Erratum: Local discrimination of quantum measurement without assistance of classical information [J. Quantum Inf. Sci. 2015, 5, 71]

Youbang Zhan

School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huaian, P. R. China
Email: ybzhan@hytc.edu.cn

Copyright © 2015 by author(s) and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0

There are mistakes in Sections 3 and 4 of this paper, some calculated values need to be corrected in the following some sentences:

On page 75, Section 3, first paragraph:
Now let us turn to depict the LQMD. Suppose that two spacelike separated observers, Alice and Bob, share 16 [not 30] seven-qubit GHZ states, which [$\cdots \cdot]$, where $k=1,2, \cdots, 16[$ not 30$]$, and $[\cdots] .[\cdots]$, on her qubits in the state $\left|G^{(k)}\right\rangle(k=1,2, \cdots, 16[$ not 30$])$ respectively. $[\cdots]$, the probability of all qubits $B^{(k)}$ in the states $\frac{1}{g_{n} T_{n}}\left|\mu^{+}\right\rangle$or $\frac{1}{g_{n} T_{n}}\left|\mu^{-}\right\rangle\left(g_{n}=2^{(6-n) / 2}, n=1,2, \cdots, 6\right)$ is $\left(\frac{63}{64}\right)^{16} \approx 0.78$ [instead of $\left(\frac{63}{64}\right)^{30} \approx 0.62$], i.e., the probability of at least one qubit $B^{\left(k^{\prime}\right)}$ in the state $\left|\psi_{6}^{+}\right\rangle$is $1-\left(\frac{63}{64}\right)^{16} \approx 0.22$ [instead of $\left.1-\left(\frac{63}{64}\right)^{30} \approx 0.38\right] .[\cdots]$. One can see that, after measurements of Bob, in the 22% [not 38%] cases, $[\cdots] .[\cdots]$ will be in the ratio of one to $u\left(u=\left(\frac{x^{32}}{y^{31}}\right)^{2} /\left(\frac{y^{32}}{x^{31}}\right)^{2} \approx 9.22 \times 10^{18}\left[\right.\right.$ not $\left.\left.1.45 \times 10^{29}\right]\right)$, that is, the qubit $B^{\left(k^{\prime}\right)}$ will be always collapsed into the state $|1\rangle$. As a special case, we also assume that all the other 15 [not 29] qubits $B^{(k)}$ are in the states $\left|\psi_{1}^{ \pm}\right\rangle$after Alice's measurements and then all the 15 [not 29] qubits are in the state $|0\rangle$ after Bob's measurements. In this situation, one can easily find that the probability of the 16 [not 30] qubits $B^{(k)}$ in the state $|0\rangle$ or $|1\rangle$ will be in the ratio of one to 1.6 [not 2.5] after Bob's measurements. For general cases in which the qubit $B^{\left(k^{\prime}\right)}$ in the state $\left|\psi_{6}^{+}\right\rangle$and other 15 [not 29] qubits $B^{(k)}$ collapsed randomly into the states $\frac{1}{g_{n} T_{n}}\left|\mu^{ \pm}\right\rangle$
($g_{n}=2^{(6-n) / 2}, n=1,2, \cdots, 6$) after Alice's measurements, it is easily found that the probability of the 16 [not 30] qubits $B^{(k)}$ in the state $|0\rangle$ or $|1\rangle$ will be in the ratio of one to $w_{(1)}\left(w_{(1)}>1.6\right.$ [not 2.5]) after Bob's measurements. Now we consider the case in which there are two qubits $B^{\left(k^{\prime}\right)}$ and $B^{\left(k^{\prime \prime}\right)}$ in the state $\left|\psi_{6}^{+}\right\rangle$after Alice's measurements. Similar to the above described, one can find that the probability of the $16[$ not 30$]$ qubits $B^{(k)}$ in the state $|0\rangle$ or $|1\rangle$ will be in the ratio of one to $w_{(2)}\left(w_{(2)} \geq 3.43[\right.$ not 5.15$\left.]\right)$ after Bob's measurements. For the cases in which more qubits $B^{(1)}$, $B^{(2)}, \cdots, \quad B^{(l)}(l=3,4, \cdots, 16[$ not 30$])$ collapsed into the state $\left|\psi_{6}^{+}\right\rangle$after Alice's measurements, the probability of the 16 [not 16] qubits $B^{(k)}$ in the state $|0\rangle$ or $|1\rangle$ will be in the ratio of one to $w_{(l)}\left(w_{(l)}>w_{(2)}, l=3,4, \cdots, 16\right.$ [not 30]) after Bob's measurements. As mentioned above, after Alice's measurements, in the cases in which at least one qubit $B^{\left(k^{\prime}\right)}$ in the state $\left|\psi_{6}^{+}\right\rangle$(i.e., in the 22% [not 38%]cases), the probability of the 16 [not 30$]$ qubits $B^{(k)}$ in the state $|0\rangle$ or $|1\rangle$ will be in the ratio of one to W ($W \geq 1.6$ [not 2.5]) after Bob's measurements, where $W \in\left\{\omega_{(j)}: j=1,2, \cdots, 16\right\}[\operatorname{not} 30]$.

On page 76, Section 3, second paragraph:
To ensure the result of Bob's measurements more reliable, it can be further supposed that Alice and Bob share 40 entangled states groups (ESGs), each consisting of 16 [not 30] seven-qubit GHZ states $\left|G^{(k)}\right\rangle$ (see Eq. (11)). If Alice's measurements are the CPMs, it is easy found that, after Alice's and Bob's measurements, the probability of all qubits $B^{(k)}$ of each ESG in the state $|0\rangle$ or $|1\rangle$ will be still in the ratio of one to one. If Alice's measurements are the SPMs, by statistics theory, after Alice's and Bob's measurements, in 8 [not 15] ESGs the probability of the qubits $B^{(k)}$ of each ESG in the state $|0\rangle$ or $|1\rangle$ will be in the ratio of one to W ($W \geq 1.6[\operatorname{not} 2.5])$.

On page 76, Section 3, third paragraph:
As described above, one can see that, in this scheme, at the appointed time t, Bob should measure his qubits $B^{(k)}$ all in the basis $\{|0\rangle,|1\rangle\}$. If Alice employs the CPMs on her qubits, after Bob's measurements, the probability of all qubits $B^{(k)}$ in the state $|0\rangle$ or $|1\rangle$ will be in the ratio of one to one. If Alice's measurements are the SPMs, after Bob's measurements, in 8 [not 15] of the 40 ESGs the probability of the qubits $B^{(k)}$ of each ESG in the state $|0\rangle$ or $|1\rangle$ will be in the ratio of one to W ($W \geq 1.6$ [not 2.5]). In accordance with these outcomes, Bob can discriminate that the measurements employed by Alice are CPMs or SPMs. Thus, the LQMD is completed successfully.

On page 76, Section 4, first paragraph:
$[\cdots]$, either EDS is composed of 40 ESGs and each ESG consisting of 16 [not 30$]$ seven-qubit GHZ states, which $[\cdots]$.
0n page 77, Section 4, first paragraph:
$[\cdots]$, where $i=1,2, j=1,2, \cdots, 40$, and $k=1,2, \cdots, 16[\operatorname{not} 30]$, and $[\cdots]$.
The correction of these mistakes does not affect the results and conclusion of the original paper.

