ in the above summation results and
sometimes in combination with known results, it is possible to evaluate certain infinite sums.
We now present some examples.

Example 3.10. In the limit N →∞, equations (3.38), (3.39) and (3.70) become

3
∞∑

r=1

H2
r,n

rn
− 3

∞∑

r=1

Hr,n

r2n
= ζ(n)3 − ζ(3n), n 6= 1 , (3.67)

3
∞∑

r=1

H2
r,n

rn
+ 3

∞∑

r=1

Hr,2n

rn
= ζ(n)3 + 3ζ(n)ζ(2n) + 2ζ(3n), n 6= 1 (3.68)

and

3
∞∑

r=1

H2
r,n

rn
+ 3

∞∑

r=1

H2
r,n

(r + 1)n
= 2ζ(n)3 + ζ(3n), n 6= 1 . (3.69)

Evaluating identity (3.67) at n = 2 we obtain

∞∑

r=1

H2
r,2

r2
=

19
22680

π6 + ζ(3)2 , (3.70)

after using the known result:
∞∑

r=1

Hr,2

r4
= ζ(3)2 − π6

2835
, ([10], (B.9a), [4]) .

Now using the result (3.70) in identity (3.69), we also have

∞∑

r=1

H2
r,2

(r + 1)2
=

59
22680

π6 − ζ(3)2 . (3.71)

Since

H2
r−1,n =

(
Hr,n − 1

rn

)2

= H2
r,n −

2Hr,n

rn
+

1
r2n

,

we have
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∞∑

r=1

H2
r,2

r(r + 1)
= 2

∞∑

r=1

Hr,2

r3
− ζ(5) ,

and ∞∑

r=1

H2
r,3

r(r + 1)
= 2

∞∑

r=1

Hr,3

r4
− ζ(7) ,

from which upon using the known results

2
∞∑

r=1

Hr,2

r3
= π2ζ(3)− 9ζ(5), (Eq. 3.3b of [7]) ,

and ∞∑

r=1

Hr,4

r3
=

π4

90
ζ(3)− 5π2

3
ζ(5)− 17ζ(7), (Eq. 3.5d of [7]) ,

we obtain

∞∑

r=1

H2
r,2

r(r + 1)
= π2ζ(3)− 10ζ(5)

and

∞∑

r=1

H2
r,3

r(r + 1)
= 35ζ(7)− 10π2

3
ζ(5) .

Example 3.11. In the limit N →∞, equations (3.43) and (3.44) become

3
∞∑

r=1

h2
r,n

(2r − 1)n
− 3

∞∑

r=1

hr,n

(2r − 1)2n
= (1− 2−n)3ζ(n)3 − (1− 2−3n)ζ(3n) , (3.72)

and

3
∞∑

r=1

h2
r,n

(2r − 1)n
+ 3

∞∑

r=1

hr,2n

(2r − 1)n

= (1− 2−n)3ζ(n)3 + 3(1− 2−n)(1− 2−2n)ζ(n)ζ(2n) + 2(1− 2−3n)ζ(3n) .

(3.73)

Example 3.12. Dividing through identity (3.25) by rm, summing and taking limit as N →∞
gives

2
∞∑

r=1

{
1

rm

r∑

s=1

Hs,n

sn

}
=

∞∑

r=1

Hr,2n

rm
+

∞∑

r=1

H2
r,n

rm
, m 6= 1 . (3.74)

In particular (m,n) = (2, 1) and (m,n) = (2, 2) in (3.74) give, respectively,

2
∞∑

r=1

{
1
r2

r∑

s=1

Hs

s

}
=

∞∑

r=1

Hr,2

r2
+

∞∑

r=1

H2
r

r2
(3.75)

and
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2
∞∑

r=1

{
1
r2

r∑

s=1

Hs,2

s2

}
=

∞∑

r=1

Hr,4

r2
+

∞∑

r=1

H2
r,2

r2
. (3.76)

Using equation (3.84) evaluated at n = 2 and the known result
∞∑

r=1

H2
r

r2
=

17
360

π4, ([2], [1]) ,

in equation (3.75) we obtain

∞∑

r=1

{
1
r2

r∑

s=1

Hs

s

}
=

π4

30
. (3.77)

Using the result (3.70) above and the known result

∞∑

r=1

Hr,4

r2
=

37
11340

π6 − ζ(3)2, (Formula (42) of [4]) ,

in equation (3.76) we obtain

∞∑

r=1

{
1
r2

r∑

s=1

Hs,2

s2

}
=

31
15120

π6 . (3.78)

Equation (3.77) was also derived in reference [1].

Example 3.13. In the limit N → ∞ in equation (3.35) of Example 3.6, we get the known
result (Formula (36) of [4])

∞∑

r=1

zrHr,n =
1

1− z
Lin(z) , |z| < 1 , (3.79)

where Lin is the polylogarithm function.

At n = 1 we have

∞∑

r=1

zrHr = − log(1− z)
1− z

, |z| < 1 .

Other interesting particular cases are

∞∑

r=1

Hr,2

2r
=

π2

6
− log2 2

and

∞∑

r=1

Hr,3

2r
=

7
4
ζ(3)− 1

6
π2 log2 2 +

1
3

log3 2 .

Using the recurrence relation of the polygamma function

ψm(z + 1) = ψm(z) +
(−1)mm!

zm+1
(3.80)
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and the identity

ψm(z)
(−1)m+1m!

= ζ(m + 1)−Hz−1,m+1 , (3.81)

equation (3.79) can be written in terms of the polygamma function as

∞∑

r=1

zrψn−1(r) = (−1)(n−1)(n− 1)!
z

1− z
[Lin(z)− ζ(n)] , n > 1, |z| < 1 .

In the limit N →∞, identity (3.36) becomes

2
∞∑

r=1

z2r−1hr,n =
Lin(z)− Lin(−z)

1− z2
, |z| < 1 .

In particular,

2
∞∑

r=1

z2r−1hr =
1

1− z2
log

(
1 + z

1− z

)
, |z| < 1 .

Example 3.14. In the limit of N →∞, equation (3.20) becomes

∞∑

r=1

{
xpr

rm

r∑

s=1

yqs

sn

}
+

∞∑

r=1

{
yqr

rn

r∑

s=1

xps

sm

}
= Lim+n (xpyq) + Lim(xp) Lin(yq) , (3.82)

where Li is a polylogarithm function.

Setting p = 0 = q in equation (3.82) or taking limit as N → ∞ directly in equation (3.22)
we have

∞∑

r=1

Hr,n

rm
+

∞∑

r=1

Hr,m

rn
= ζ(m + n) + ζ(m)ζ(n), n, m 6= 1 , (3.83)

The use of equations (3.80) and (3.81) allows equation (3.83) to be written in terms of the
polygamma function as

(−1)n

(n− 1)!

∞∑

r=1

ψn−1(r)
rm

+
(−1)m

(m− 1)!

∞∑

r=1

ψm−1(r)
rn

= ζ(m + n) + ζ(m)ζ(n), n, m 6= 1 .

The particular case m = n in equation (3.83) gives

2
∞∑

r=1

Hr,n

rn
= ζ(2n) + ζ(n)2, n 6= 1 . (3.84)

The result equation (4.20) of reference [6] corresponds to an evaluation of the identity (3.84)
at n = 2.

Equation (3.84) is listed as Formula (43) in [4].
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Example 3.15. In the limit N →∞, identities (3.28) and (3.31) of Example 3.5 become

∞∑

r=1

hr,n

(2r − 1)m
+

∞∑

r=1

hr,m

(2r − 1)n

= (1− 2−m−n)ζ(m + n) + (1− 2−m)(1− 2−n)ζ(m)ζ(n), n, m 6= 1 ,

(3.85)

and

2
∞∑

r=1

hr,n

(2r − 1)n
= (1− 2−2n)ζ(2n) + (1− 2−n)2ζ(n)2, n 6= 1 , (3.86)

while identities (3.29) and (3.30) become
∞∑

r=1

hr,n

(2r + 1)m
+

∞∑

r=1

hr,m

(2r + 1)n
= ζ(m)ζ(n)(1− 2−m)(1− 2−n)

− ζ(m + n)(1− 2−m−n)

(3.87)

and

∞∑

r=1

hr,n

(2r + 1)m
+

∞∑

r=1

hr,m

(2r − 1)n
= ζ(m)ζ(n)(1− 2−m)(1− 2−n) . (3.88)

In particular

2
∞∑

r=1

hr,n

(2r + 1)n
= ζ(n)2(1− 2−n)2 − ζ(2n)(1− 2−2n) (3.89)

and

∞∑

r=1

hr,n

(2r + 1)n
+

∞∑

r=1

hr,n

(2r − 1)n
= ζ(n)2(1− 2−n)2 . (3.90)

Example 3.16. The result equation (3.8c) of reference [7] implies that

∞∑

r=1

hr,3

(2r − 1)2
=

π2

16
ζ(3) +

31
64

ζ(5) , (3.91)

from which, upon using identity (3.85), we get

∞∑

r=1

hr,2

(2r − 1)3
=

3π2

64
ζ(3) +

31
64

ζ(5) . (3.92)

From identities (3.91) and (3.92) and using identity (3.88) we get

∞∑

r=1

hr,3

(2r + 1)2
=

π2

16
ζ(3)− 31

64
ζ(5)

and

∞∑

r=1

hr,2

(2r + 1)3
=

3π2

64
ζ(3)− 31

64
ζ(5) .
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Since

h2
r−1,2

=
(

hr,2 − 1
(2r − 1)2

)2

= h2
r,2 −

2hr,2

(2r − 1)2
+

1
(2r − 1)4

,

we also have

2
∞∑

r=1

h2
r,2

4r2 − 1
= 2

∞∑

r=1

hr,2

(2r − 1)3
− (1− 2−5)ζ(5) ,

from which we get, upon using equation (3.92)

∞∑

r=1

h2
r,2

4r2 − 1
=

3π2

64
ζ(3) . (3.93)

Example 3.17. Letting N →∞ in identity (3.10) of Example 3.2 we obtain

∞∑

r=1

hr,m

rn
+

∞∑

r=1

Hr−1,n

(2r − 1)m
= (1− 2−m)ζ(m)ζ(n), n 6= 1, m 6= 1 . (3.94)

In particular,

∞∑

r=1

hr,n

rn
+

∞∑

r=1

Hr−1,n

(2r − 1)n
= (1− 2−n)ζ(n)2, n 6= 1 . (3.95)

Example 3.18. From the definition of H̄ and the identities (3.46) and (3.47) it follows that

lim
N→∞

H̄N,n =





log 2, n = 1

(
1− 1

2n−1

)
ζ(n), n 6= 1

. (3.96)

Hence, from the identities (3.51) and (3.52) we obtain

2
∞∑

r=1

(−1)r−1Hr = log 2 (3.97)

and

2
∞∑

r=1

(−1)r−1Hr,n =
(

1− 1
2n−1

)
ζ(n) , n 6= 1 . (3.98)

Similarly from identities (3.53) and (3.54) and using identities (3.48) and (3.49) we have

2
∞∑

r=1

(−1)r−1hr,n =
∞∑

r=1

1
(4r − 3)n

−
∞∑

r=1

1
(4r − 1)n

=
(−1)n

4nΓ(n)

{
ψn−1

(
1
4

)
− ψn−1

(
3
4

)}
.

(3.99)
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In reference [12] it was established that

ψ2n

(
1
4

)
− ψ2n

(
3
4

)
= −π(2π)2n|E2n|

and

ψ2n−1

(
1
4

)
− ψ2n−1

(
3
4

)
= (2n− 1)!24nβ(2n) ,

where

β(m) = lim
N→∞

h̄N,m =
∞∑

s=1

(−1)s−1

(2s− 1)m

and Em is the mth Euler number defined by the exponential generating function

2
et + e−t

=
∞∑

m=0

Emtm

m!
.

Using these results in identity (3.99) we obtain

2
∞∑

r=1

(−1)r−1hr,2n = β(2n) (3.100)

and

2
∞∑

r=1

(−1)r−1hr,2n−1 =
|E2n−2|

22nΓ(2n− 1)
π2n−1 . (3.101)

In particular

2
∞∑

r=1

(−1)r−1hr =
π

4
, (3.102)

2
∞∑

r=1

(−1)r−1hr,2 = G (3.103)

and

2
∞∑

r=1

(−1)r−1hr,3 =
π3

32
. (3.104)

From identities (3.59) and (3.60) we have

∞∑

r=1

(−1)r−1

(
2Hr,nHr,m − Hr,n

rm
− Hr,m

rn

)
= −

(
1− 1

2m+n−1

)
ζ(m + n) . (3.105)

Setting m = n in identity (3.105) yields
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2
∞∑

r=1

(−1)r−1

(
H2

r,n −
Hr,n

rn

)
= 2

∞∑

r=1

(−1)r−1Hr,nHr−1,n

= −
(

1− 1
22n−1

)
ζ(2n) .

(3.106)

Thus

2
∞∑

r=1

(−1)r−1Hr,nHr−1,n = −(22n−1 − 1)
(2n)!

|B2n|π2n , (3.107)

where Bm is the mth Bernoulli number defined by

t

et − 1
=

∞∑

m=0

Bm
tm

m!
.

In particular

2
∞∑

r=1

(−1)r−1HrHr−1 = 2
∞∑

r=1

(−1)r−1H2
r − 2

∞∑

r=1

(−1)r−1 Hr

r
= −π2

12
. (3.108)

From identity (3.108) and the known result

2
∞∑

r=1

(−1)r−1 Hr

r
=

π2

6
− log2 2, ([11], equation 4.2c)

we obtain

2
∞∑

r=1

(−1)r−1H2
r =

π2

12
− log2 2 . (3.109)

Setting m = 0 in identity (3.105) and using identities (3.96) and (3.98) we obtain

2
∞∑

r=1

(−1)r−1rHr,2 = −π2

24
+ log 2

and

2
∞∑

r=1

(−1)r−1rHr,n =
(

1− 1
2n−2

)
ζ(n− 1)− 1

2

(
1− 1

2n−1

)
ζ(n) , n 6= 1, n 6= 2 .

From identities (3.65) and (3.66) we have

2
∞∑

r=1

(−1)r−1hr,nhr−1,n =
1

42nΓ(2n)

(
ψ2n−1

(
3
4

)
− ψ2n−1

(
1
4

))
= −β(2n) .

In particular

2
∞∑

r=1

(−1)r−1hrhr−1 = −G . (3.110)
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From the corrected version of equation 4.5c of [11]

2
∞∑

r=1

(−1)r−1 hr

2r − 1
=

π log 2
4

+ G

and the identity (3.110) we deduce that

2
∞∑

r=1

(−1)r−1h2
r =

π log 2
4

. (3.111)

4. Conclusion

We have given and proved a summation identity which we subsequently applied in its various
forms to obtain mostly new finite and infinite summation formulas involving the generalized
harmonic numbers.
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