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Abstract

The friction sound is considered to be involved in the von Kármán vortex street. The
non-relativistic and relativistic Strouhal numbers are derived from von Kármán’s
vortex street. The relativistic result follows from the relativistic addition formula
for velocities. The friction tones generated by von Kármán’s vortex street form the
fifth sound in the liquid helium II. This sound was still not experimentally observed
in superfluid helium II and it means that this sound is here predicted as the crucial
step in the low temperature helium II physics of the low temperature laboratories.

The electron transport in graphene is supposed to be described by the
hydrodynamic form of the viscous liquid allowing the existence of the vortex street.
It is not excluded that the discovering of the vortex street in graphene can form one
of the crucial discoveries in the graphene physics.

By analogy with helium II, we propose that photon is a quantum vortex, or, the
Onsager vortexon.

1 Introduction

It is well known that there are four sounds in liquid superfluid helium
II (He II). The first sound in helium II is caused by the pressure
variations, where the supefluid and other normal components of helium
II are in the concord motion. In other words, the sound is based on the
longitudinal phonons in superfluid liquid. The second sound is formed
by the entropic waves, which are oscillations of temperature and it was
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predicted by Landau (1941; 1944), explained rigorously by Lifshitz (1944)
and experimentally confirmed by Peshkov (1944). The third sound is a
sound, which exists only in thin films of He II. That is the surface sound
in helium. The forth sound is the sound in the capillaries, where the
normal component of superfluid helium II is equal to zero. The fifth
sound is the so called the friction sound discovered by Bénard (1908)
and Mallock (1907) in hydrodynamics and aerodynamics and theoretically
explained and derived by Blokhintsev from the von Kármán vortex street.
This sound was not still experimentally discovered in superfluid helium II
and it means that this sound is here predicted as the new direction in the
low temperature physics of the low temperature laboratories.

2 The friction sound in the classical aerodynamics

It is well known that the moving ballistic projectile generates not only
the Mach cone but also the sound. Similarly, the moving projectile of a
gun, moving asteroid in atmosphere, moving misails generate sound. The
physical origin of this sound is not caused by the vibration of the surface
of the projectile, or by the vibration of the Mach cone, or by the micro-
structure of the Mach cone, but it is caused by the periodic generation
of vortexes in the vicinity of the surface of the projectile during the air
flowing around it. Such sound is generated also by the air flow around the
cylinders, or strings. The system of strings generating the sound is named
Aeolian’s harp (Aeolus being God of winds in the Greek mythology) and
the tones generated in a such a way are so called the friction tones. If
the diameter of the string, or cylinder immersed in the flow is D and the
velocity of the flow is v then the frequency f of the sound is given by the
Strouhal formula:

f = κ(Re)
v

D
, (1)

where κ is the Strouhal number named after Vincent Strouhal, a Czech
physicist who experimented in 1878 with wires experiencing vortex
shedding and singing in the wind (Strouhal, 1878; White, 1999). The
symbol Re is the Reynolds number given by the formula Re = vD/ν, where
ν is the kinematic viscosity. The Strouhal number was late generalized to
involve obertons, or

f = κ(Re)
v

D
n, (2)

where n is the integer number of the oberton.
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3 The von Kármán vortex street

The von Kármán vortex street is named after the engineer and fluid theorist
Theodore von Kármán (1963; 1994). It is produced for instance by wind
interacting with the suspended telephone, or, by the power lines, or, by a
car antenna at certain speeds of a car. The von Kármán vortex street can
be rigorously defined in the two-dimensional hydrodynamics with potential
flow.

The plane potential flow of the ideal two-dimensional liquid can be
described by the complex function w(z) = φ(x, y)+iψ(x, y) with z = x+iy
(Kočin et al., 1963). It is supposed that the function is analytical, which
means that the Cauchy-Riemann conditions are fulfilled:

∂φ

∂x
=
∂ψ

∂y
;

∂φ

∂y
= −∂ψ

∂x
. (3)

The corresponding velocities of the two-dimensional liquid fluid are as
follows:

vx =
∂φ

∂x
; vy =

∂φ

∂y
. (4)

Then, derivation of w gives:

dw

dz
=
∂φ

∂x
+ i

∂ψ

∂x
=
∂φ

∂x
− i

∂φ

∂y
= vx − ivy. (5)

The vortex potential with center at point zk was derived in the complex
function theory of the fluid dynamics as

w(z) =
Γ

2πi
ln

(z − zk)

l
, (6)

where Γ is so called circulation of liquid and l is the arbitrary constant with
the dimensionality of length. Let us suppose that the centers of the vortexes
are at points z0,±z1,±z2,±z3, ... with xk = lk, k = 0,±1,±2,±3, ... and
yk = H/2, where H is the arbitrary parameter.

It may be easy to see that the complex potential of the system of vortexes
is (Kočin et al. 1963):

w(z) =
Γ

2πi

ln (z − z0)π

l
+

∞∑
k=1

ln (z − zk)

−lk
+ ln

(z − z−k)

lk

+ const, (7)

where we have multiplied z − z0 by π/l and z − zk by 1/(−kl), which
leads to the change of additional constant in the complex potential and
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not to the change of physics following from the complex potential. After
some mathematical manipulations, we get the last formula in the following
form: with

w(z) =
Γ

2πi
ln

(z − z0)π

l

∞∏
k=1

(z − zk)

−lk
(z − z−k)

lk

 . (8)

Since we have used zk = z0 − lk, z−k = z0 + lk, then

w(z) =
Γ

2πi
ln

(z − z0)π

l

∞∏
k=1

1−
(z − z0)

lk

2

 . (9)

Now, using the formula

sin πx = πx
∞∏
k=1

1− x2

k2

 , (10)

we get

w =
Γ

2πi
ln sin

π

l
(z − z0). (11)

The corresponding complex velocity is as follows:

vx − ivy =
Γ

2li
cot

π

l
(z − z0). (12)

In case of two vortexes with circulation Γ1,Γ2, we get the complex
velocities in the form:

vx − ivy =
Γ1

2li
cot

π

i
(z − z1) +

Γ2

2li
cot

π

l
(z − z2) =

dw

dz
. (13)

It is possible to see that (Kočin et al., 1963)

v1x − iv1y =
Γ2

2li
cot

π

l
(z1 − z2) (14)

and

v2x − iv2y = −Γ1

2li
cot

π

l
(z1 − z2). (15)

We have from equal complex velocities:

v1x − iv1y = v2x − iv2y, (16)

the following evident relation
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Γ1 = −Γ2. (17)

In case that y-velocities of vortexes are zero, or, v1y = v2y = 0, then

z1 − z2 = b+Hi, (18)

where b,H are some constants.
Now, let us use the formula:

cot
π

l
(b+Hi) =

sin 2πb
l

cosh 2πH
l − cos 2πb

l

− i
sinh 2πH

l

cosh 2πH
l − cos 2πb

l

, (19)

Then, it follows from the last equation that

v1,2x =
Γ

2l

sinh 2πH
l

cosh 2πH
l − cos 2πb

l

, (20a)

v1,2y = −Γ

2l

sin 2πb
l

cosh 2πH
l − cos 2πb

l

. (20b)

We have from v1y = v2y = 0, that

sin
2πb

l
= 0, (21)

or, b = 0, b = l/2.
The situation with b = 0 is called the symmetrical configuration which

is non-stable (Kočin et al., 1963) and the situation with b = l/2 which is
the chess stable configuration. We have two velocities:

v1x =
Γ

2l
coth

(
πH

l

)
; (b = 0), (22)

v2x =
Γ

2l
tanh

(
πH

l

)
; (b = l/2). (23)

4 The derivation of the Strouhal number from the

vortex street

The period forming by the vortex street, where the relative velocities is
v − u, is (Blokhintsev, 1981):

T =
l

v − u
(24)
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and the frequency f is

f =
v − u

l
=

(
1− u

v

)
D

l
.
v

D
(25)

It means in the last formula that the non-relativistic Strouhal number
κ is

κ =

(
1− u

v

)
D

l
. (26)

5 The relativistic Strouhal number

The rigorous derivation of the relativistic Strouhal number follows from
the relativistic hydrodynamics (Landau et al. 1987), together with the
derivation of the relativistic von Kármán’s vortex theory. However, we here
suppose that the relativistic Strouhal number follows immediately from the
non-relativistic formula by the operation of the relativistic generalization.

The Strouhal formula contains quantity D with the dimensionality
of length, and velocities v and u. According to special theory of
relativity, length is not contracted when the cylinder or string is placed
perpendicularly to the direction of motion, and it means that it is not
contracted if it is placed perpendicularly to the air flow in the considered
experiment. On the other hand, the special relativity addition theorem is
necessary to apply for velocities v and u. In other words, the relativistic
formula is as follows (with v ⊕ u being the relativistic addition) :

v ⊕ u =
v + u

1 + uv
c2
. (27)

Using the formula (25) for non-relativistic frequency generated by the
vortexes, we get after some algebraic operations, the relativistic Strouhal
number in the form:

κ =

(
1− u

v

)
D
l(

1− uv
c2

) . (28)

Let us remark, that if we consider the Strouhal effect in the inertial
system moving with velocity V with regard to the laboratory system, then
it is necessary still transform the last formula according the relativistic
Doppler formula.
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6 Discussion

We have considered the aerodynamic and hydrodynamic situations where
the friction sound is generated. The non-relativistic and relativistic
Strouhal numbers were derived from so called von Kármán’s vortex street.
The relativistic derivation of this formula followed from the relativistic
addition formula for velocities.

The physical phenomenon called the friction sound can be extended to
the cosmic rays moving in the relic photon sea, or, motion of asteroids in
atmosphere. In case of cosmic rays we must consider the moving bunch
of cosmical particles with its effective diameter D and not the individual
particles. The cosmic space is the black-body of the photon sea (Pardy,
2013a; 2013b), which enables the formation of the von Kármán photon
vortex street. The detection of the generated sound is possible by special
microphones.

While the von Kármán vortexes and friction tones are generated by
the motion of bodies in liquid helium, forming the fifth sound and it can
be verified by the experiments in the low temperature laboratories, there
are no von Kármán’s vortexes in vacuum. It means, no satellite produces
von Kármán’s vortexes in vacuum, which is the experimental proof, that
there is no classical hydrodynamics of ether-vacuum medium. The satellite
experiment is equivalent to the Michelson-Morley experiment proving the
nonexistence of the relative inertial motion with regard to vacuum.

The wave function ψ in quantum mechanics forms no vortex in the
two-slit experiment. On the other hand the vortexes can exist in the
hydrodynamic form of quantum mechanics (Madelung, 1926; Bohm et
al., 1954; Wilhelm, 1970; Rosen, 1974;), (Pardy, 2001; 1994), if and only
if, we introduce viscosity into the hydrodynamic equations of quantum
mechanics. To our knowledge this logical possibility was not considered in
quantum theory till this time.

The Bohr mechanism generates photon according to equation E2−E1 =
h̄ω. It is not excluded that the photon generated by this mechanism is
quantized vortex named vortexon, with regard to Onsager idea ( Onsager,
1949) on the existence of quantum vortexes in superfluid helium II.

The electron theory with fluid mechanics have connection with the
viscosity of Fermi liquids (Lifshitz et al., 1981) and the electronic Poiseuille
flow (Gurzhi, 1968). Andreev, Kivelson, and Spivak (2011) argued that
hydrodynamic contributions can be dominating in systems with a large
disorder correlation length. In contrast, the nonlocal response considered
by Levitov and Falkovich in graphene (Levitov et al., 2015) is directly
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sensitive to the collective momentum transport mode which underpins
viscous flow. The vorticity of the shear flows generated by viscosity can
result in a backflow of electrical current that can run against the applied
field. The resulting negative nonlocal voltage can serve as a clear signature
of the collective viscous behavior. Spatial patterns of electric potential can
be used directly to image vorticity and shear flows in electron systems with
modern capacitance scanning microscopy techniques (Yoo, et al., 1997;
Yacoby et al., 1999)

So, the electron transport in graphene can be described by the
hydrodynamic form of the viscous liquid allowing the existence of the
vortex street. It is not excluded that the discovering of the vortex street in
graphene will form one of the crucial discoveries in the graphene physics.
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Strouhal, V. (1878). Über eine besondere Art der Tonerregung, (On an
unusual sort of sound excitation), Annalen der Physik und Chemie, 3rd
series, 5 (10), 216-251.
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