Erratum: Local discrimination of quantum measurement without assistance of classical information [J. Quantum Inf. Sci. 2015, 5, 71]

Youbang Zhan

School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huaian, P. R. China Email: ybzhan@hytc.edu.cn

Copyright © 2015 by author(s) and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0

There are mistakes in Sections 3 and 4 of this paper, some calculated values need to be corrected in the following some sentences:

On page 75, Section 3, first paragraph:

Now let us turn to depict the LQMD. Suppose that two spacelike separated observers, Alice and Bob, share 16 [not 30] seven-qubit GHZ states, which [...],

where $k=1,2,\cdots,16$ [not 30], and $[\cdots]$. $[\cdots]$, on her qubits in the state $\left|G^{(k)}\right\rangle$ ($k=1,2,\cdots,16$ [not 30]) respectively. $[\cdots]$, the probability of all qubits $B^{(k)}$ in the states $\frac{1}{g_nT_n}\left|\mu^+\right\rangle$ or $\frac{1}{g_nT_n}\left|\mu^-\right\rangle$ ($g_n=2^{(6-n)/2},n=1,2,\cdots,6$) is $\left(\frac{63}{64}\right)^{16}\approx 0.78$ [instead of $\left(\frac{63}{64}\right)^{30}\approx 0.62$], *i.e.*, the probability of at least one qubit $B^{(k')}$ in the state $\left|\psi_6^+\right\rangle$ is $1-\left(\frac{63}{64}\right)^{16}\approx 0.22$ [instead of $1-\left(\frac{63}{64}\right)^{30}\approx 0.38$]. $[\cdots]$. One can see that, after measurements of Bob, in the 22% [not 38%] cases, $[\cdots]$. $[\cdots]$ will be in the ratio of one to u ($u=\left(\frac{x^{32}}{v^{31}}\right)^2/\left(\frac{y^{32}}{x^{31}}\right)^2\approx 9.22\times 10^{18}$ [not 1.45×10^{29}]),

that is, the qubit $B^{(k')}$ will be always collapsed into the state $\left|1\right\rangle$. As a special case, we also assume that all the other 15 [not 29] qubits $B^{(k)}$ are in the states $\left|\psi_1^\pm\right\rangle$ after Alice's measurements and then all the 15 [not 29] qubits are in the state $\left|0\right\rangle$ after Bob's measurements. In this situation, one can easily find that the probability of the 16 [not 30] qubits $B^{(k)}$ in the state $\left|0\right\rangle$ or $\left|1\right\rangle$ will be in the ratio of one to 1.6 [not 2.5] after Bob's measurements. For general cases in which the qubit $B^{(k')}$ in the state $\left|\psi_6^+\right\rangle$ and other 15 [not 29] qubits $B^{(k)}$ collapsed randomly into the states $\frac{1}{g_n T_n} \left|\mu^\pm\right\rangle$

 $(g_n=2^{(6-n)/2},\ n=1,2,\cdots,6)$ after Alice's measurements, it is easily found that the probability of the 16 [not 30] qubits $B^{(k)}$ in the state $\left|0\right>$ or $\left|1\right>$ will be in the ratio of one to $w_{(1)}$ ($w_{(1)}>1.6$ [not 2.5]) after Bob's measurements. Now we consider the case in which there are two qubits $B^{(k')}$ and $B^{(k')}$ in the state $\left|\psi_6^+\right>$ after Alice's measurements. Similar to the above described, one can find that the probability of the 16 [not 30] qubits $B^{(k)}$ in the state $\left|0\right>$ or $\left|1\right>$ will be in the ratio of one to $w_{(2)}$ ($w_{(2)} \ge 3.43$ [not 5.15]) after Bob's measurements. For the cases in which more qubits $B^{(1)}$, $B^{(2)}$, \cdots , $B^{(l)}$ ($l=3,4,\cdots,16$ [not 30]) collapsed into the state $\left|\psi_6^+\right>$ after Alice's measurements, the probability of the 16 [not 16] qubits $B^{(k)}$ in the state $\left|0\right>$ or $\left|1\right>$ will be in the ratio of one to $w_{(l)}$ ($w_{(l)}>w_{(2)}$, $l=3,4,\cdots,16$ [not 30]) after Bob's measurements. As mentioned above, after Alice's measurements, in the cases in which at least one qubit $B^{(k')}$ in the state $\left|\psi_6^+\right>$ (i.e., in the 22% [not 38%]cases), the probability of the 16 [not 30] qubits $B^{(k)}$ in the state $\left|0\right>$ or $\left|1\right>$ will be in the ratio of one to W ($W\ge 1.6$ [not 2.5]) after Bob's measurements, where $W\in\left\{\omega_{(j)}:j=1,2,\cdots,16\right\}$ [not 30].

On page 76, Section 3, second paragraph:

To ensure the result of Bob's measurements more reliable, it can be further supposed that Alice and Bob share 40 entangled states groups (ESGs), each consisting of 16 [not 30] seven-qubit GHZ states $\left|G^{(k)}\right\rangle$ (see Eq. (11)). If Alice's measurements are the CPMs, it is easy found that, after Alice's and Bob's measurements, the probability of all qubits $B^{(k)}$ of each ESG in the state $\left|0\right\rangle$ or $\left|1\right\rangle$ will be still in the ratio of one to one. If Alice's measurements are the SPMs, by statistics theory, after Alice's and Bob's measurements, in 8 [not 15] ESGs the probability of the qubits $B^{(k)}$ of each ESG in the state $\left|0\right\rangle$ or $\left|1\right\rangle$ will be in the ratio of one to W ($W \ge 1.6$ [not 2.5]).

On page 76, Section 3, third paragraph:

As described above, one can see that, in this scheme, at the appointed time t, Bob should measure his qubits $B^{(k)}$ all in the basis $\{|0\rangle, |1\rangle\}$. If Alice employs the CPMs on her qubits, after Bob's measurements, the probability of all qubits $B^{(k)}$ in the state $|0\rangle$ or $|1\rangle$ will be in the ratio of one to one. If Alice's measurements are the SPMs, after Bob's measurements, in 8 [not 15] of the 40 ESGs the probability of the qubits $B^{(k)}$ of each ESG in the state $|0\rangle$ or $|1\rangle$ will be in the ratio of one to W ($W \ge 1.6$ [not 2.5]). In accordance with these outcomes, Bob can discriminate that the measurements employed by Alice are CPMs or SPMs. Thus, the LQMD is completed successfully.

On page 76, Section 4, first paragraph:

[...], either EDS is composed of 40 ESGs and each ESG consisting of 16 [not 30] seven-qubit GHZ states, which [...].
On page 77, Section 4, first paragraph:

[...], where i=1, 2, j=1, 2, ..., 40, and k=1, 2, ..., 16 [not 30], and [...]. The correction of these mistakes does not affect the results and conclusion of the original paper.