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Abstract As opposed to the classical logic of true and false, when elementary al-
gebra is treated as a formal axiomatised system, formulae in that algebra are either
provable, disprovable or otherwise, logically independent of axioms. This logical in-
dependence is well-known to Mathematical Logic. The intention here is to cover the
subject in a way accessible to physicists, and suggest how this logical independence
might connect with quantum randomness.
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1 Introduction

In classical physics, experiments of chance, such as coin-tossing and dice-throwing,
are deterministic, in the sense that, perfect knowledge of the initial conditions would
render outcomes perfectly predictable. The ‘randomness’ stems from ignorance of
physical information in the initial toss or throw.

In diametrical contrast, in the case of quantum physics, the theorems of Kocken
and Specker [7], the inequalities of John Bell [3], and experimental evidence of Alain
Aspect [1,2], all indicate that quantum randomness does not stem from any such
physical information.

As response, Tomasz Paterek et al offer explanation in mathematical informa-
tion. They demonstrate a link between quantum randomness and logical independ-
ence in mathematical propositions [8,9].. Logical independence refers to the null
logical connectivity that exists between mathematical propositions (in the same
language) that neither prove nor disprove one another. In experiments measuring
photon polarisation, Paterek et al demonstrate statistics correlating predictable out-
comes with logically dependent mathematical propositions, and random outcomes
with propositions that are logically independent.

It is therefore important to understand logical independence where it occurs in
mathematical physics.

Any formal system comprises: a precise language, rules for writing formulae (pro-
positions) and further rules of deduction. Information is designated in two ‘strengths’:
propositions assert information that is questionable; axioms are propositions, ad-
opted as ‘true’, for the sake of argument.

In such a system, any two propositions are either logically dependent – in which
case, each proves, or disproves the other – or otherwise they are logically independ-
ent, in which case, neither proves, nor disproves the other. A helpful perspective on
this is the viewpoint of Gregory Chaitin’s information-theoretic formulation [6]. In
that, logical independence is seen in terms of information content. If a proposition
contains information, not contained in some given set of axioms, then those axioms
can neither prove nor disprove the proposition.
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A good (efficient) axiom-set is a selection of propositions, all logically independ-
ent of one another. An important point to note is that there is no contradiction
in a theory consisting of information whose source is some axiom-set, plus extra
information whose source is a logically independent proposition. These might typ-
ically be axioms asserting the theory’s set conditions, plus a proposition posing a
question.

Elementary algebra is the abstraction of the familiar arithmetic used to combine
rational, real and complex numbers through operations of addition and multiplica-
tion. I denote this arithmetic – arithmetic – as distinct from any other, such as
the arithmetic of integers. And so, at a fundamental level, in some form or other,
quantum theory rests on rules of arithmetic.

Now, arithmetic may be treated as a formal system, based on axioms listed in
Table 1. These, I denote – axioms. Essentially, these are the field axioms appended
with an additional axiom that excludes modulo arithmetic. The field axioms them-
selves are the union of axioms for the Additive Group and Multiplicative Group,
with a single axiom for distributivity.

Collectively, axioms assert a definite set of information, deriving a definite set
of theorems. I denote these – theorems. Any proposition (in the language) is either
a theorem or is otherwise logically independent. And so, any given formula (in the
language) can be regarded as a proposition in arithmetic, that may prove to be
a theorem, or may otherwise prove to be logically independent. Which of these is
actually the case is decided in a process that compares information in that formula
against information contained in the axioms. In practice, that means deriving the
formula from axioms, to discover: that either it is a theorem, or otherwise, to
discover, whatever extra information is needed to complete its derivation – that
axioms cannot provide.

2 Language

The material of this paper spans formal arithmetic and mathematical physics.
These do not share the same language; indeed the language of the former is far
smaller. For example, there is no definition for the symbol: 4 and many statements
are needed, typified by: 4 = 1 + 1 + 1 + 1. In the interest of accessibility, these
low-level definitions are left to intuition. Logical connectives used are: not (¬), and
(∧) , or (∨), implies (⇒) and if-and-only-if (⇔). Turnstile symbols are used: derives
(`) and models (|=). Also used are the quantifiers: there-exists (∃)and for-all (∀).

Generally, quantified formulae assert existence rather than equality. Quantified
bound variables express algebraic information and not quantitative values. Bound
variables may not be substituted by particular values without introducing new in-
formation. And if they were substituted, information specifying algebra would be
lost. Use of Quantified formulae is crucial. For instance, quantifiers eliminate am-
biguities suffered by ordinary equations. To illustrate: the equation y = x2 doesn’t
express which of ∀y∃x

(
y = x2)

or ∀x∃y
(
y = x2)

is intended. Yet, logically, these
two are very different.

3 Examples of logic in ARITHMETIC

The propositions (1) – (5) are five examples illustrating the three distinct logical
values possible under axioms of arithmetic. Notice that these formulae do not
assert equality; they assert existence. Each is a proposition asserting existence for
some instance of a variable α, complying with an equality, specifying a particular
numerical value.

∃α | α = 3 (1)
∃α | α2 = 4 (2)
∃α | α2 = 2 (3)
∃α | α2 = −1 (4)
∃α | α−1 = 0 (5)

Of the five examples, axioms prove only (1) and (2). Proofs are given below in
this section. Also, axioms prove the negation of (5); in point of fact, (5) contradicts,
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AXIOMS of ARITHMETIC

Additive Group
A0 ∀β∀γ∃α | α = β + γ Closure
A1 ∃0∀α | α+ 0 = α Identity 0
A2 ∀α∃β | α+ β = 0 Inverse
A3 ∀α∀β∀γ | (α+ β) + γ = α+ (β + γ) Associativity
A4 ∀α∀β | α+ β = β + α Commutativity

Multiplicative Group
M0 ∀β∀γ∃α | α = β × γ Closure
M1 ∃1∀α | α× 1 = α Identity 1
M2 ∀β∃α | α× β = 1 ∧ β 6= 0 Inverse
M3 ∀α∀β∀γ | (α× β)× γ = α× (β × γ) Associativity
M4 ∀α∀β | α× β = β × α Commutativity

D ∀α∀β∀γ | α× (β + γ) = (α× β) + (α× γ) Distributivity
0 6= 1; 0 6= 1 + 1; · · · · · · 0 6= 1 + · · ·+ 1 no modulo arith

Table 1 Axioms of arithmetic. These are written as sentences in first-order logic. They
comprise the field axioms with added axioms that exclude modulo arithmetic. Variables:
α, β, γ, 0, 1 represent objects the axiom-set acts upon. Semantic interpretations of objects
complying with axioms are known as scalars. The fact arithmetic is intrinsically existential
is clearly seen in the general use of the ‘there exists’ quantifier: ∃.

and is inconsistent with axiom M2. The remaining two, (4) and (3), are neither
proved nor negated, and are logically independent of axioms.

Accordingly, instances of α, in (1) and (2), are numbers consistent with axioms
and accepted as scalars, proved to necessarily exist; the instance of α in (5) is
inconsistent with axioms and rejected as necessarily non-existent; and instances
of α in (4) and (3) are numbers consistent with axioms and accepted as scalars
whose existences are not provable, and not necessary, but possible.

In the cases of propositions (1) and (2), logical dependence, on axioms, is es-
tablished by the fact that these propositions (syntactically) derive, directly from
axioms. Likewise for the negation of (5). In contrast, however, logical independence
of (4) and (3) is not provable by direct derivation because axioms do not assert
such information. In essence, that is the whole point of the discussion. What does
confirm logical independence is a proposition’s truth-table, viewed from the context
of the Soundness Theorem and its converse, the Completeness Theorem. Briefly,
Soundness says: if a formula is provable, it will be true, irrespective of whether vari-
ables are understood as rational, real or complex (or any other field). Completeness
says: if a formula is true, irrespective of how variables are understood, then it will
be provable. Hence, if there is disagreement in a truth-table, jointly, Soundness and
Completeness except an excluded middle whose formulae are neither provable nor
disprovable. This is the predicament of Proposition (4). Sections 4 and 7 explain
the detail.

Proof of (1): that ∃α | α = 3 Substitution involving quantifiers

∀β∀γ∃α | α = β + γ

∀β∃γ | γ = β + β

⇒ ∀γ∃α | γ = β + β

In the example above, an existential quantifier
of one proposition must be matched with a
universal quantifier of the other. These are
highlighted by underlining.

Notation
γ y β indicates swapping to different bound
variable. This is always allowed under the
quantifier, so long as all instances are swapped

∀β∀γ∃α | α = β + γ AXIOM A0 (6)
∀β∃α | α = β + β γ y β (6) (7)
∀γ∃α | γ = β + β αy γ (7) (8)
∀β∃α | α = β + β + β Subst. (8), (6) (9)
∃1∀α | α× 1 = α AXIOM M1 (10)
∃β | β = 1 by (10) (11)
∃α | α = 1 + 1 + 1 Subst. (11), (9)) (12)
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Proof of (2): that ∃α | α2 = 4

∀β∀γ∃α | α = β + γ AXIOM A0 (13)
∀β∃α | α = β + β γ y β (13) (14)
∀α | α× α = α× α identity rule (15)

∀β∃α | α× α = (β + β)× (β + β) Subst. (14), (15) (16)
∀α∀β∀γ | α× (β + γ) = (α× β) + (α× γ) AXIOM D (17)
∀β∃α | α× α = β × (β + β) + β × (β + β) by (17), (16) (18)
∀β∃α | α× α = (β × β) + (β × β) + (β × β) + (β × β) by (17), (18) (19)
∃1∀α | α× 1 = α AXIOM M1 (20)
∃β | β = 1 by (20) (21)
∃α | α× α = (1× 1) + (1× 1) + (1× 1) + (1× 1) Subst. (21), (19) (22)
∃α | α× α = 1 + 1 + 1 + 1 by (20), (22) (23)

4 Soundness and Completeness

Model theory is a branch of Mathematical Logic applying to all first-order theories,
and hence to arithmetic [4,5]. Our interest is in two standard theorems: the
Soundness Theorem and its converse, the Completeness Theorem, and theorems
that follow from them. These theorems formalise the link connecting the truth
(semantic information) of a formula and its provability (syntactic information).
Together, their combined action identifies an excluded middle, comprising the set of
all non-provable, non-negatable propositions — those that are logically independent
of axioms.

Briefly: any given (first-order) axiom-set is modelled by particular mathemat-
ical structures. That is to say, there are certain structures, consistent with each
individual axiom of that axiom-set. In the case of arithmetic, these modelling
structures are the infinite fields. These are closed structures consisting of numbers
known as scalars. In practical terms, if a proposition is logically independent of
axioms, this independence may be diagnosed by demonstrating disagreement on
whether the proposition is true – between any two models. Of relevance to quantum
theory is Proposition (4); this is true in the complex plane, but false in the real
line.

Theorem 1 The Soundness Theorem:

Σ ` S ⇒ ∀M (M |= S) . (24)

If structureM models axiom-set Σ and Σ derives sentence S, then every structureA sentence is a formula where there is no oc-
currence of any variable not bound by a quan-
tifier. For example: ∀α∀β (α+ β = β + α) .

M models S.
Alternatively: If a sentence is a theorem, provable under an axiom-set, then that
sentence is true for every model of that axiom-set.

Theorem 2 The Completeness Theorem:

Σ ` S ⇐ ∀M (M |= S) . (25)

If structureM models axiom-set Σ and every structureM models sentence S, then
Σ derives sentence S.
Alternatively: If a sentence is true for every model of an axiom-set, then that
sentence is a theorem, provable under that axiom-set.

5 Logically Dependent S

Jointly, Theorems 1 and 2 imply the 2-way implication which is Theorem 3:

Theorem 3 Soundness And Completeness:

Σ ` S ⇔ ∀M (M |= S) . (26)

If structure M models axiom-set Σ, then axiom-set Σ derives sentence S , if-and-
only-if, all structures M model sentence S.
Alternatively: A sentence is provable under an axiom-set, if-and-only-if, that sen-
tence is true for all models of that axiom-set.
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In addition, supplementary to Theorem 3, for every provable sentence S there is a
corresponding disprovable negation ¬S, also subject to Theorems 1 and 2, resulting¬S ≡ NOT S
in Theorem 4, a second, but complimentary 2-way implication:

Theorem 4 Soundness And Completeness covering Negations:

Σ ` ¬S ⇔ ∀M (M |= ¬S) . (27)

If structure M models axiom-set Σ, then axiom-set Σ derives the negation of sen-
tence S, if-and-only-if, all structures M model the negation of S.
Alternatively: A sentence is disprovable under an axiom-set, if-and-only-if, that
sentence is false for all models of that axiom-set.

6 Logically Independent S

And so, while Theorem 3 covers all provable sentences under axiom–set Σ, Theorem
4 covers the set of disprovable negations under axiom–set Σ. Of special interest is
the remaining set. This is an excluded middle, not covered, either by Theorem 3
or by Theorem 4, comprising sentences that are neither provable, nor disprovable.
Happily, whereas there is no suggestion of any excluded middle in the left hand
sides of (26) and (27), the right hand sides jointly define one. This excluded middle
is the set of sentences S excluded by the right hand sides of both (26) and (27),
thus:

¬∀M (M |= S) ∧ ¬∀M (M |= ¬S) . (28)

Now, by writing the negations of (26) and (27):

¬ (Σ ` S)⇔ ¬∀M (M |= S) ; (29)

¬ (Σ ` ¬S)⇔ ¬∀M (M |= ¬S) ; (30)

we may then match (28) with its corresponding left side, so as to construct:

¬ (Σ ` S) ∧ ¬ (Σ ` ¬S)⇔ ¬∀M (M |= S) ∧ ¬∀M (M |= ¬S) . (31)

This includes all sentences excluded by (26) and (27). On the left, it limits all
sentences that are neither provable nor negatable, to those on the right, that are
neither true nor false, across all structures that model the axiom-set. For theories
whose axiom-set is modelled by more than one single structure – where M1 and
M2 are distinct, we deduce:

Theorem 5 The logically independent, excluded middle:

¬ (Σ ` S) ∧ ¬ (Σ ` ¬S)⇔ ∃M1 (M1 |= S) ∧ ∃M2 (M2 |= ¬S) . (32)

Axiom-set Σ derives neither sentence S nor its negation, if-and-only-if, there exist
structures M1 and M2 which each model axiom-set Σ, such that M1 models S,
andM2 models the negation of S.
Alternatively: A sentence is true for some but not all models of an axiom-set,
if-and-only-if, that sentence is logically independent of that axiom-set.

A good reference is the section on logical independence, written by Edward Stabler,
in his 1948 book. [12].

7 The action of Soundness and Completeness on ARITHMETIC

Section 7 discusses the employment of Theorems 1 and 5, specifically applied to
arithmetic. These result in Theorems 6 and 7. And these two new theorems
provide us with two practical tests – performed by inspection – telling us about a
proposition’s provability.

Propositions under test are existential propositions – those asserting existence
of variables. Tests are applied by examining the proposition’s truth-table. To illus-
trate, Table 2 lists the five truth-tables for propositions (1) to (5). The T and F
entries are answers to the question: is the proposition adjacent, in this row, True
or False for the interpretation, assigned, above the column?
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Proposition Interpretations
α ∈ C α ∈ R α ∈ Q

∃α | α = 3 T T T
∃α | α× α = 4 T T T
∃α | α× α = 2 T T F
∃α | α× α = −1 T F F
∃α | α−1 = 0 F F F

Table 2 Truth-tables for some existential propositions. T and F denote true and false. The
T and F entries are answers to the question: is the proposition to the left, true, for the
interpretation above? Disagreement along a row confirms independence for that proposition.
True in Q confirms dependence due to Theorem 6.

In advance of stating Theorems 6 and 7, we may say: by inspection of Table
2, the first two, and the last propositions, corresponding to (1), (2) and (5), are
logically dependent; and the third and fourth propositions, corresponding to (3)
and (4), are logically independent.

Theorem 6 Logical Dependence is demonstrated if a proposition is True
while interpreting its variables as rational.

Proof Proof is in the following steps: 1 – 5. by inspection

1. Collectively invoke the axioms of Table 1, to derive each and every proposition,A problem, here, must be recognised. An in-
finite number of axioms is posed to exclude
all modulo arithmetic.

S, asserting existence of all the individual rational numbers. Steps (a) – (e).
(a) The first step in this process is to derive theorems that assert existence of

every positive integer, thus:

∀β∀γ∃α | α = β + γ AXIOM A0 (33)
∀β∃α | α = β + β by (33); γ y β (34)
∀γ∃α | γ = β + β by (34);αy γ (35)
∀β∃α | α = β + β + β Subst. (35), (33)
∀β∃α | α = β + β + β + · · · · · · (36)
∃1∀α | α× 1 = α AXIOM M1 (37)
∃β | β = 1 by (37) (38)
∃α | α = 1 + 1 + 1 + · · · Subst. (38), (36) (39)

Writing (39) in more concise language:

∃α | α = n for n = 1, 2, . . . (40)

(b) Now apply axiom A2 to (40), to derive existence of every negative integer.
(c) Next, apply axiom M2 to derive existence of the reciprocal of every non-zero

integer.
(d) Then invoke axiom M0 to derive existence of every rational number.
(e) Finally add existence of zero to the system, by invoking axiom A1.

2. By Theorem 1, The Soundness Theorem, each of these propositions S is true
in every model of axioms.

3. Hence, all numbers, whose existence is asserted by these propositions, form a
set Q, subsumed by every infinite-field.

4. This set is closed and so forms a structure modelling axioms.
5. By Theorem 2, The Completeness Theorem, every existential proposition S,

asserting existence in Q, is provable.

Theorem 7 Logical Independence is demonstrated if a proposition is True
while its variables are interpreted as members of one infinite-field, but False when
interpreted as members of a different infinite-field.

Proof Sructures modelling axioms are the infinite-fields. Hence, by Theorem 5,
disagreement between infinite-fields implies logical independence.
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Figure 1 Truth-space for propositions (small circles) asserting existence of particular num-
bers. The innermost nesting is the set of all propositions, true (consistent with axioms) in all
infinite fields. The Completeness Theorem guarantees these are logically dependent theorems.
The set to the exterior comprises propositions false (inconsistent with axioms) in all infinite
fields; these are the only propositions inconsistent with axioms. The Completeness Theorem
guarantees these are logically dependent negations. Soundness plus Completeness Theorems
guarantee the excluded middle consists of logically independent, mathematically undecidable
propositions.

8 Other examples of truth-tables.

Proposition Interpretations
α ∈ C α ∈ R α ∈ Q

∃α | α = aQ T T T
∃α | α = aR T T F
∃α | α = aC T F F

Table 3 Some more general examples: logical dependence of a particular, rational scalar
aQ, logical independence of the real scalar aR and logical independence of the complex scalar
aC.

Proposition Interpretations
x, y ∈ C x, y ∈ R x, y ∈ Q

∀x∃y | y = x2 T T T
∀y∃x | y = x2 T F F

Table 4 Truth-tables concerning existence of x and y in the function y = x2.

Table 4 demonstrates logical ambiguity present in ordinary mathematical for-
mulae. Corresponding to the equation y = x2, there are different possibilities in
first-order logic: ∀x∃y |y = x2 and ∀y∃x |y = x2. The former, quantified by ∀x∃y, is
true for the rational field and therefore, exists by theorem. The latter, quantified
by ∀y∃x, has a disagreeing truth-table and therefore, is independent of axioms.

In Table 5 we see validity of the finite polynomial

p (x) = a + bx + cx2

compared with that of infinite series:

exp (x) ≡ lim
n→∞

[
1 + x + (x)2

2 + · · ·+ (x)n

n!

]
.
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In both cases, all input variables are rational. Even so, in the case of the exponential,
any rational input maps to an infinite sum that is never rational. So exp (x) is never
logically dependent. In Table 6, the rational x is replace by the quantified ∀x.Particular, rational scalars: a, b, c, x.

Proposition Interpretations
y ∈ C y ∈ R y ∈ Q

∃y | y = p (x) = a + bx + cx2 T T T
∃y | y = exp (x) T T F

Table 5 Truth-tables showing the logical dependence of a finite polynomial, versus, logical
independence of an infinite series – where arguments are rational.

Proposition Interpretations
x, y ∈ C x, y ∈ R x, y ∈ Q

∀x∃y | y = p (x) = a + bx+ cx2 T T T
∀x∃y | y = exp (x) T T F

Table 6 Truth-tables showing the logical dependence of a finite polynomial, versus, logical
independence of an infinite series – where arguments are universally quantified.

Conclusions & Discussion

The premise of this paper is that mathematical physics rests on a foundation of
arithmetic and elementary algebra, and in doing so, inherits the information they
contain. The approach here, is to treat elementary algebra as a formal axiomatised
system to expose logical information that might be passed into quantum mathem-
atics.

As a formal axiomatised system, elementary algebra becomes a theory of ex-
istence – existence of scalars, that is. In that theory, two modes of existence oc-
cur. There is existence, provable under the system axioms, then there is existence,
neither provable nor negatable, under those axioms. This is the same as saying, this
second existence is logically independent of axioms.

In this paper, rational scalars are shown to exist logically dependent on axioms,
while imaginary scalars are shown logically independent. These findings suggest
a description of measured observables that is inherently logically dependent, in
contrast to, probability amplitudes, characterised by logical independence.

Together with non-existence of objects, such as infinity, denied by axioms, the
two modes of existence form an existential system, constituting a 3-valued logic.
This seems most probably the missing mathematical foundation for the 3-valued
logic of Hans Reichenbach, which he showed resolves ‘causal anomalies’ of quantum
mechanics [10,11].

Ongoing research

Standard quantum theory has a further axiom, on top of elementary algebra, which
imposes unitarity (or self-adjointness) – by Postulate. This postulate blocks the ima-
ginary unit’s logical independence, so destroying the 3-valued logic. If unitarity can
be shown to emerge naturally out of quantum mathematics — not from physical,
geometric or quantum principles! — rendering redundant the unitarity by Postulate,
then it would be easy to conclude that logical independence is present in quantum
theory. If that were to be possible, by way of logically independent Boolean pro-
positions, used by Tomasz Paterek et al [8,9], this would open up the prospect of
making a theoretical link, directly connecting logical independence in arithmetic
and elementary algebra, with quantum randomness and quantum indeterminacy.
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