Proof of Fermat's last theorem (Part III of III)
 $$
a^{n}+b^{n}=c^{n}(\mathrm{n}>1 \text { and odd })
$$

Objet:

- Another form of Fermat's last theorem : I prove that the Fermat's last theorem consist in finding 3 integers (x, y, and z) such as

$$
(x+z)^{n}+(y+z)^{n}=(\mathrm{x}+\mathrm{y}+z)^{n}
$$

- From the Pythagorean triple we obtain a square equals the sum of three squares
If $c^{2}=a^{2}+b^{2}$, and where d is the complement of c to $(a+b)$ was $(c-d)^{2}=(a-d)^{2}+(b-d)^{2}+d^{2}$.
- From each even integer we obtain at least a Pythagorean triple
- The surface of the Pythagorean triangle

Any number $s=\frac{w^{3}-w}{4}$ is the surface of a Pythagorean triangle

$$
w^{2}+\left(\frac{w^{2}-1}{2}\right)^{2}=\left(\frac{w^{2}+1}{2}\right)^{2}
$$

Author: Romdhane DHIFAOUI (romdhane.dhifaoui@yahoo.fr).

Another form of Fermat's last theorem:

$a^{n}+b^{n}=c^{n}$
$\mathrm{c}=\mathrm{a}+\mathrm{b}-\mathrm{d}$
$(a)^{n}+(b)^{n}=(c)^{n}$
$(a)^{n}+(b)^{n}=(\mathrm{a}+\mathrm{b}-\mathrm{d})^{n}$
$(a-d+d)^{n}+(b-d+d)^{n}=(\mathrm{a}-d+\mathrm{b}-\mathrm{d}+d)^{n}$
$(a-d+d)^{n}+(b-d+d)^{n}=(\mathrm{a}-d+\mathrm{b}-\mathrm{d}+d)^{n}$
If we take :
$\mathrm{x}=a-d$
$\mathrm{y}=b-d$
$\mathrm{z}=d$
Fermat's last theorem consist in finding 3 integers (x, y, and z) such as $(x+z)^{n}+(y+z)^{n}=(x+y+z)^{n}$

Using the new form of Fermat's last theorem

From the Pythagorean triple we obtain a square equals the sum of three squares
$(x+z)^{2}+(y+z)^{2}=(x+y+z)^{2}$
$(x+z)^{2}+(y+z)^{2}=x^{2}+2 x y+y^{2}+2 y z++2 x z$
$(x+z)^{2}+(y+z)^{2}=x^{2}+2 x y+y^{2}+2 y z++2 x z$
$(x+z)^{2}+(y+z)^{2}=(x+y)^{2}-y^{2}+(y+z)^{2}-z^{2}+(x+z)^{2}-x^{2}$
$(x+z)^{2}+(y+z)^{2}=(x+y)^{2}-y^{2}+(y+z)^{2}-z^{2}+(x+z)^{2}-x^{2}$
$0=(x+y)^{2}-y^{2}-z^{2}-x^{2}$
$(x+y)^{2}=y^{2}+z^{2}+x^{2}$
This means that: $(c-d)^{2}=(a-d)^{2}+d^{2}+(b-d)^{2}$

$$
\begin{aligned}
& \text { If } c^{2}=a^{2}+b^{2} \text {, and where } d \text { is } \\
& \text { the complement of } c \text { to }(a+b) \text { was } \\
& (c-d)^{2}=(a-d)^{2}+(b-d)^{2}+d^{2} .
\end{aligned}
$$

A square equals the sum of three squares

From each even integer we obtain at least a Pythagorean triple. For every even integer the list of Pythagorean triple is limited.
$a^{2}+b^{2}=c^{2}$
$(x+z)^{2}+(y+z)^{2}=(x+y+z)^{2}$
$x^{2}+2 x z+z^{2}+y^{2}+2 y z+z^{2}=x^{2}+z^{2}+y^{2}+2 x z+2 y z+2 x y$
After simplification we get
$z^{2}=2 x y$ (z is even, since $\mathrm{z}=\mathrm{d}$)
$\frac{z^{2}}{2}=x y$
Take couples $x y$ dividers such as $x y=\frac{z^{2}}{2}$, it is sufficient to calculate $(x+z)^{2}+(y+z)^{2}=(x+y+z)^{2}$

Of each pair of dividers we obtain a Pythagorean triple Each integer has at least a pair of dividers 1 and itself.
\checkmark To find all Pythagorean triples
\checkmark Take an even integer z
Find x and y as $\mathrm{xy}=\frac{z^{2}}{2}$
We have $(x+z)^{2}+(y+z)^{2}=(x+y+z)^{2}$

The surface of the Pythagorean triangle
$(x+z)^{2}+(y+z)^{2}=(x+y+z)^{2}$
$2 x y=z^{2}$
$x y=\frac{z^{2}}{2}$
$x y$ is a number and every number a is the form a * 1
$x y=1 * x y$
$\mathrm{X}=1$ et $\mathrm{y}=\frac{z^{2}}{2}$
$S=\frac{(x+z)(y+z)}{2}$
$S=\frac{(x+z)(y+z)}{2}=\frac{(1+z)\left(\frac{z^{2}}{2}+z\right)}{2}$
$2 s=(1+z)\left(\frac{z^{2}}{2}+z\right)$
$2 s=\frac{z^{2}}{2}+\frac{z^{3}}{2}+z+z^{2}$
$2 s=\frac{z^{2}}{2}+\frac{z^{3}}{2}+\frac{2 z}{2}+\frac{2 z^{2}}{2}$
$4 s=z^{2}+z^{3}+2 z+2 z^{2}$
$4 s=z^{3}+2 z+3 z^{2}+z-z+1-1$
$4 s=z^{3}+3 z+3 z^{2}+1-z-1$
$4 s=z^{3}+3 z+3 z^{2}+1-(z+1)$
$4 s=(z+1)^{3}-(z+1)$
$S=\frac{(z+1)^{3}-(z+1)}{4}$
$S=\frac{w^{3}-\mathrm{w}}{4}$
Any number $s=\frac{w^{3}-w}{4}$ is the surface of a Pythagorean triangle
$w^{2}+\left(\frac{w^{2}-1}{2}\right)^{2}=\left(\frac{w^{2}+1}{2}\right)^{2}$

