
A CLASS OF MULTINOMIAL PERMUTATIONS AVOIDING

OBJECT CLUSTERS

RICHARD J. MATHAR

Abstract. The multinomial coefficients count the number of ways (of per-

mutations) of placing a number of partially distinguishable objects on a line,
taking ordering into account. A well-known two-parametric family of counts

arises if there are objects of c distinguishable colors and m objects of each
color, mc objects in total, to be placed on line.

In this work we propose an algorithm to count the permutations where no

two objects of the same color appear side-by-side on the line. This eliminates
all permutations with “clusters” of colors. Essentially we represent filling the

line sequentially with objects as a tree of states where each node matches

one partially filled line. Subtrees are merged if they have the same branching
structure, and weights are assigned to nodes in the tree keeping track of how

many mergers take place. This is implemented in a JAVA program; numerical

results confirm Hardin’s earlier counts for this kind of restricted permutations.

1. Unrestricted Multinomial Distributions

A fundamental counting argument considers N distinct objects and counts all
distinct ways of placing them in a line. This is the number of permutations of
N objects providing N ! possible arrangements. The rationale is that there are N
choices to place an object at the leftmost position, this leaves N−1 choices to place
an object of the remaining set at the next-to-left position, and so on, until only one
possible choice is left to place the last object at the rightmost position.

If some of the objects are indistinguishable—and the distinction is made by color
as usual in combinatorics—the pool of objects can be described by the notation
[m1m2 . . .mc], meaning there are m1 objects of the first color, m2 objects of the
second color and so on, with c different colors among the objects. The multiplicities
mi cause a reduction by the factors mi! relative to the count where all objects have
different colors. The number of arrangements becomes the multinomial coefficient

(1)

(
N

m1m2 . . .mc

)
≡ N !

m1!m2! · · ·mc!
, N ≡

c∑
i=1

mi

2. Multinomials With Even Frequencies

If the pool of objects contains the same number of objects of some color with
the same frequency m, the multinomial formula reduces to the simpler

(2)

(
N !

mm. . .m

)
≡ (cm)!

(m!)c
, N ≡ cm

Date: November 2, 2015.
2010 Mathematics Subject Classification. Primary 05A05; Secondary 68R05, 05C05.
Key words and phrases. Multinomial Distribution, Permutation, Nearest Neighbours.

1

2 RICHARD J. MATHAR

m\c 1 2 3 4 5
1 1 2 6 24 120
2 1 6 90 2520 113400
3 1 20 1680 369600 168168000
4 1 70 34650 63063000 305540235000
5 1 252 756756 11732745024 623360743125120

Table 1. Basic examples of the multinomial coefficients (2) [1, A089759,A060538].

m\c 1 2 3 4 5
1 1 1 1 1 1
2 1 3 15 105 945
3 1 10 280 15400 1401400
4 1 35 5775 2627625 2546168625
5 1 126 126126 488864376 5194672859376

Table 2. Basic examples of the reduced multinomial coefficients
(mc)!/[(m!)cc!] [1, A060540].

The associated counts with m varying from 1 to 5 down the rows and c varying
from 1 to 5 along the columns are in Table 1. The first row at m = 1 are the
factorials [1, A000142], restating the argument of the first paragraph in Section 1.
If there is only a single color—represented by c = 1 and the first column—there is
only a single arrangement. The entry at c = m = 2 for example counts chains of
two colors (say r and g) occurring each twice; these are the 6 combinations rrgg,
rgrg, rggr, ggrr, grgr, and grrg.

Combinations with a fixed set of colors are symmetric with respect to a permu-
tation of the colors. The 6 combinations in the previous example with c = 2 colors
can be constructed by taking the set of 3 combinations {rrgg, rgrg, rggr} and
swapping r↔ g in each of these to generate the other 3 combinations.

Considering combinations equivalent which can be mapped onto each other by a
permutation of the colors, the counts can be reduced by dividing them through c!.
From Table 1 we arrive at Table 2. The 10 entries at m = 3 and c = 2 for example
count the combinations rrrggg, rrgrgg, rrggrg, rrgggr, rgrrgg, rgrgrg, rgrggr,
rggrgg, rgggrg, and rggggr, where the first place is forced to be an r to fix the
reference color permutation.

3. Multinomials Without Clusters

3.1. Definition of cluster avoidance. Inspired by some sequences of Ron Hardin
in the Online Encyclopedia of Integer Sequences [1], the main theme of this paper
is to count multinomial combinations with equal frequencies as defined in Section
2 but enforcing that no two objects in the combinations that are neighbors have
the same color —a sort of multi-sexual variant of the ménage seating problem with
seats not cyclic around a table but arranged on a bench with two terminal chairs.
The rule is that clusters of two or more objects with the same color in a run within
the combinations must be avoided. Considering for example the c = 3 colors r, g
and b each occurring m = 2 times, Table 2 counts 90 combinations like rrggbb,
rrgbgb, rgbrgb, rbgrgb and so on; in the following we will for example not admit

MULTINOMIAL PERMUTATIONS AVOIDING CLUSTERS 3

rrggbb with three clusters nor gbrrbg with one cluster. We denote the cluster-free
combinations of mc objects with c colors each appearing m times by Mc,m

Definition 1. (Cluster-free combinations with equal frequencies) Mc,m is the num-
ber of combinations of cm objects—objects of c different colors appearing with fre-
quency/multiplicities m—such that no two objects placed side-by-side in the combi-
nation have the same color.

The restriction can only decrement the number of combinations relative to the
unrestricted combinations:

(3) Mc,m ≤
(cm)!

(m!)c
.

The symmetry with respect to a permutation of the colors remains valid if non-
clustering combinations are counted: A permutation of colors maps cluster-free
chains of objects to cluster-free chains of objects and clustering chains of objects
to clustering chains of objects. Therefore we may report results by tabulating the
integers Mc,m/c!.

3.2. Representation of Combinations as a Tree. The following algorithm of
obtaining concrete values of the Mc,m was used in the program in the appendix. We
lay down the objects left-to-right, and consider placing the next object as choosing
a branch in the graphical representation of all combinations as a tree. At the root
of the tree we still have all objects in a bag at our disposal, and there are c branches
leading from there to the state after placing any of the objects with one of the c
colors. Each of these states of the first generation splits into c − 1 branches by
placing one of the objects of the bag at the second position, where c−1 argues that
any color but the one already placed may be chosen. The nodes generally split into
c − 1 branches, but the number of branches may be less if some of the colors are
laid out early so there may be no more available from the bag further down in the
tree. There are also leaves in the tree that are not the maximum distance cm away
from the root, if only a set of objects of the same color remain in the bag.

The state of the cm− g objects that are not yet placed in generation 0 ≤ g may
be put as a label at each node of the tree. One would use the vector [m1m2 . . .mc]
saying that there are m1 objects of the first color, m2 objects of the second color
and so on yet to be placed, with

∑c
i=1mi = cm − g. In that way of accounting,

the number of paths to the leafs in generation g = cm is Mc,m.

3.3. Subtree Mergers. Next we reduce the tree to a (usually higher connected)
graph by combining all nodes at each individual generation with the same subtree
structure into a single node, and give that node a weight w equivalent to the number
of all paths leading to the individual nodes of the sparse original tree.

Define a label at a node in the merged tree as (0f01f1 · · ·mfmr1p
′

: w). It repre-
sents that there are 0× f0 + 1× f1 + · · ·m× fm + rp× 1 objects in the bag not yet
placed in the path from the root of the tree up to and including that node. f0 of
the colors are not in the bag, f1 of the colors have one object remaining in the bag,
f2 of the colors have two objects remaining in the bag and so on. The frequencies f
do not include the color that cannot be placed next to avoid clustering; that color
is represented by the last entry tagged with a prime representing one color with rp
remaining objects in the bag not to be placed next, where 0 ≤ rp ≤ m.

4 RICHARD J. MATHAR

This structure information suffices to compute all possible labels of the next
generation and also the full branching choices.

Remark 1. For this purpose we will actually omit all elements jfj in the notation
where either j = 0 or fj = 0, because branches cannot be generated by taking objects
that are no longer in the bag.

The transition from one generation to the next means to place another object.
This implies to select (in a loop) one of the non-primed subsymbols jfj in the label,
j > 0 and mj > 0, picking one of the object colors and object of which at least one
remains in the bag. In the next generation the number colors in the bag that have
j objects will be one less, so jfj is replaced by jfj−1. The color that was picked
replaces the previous primed color, but with one object less remaining that has

been placed, so r1p
′

is replaced by (j − 1)1
′
. The previously primed color returns

(unprimed) into the bag: r1p
′

becomes r1p. If the new list contains the same j more
than once, they are merged by adding their fm. The old weight w is replaced by
the product wfj because there are fj choices of selecting a color of type jfj in the
bag.

In a double loop over all symbols jfj in each label and over all labels of some
generation, a new set of symbols is created representing the next generation. This is
condensed by another merging of labels in the new generation which have the same
set of subsymbols in front of the colon: the merged label has the same subsymbols
and a weight which is the sum of the weights of the individual labels.

3.4. Example. We illustrate that efficient way of accounting in all generations
starting with a bag of c = 3 colors, each color with m = 3 objects. The number
of equivalent nodes in the sparse (non-merged) version of the tree is the sum of all
weights of all labels in a generation, and listed as N . In generation 0 (before having
placed any object), we have three colors each with 3 objects, and no primed color
(because there is no restriction to avoid clusters yet). The label is

(3^3 :1)

gen 0 N= 1

In generation 1, one of the colors is selected, so the multiplicity of the number
of colors with 3 objects drops from 3 to 2, and the color of the selected object (2
objects remaining) moves into the primed section. The weight is the old weight
multiplied by the number of choices of the colors, 1× 3. The label in generation 1
becomes

(3^2 2^1’ :3)

gen 1 N= 3

In generation 2 we select one of the 2 colors each with 3 objects remaining, so

32 becomes 31 and the selected color becomes 21
′

in the primed subsymbol. The

primed 21
′

returns as 21 into the unprimed list. The weight is the old weight
multiplied by the multiplicity of (equivalent) colors to be placed 3× 2:

(2^1 3^1 2^1’ :6)

gen 2 N= 6

In generation 3 we have two choices of picking a color class: one from the sub-
symbol 21 in the label and another from the subsymbol 31. The first leaves 31

untouched, moves 21 as 11
′

into the primed part, and moves 21
′

to 21, with a

weight 1 × 6. The second leaves 21 untouched, moves 31 as 21
′

into the primed

MULTINOMIAL PERMUTATIONS AVOIDING CLUSTERS 5

part, and moves 21
′

to 21, with a weight 1 × 6. This creates two kinds of bags in

generation 3, (213111
′
) and (2221

′
):

(2^1 3^1 1^1’ :6)(2^2 2^1’ :6)

gen 3 N= 12

In generation 4 we can pick 21 from the first bag and generate (113111
′

: 6), we

can pick 31 from the first bag and generate (112121
′

: 6), or we can pick 22 from the

second bag and generate (2211
′

: 12). So far we have generated N = 6+6+12 = 24
different partial chains:

(1^1 3^1 1^1’ :6)(1^1 2^1 2^1’ :6)(2^2 1^1’ :12)

gen 4 N= 24

In generation 5

(1) we can pick 11 from the first bag and generate (113101
′

: 6);

(2) we can pick 31 from the first bag and generate (1221
′

: 6). Here the 31

becomes 30 and 21
′
. 30 is removed, and the 11 which remains and the 11

which is unprimed are merged into 12;

(3) we can pick 11 from the second bag and generate (2201
′

: 6);

(4) we can pick 21 from the second bag and generate (112111
′

: 6). Here 21

becomes 20 and 11
′
. 20 is removed. The 11 remains. The 21

′
is unprimed

and becomes 21;

(5) we can pick 22 from the third bag and generate (112111
′

: 24). Here 22

becomes 21 and 11
′
. The 11

′
is unprimed and becomes 11. The old weight

12 is multiplied by the “exponent” 2 and becomes 24;

In picks (4) and (5) the new bags (112111
′

: 6) and (112111
′

: 24) have the same

labels apart from their weights and can be merged into (112111
′

: 30) by adding
weights. This leads to 4 types of bags representing 6 + 6 + 6 + 30 = 48 nodes in the
sparse tree:

(1^1 3^1 0^1’ :6)(1^2 2^1’ :6)(2^2 0^1’ :6)(1^1 2^1 1^1’ :30)

gen 5 N= 48

In generation 6 we generate 5 different types of bags representing 96 nodes in
the sparse tree:

(3^1 0^1’ :6)(1^1 2^1’ :6)(1^1 2^1 0^1’ :42)(2^1 1^1’ :12)(1^2 1^1’ :30)

gen 6 N= 96

In generation 7 we generate 4 different types of bags representing 168 nodes in
the sparse tree:

(2^1’ :6)(2^1 0^1’ :48)(1^1 1^1’ :54)(1^2 0^1’ :60)

gen 7 N= 168

In generation 8 we generate 2 different types of bags representing 48+120 = 222

nodes in the sparse tree. There is no output/branch from (21
′

: 6). (2101
′

: 48)

generates (11
′

: 48). (1111
′

: 54) generates (1101
′

: 54). (1201
′

: 60) generates

(1101
′

: 120). The last two of these new bags are merged:

(1^1’ :48)(1^1 0^1’ :174)

gen 8 N= 222

In generation 9 we observe that no branches emerge from the label (12
′

: 48)
because there are not objects left in the unprimed list. That label in generation 8

6 RICHARD J. MATHAR

does not generate anything in generation 9. The label (1101
′

: 174) has one choice
of a single object and generates

(0^1’ :174)

gen 9 N= 174

In the listing of results this is divided by c! = 3! = 6 to account for the permutation
of the colors, so M3,3/6 = 29.

In some sort of pure book-keeping we observe that in generation 10 (which is
larger than cm) there are no chains of objects of that type (because after generation
9 no objects are left in the bag):

gen 10 N= 0

3.5. Overview of the Program. A label in the algorithm is represented by an
object (in the OO-sense) of the class RemState (State of the colored objects re-
maining in the bag). This contains a weight w and a list of jfj that are instances of
the MultState class. A MultState object holds the number j and its multiplicity

fj and a boolean flag which indicates whether this is a primed symbol jfj
′

or not.
An object of the RemState class can be printed in an ASCII format with the

toString function, which is useful to track the transformations as shown in the
previous example. It can be transformed into a state of the next generation by
placing one of its objects, which is done by calling the place function with an
0-based index into the symbols jfj to detail which type of colors is to be picked for
the next placement. All possible new states (branches in the tree) derived from the
label are created with the branches function which basically loops through all the
symbols jfj and merges the new states wherever possible.

The class StateVector is a collection of the labels, equivalent to a collection of
all nodes (labels) in the tree at the same distance from the root, and equivalent to
all states of the same generation. A call to nextgen creates all states of the next
generation by calling the branches function of its individual labels and merging
the new labels where possible.

The main function of the class initializes the StateVector with a single node
equivalent to the root of the tree by using the c and m taken from the command
line. It calls recursively the nextgen function cm times to place all objects, and
eventually reports the total weight Mc,m/c! at the leaf of the merged tree.

4. Numerical Results

If we comple and run the program of the appendix with a double loop over m
and c like

#!/usr/bin/env bash

javac *.java >& /dev/null

for m in {1..10} ; do

for c in {1..10} ; do

java -cp . StateVector -q $c $m ;

done

echo

done

we obtain the following table of results. Each line shows c, then m and then the
reduced Mc,m/c! as if reading the array down the columns:

MULTINOMIAL PERMUTATIONS AVOIDING CLUSTERS 7

1 1 1

2 1 1

3 1 1

4 1 1

5 1 1

6 1 1

7 1 1

8 1 1

9 1 1

10 1 1

1 2 0

2 2 1

3 2 5

4 2 36

5 2 329

6 2 3655

7 2 47844

8 2 721315

9 2 12310199

10 2 234615096

1 3 0

2 3 1

3 3 29

4 3 1721

5 3 163386

6 3 22831355

7 3 4420321081

8 3 1133879136649

9 3 372419001449076

10 3 152466248712342181

1 4 0

2 4 1

3 4 182

4 4 94376

5 4 98371884

6 4 182502973885

7 4 551248360550999

8 4 2536823683737613858

9 4 16904301142107043464659

10 4 156690501089429126239232946

1 5 0

2 5 1

3 5 1198

4 5 5609649

5 5 66218360625

6 5 1681287695542855

7 5 81644850343968535401

8 5 6945222145021508480249929

9 5 967335448974819561548523580438

8 RICHARD J. MATHAR

10 5 209141786137614009701487336108267723

1 6 0

2 6 1

3 6 8142

4 6 351574834

5 6 47940557125969

6 6 16985819072511102549

7 6 13519747358522016160671387

8 6 21671513613423101256198918372909

9 6 64311863997340571475504065539218471107

10 6 330586922756304429697714946501284146322953006

1 7 0

2 7 1

3 7 56620

4 7 22875971289

5 7 36533294879349056

6 7 183095824753841610373405

7 7 2421032324142610480402567434373

8 7 74115215422015289392187745053216373265

9 7 4749303210651587675797285013227098386984170468

10 7 588242979144354234332728292738493758656488275002948671

1 8 0

2 8 1

3 8 400598

4 8 1530622143864

5 8 28920026907938624194

6 8 2070756746775910218326948065

7 8 459408385876250801291447710561829082

8 8 271259741131895052775392614041761701799270286

9 8 379065045836307787068046364731543393514652159389593652

10 8 1142490930667808363833513276790270503563005942443336645995266946

1 9 0

2 9 1

3 9 2872754

4 9 104650147201049

5 9 23575497690601916022516

6 9 24302858067615766089801166488125

7 9 91155245844064069307740171414201519055298

8 9 1046031892354833895113128900608177633584652958677057

9 9 32119646666355552112999645991677870426882424139287301894021793

10 9 2373613014676717426115059968329689897428343332868848727660084375739772331

1 10 0

2 10 1

3 10 20824778

4 10 7279277647839552

5 10 19672658572012343899666292

6 10 293736218147318801678882792470437721

7 10 18739368045280595665934917472507368174737872589

MULTINOMIAL PERMUTATIONS AVOIDING CLUSTERS 9

8 10 4204427313459831775866154680419213479057724331798640498651

9 10 2853894650868039917308960659804624462496672564449632072749348382989169

10 10 5202145573917369427233280073392338673677947120503038749310295939572928744511760680

The leading group where m = 1 simply states that the number of permutations
of distinct objects equals the factorial of the number of objects: Mc,1 = c!. If this
number is reduced by dividing through the factorial,

(4) Mc,1/c! = 1.

The first line in each group states that M1,m is mostly zero, the multiplicity
m = 1 being the only exception:

(5) M1,m = δ1,m

This is trivial and means that if there is only one color, placing the objects in a
line is impossible if no neighbors of the same color are allowed and if there is more
than one object.

The second line in each group reports another obvious result. If the number of
colors is c = 2, the objects must be arranged in a list of alternating colors, and
there are only the two choices of beginning with either color:

(6) M2,m/2! = 1.

The second group at m = 2 appears to be absolute values of Bessel polynomials
evaluated at −1 [1, A000806][2, (15)] with recurrence

(7)
Mc,2

c!
+ (1− 2c)

Mc−1,2

(c− 1)!
− Mc−2,2

(c− 2)!
= 0.

for the reduced counts, respectively

(8) Mc,2 − (2c− 1)(c− 1)Mc−1,2 − (c− 1)(c− 2)Mc−2,2 = 0.

The groups with m = 3, . . . 7 confirm Hardin’s results [1, A190826, A190830,
A190833, A190835, A190836].

One can read the array Mc,m/c! in the transposed format along the lines and
obtains the sequences 1, 5, 29, 182, 1198, . . . [1, A190917], 1, 36, 1721, 94376, . . . [1,
A190918], 1, 329, 163386, 98371884, . . . [1, A190920], [1, A190923,A190927,A190932].

Appendix A. JAVA Source Code

A.1. MultState.java.

1 /* package de.mpg.mpia.rjm

2 */

3

4 import java.util.* ;

5

6 /**

7 * An object of the class represents a symbol leftN^leftFreq with an optional

8 * prime (if tagged is true).

9 * @author R. J. Mathar

10 * @since 2015-11-02

11 */

12 public class MultState implements Comparable<MultState>

13 {

14 /** True if tagged with a prime (not to be placed in next placement)

10 RICHARD J. MATHAR

15 */

16 public boolean tagged ;

17

18 /** Remaining items for further placement. The "base" number of the symbol.

19 */

20 public int leftN ;

21

22 /** Number of colors that have leftN items left to distribute.

23 * The "exponent" of the symbol.

24 */

25 public int leftFreq ;

26

27 /** Ctor.

28 * Generate a symbol with all three parameters known.

29 * @param numbleft Number of items let in that color class.

30 * @param multipl Number of color classes with that (same) numbleft.

31 * @param forbid True if this color has just been placed.

32 * True implies that multipl=1.

33 */

34 public MultState(int numbleft, int multipl, boolean forbid)

35 {

36 leftN=numbleft ;

37 leftFreq = multipl ;

38 tagged = forbid ;

39 } /* ctor */

40

41 /** Represent the symbol in ASCII art for logging purposes.

42 * @return The base number leftN followed by the caret, the exponent (leftFreq) and the prime (if tagged).

43 */

44 public String toString()

45 {

46 String str = new String() ;

47 /* there is a long notation which prints all states, including those with leftN or leftFreq=0,

48 * and a shorter, which skips these; we save some paper and preselect to get the shorter.

49 */

50 if (leftN > 0 && leftFreq >0 || tagged)

51 {

52 str += leftN + "^" + leftFreq ;

53 if (tagged)

54 str += "’" ;

55 }

56 return str ;

57 }

58

59 /** A ranking function of the subsymbols.

60 * In a label in the tree graph, the state is basically independent on

61 * the ordering of the symbols. So we may keep them sorted for faster insertion

62 * and merger operations. In a somewhat arbitrary fashion we consider the primed

63 * part the largest (rightmost in the paper), and sort the other ones first with

64 * respect to the base (leftN) and second with respect to the exponent (leftFreq).

65 * The main outcome is that if all subsymbols (not considering the weight) in a label

66 * are the same after ordering, the labels can be merged by adding their weights.

67 * @return -1, 0 or 1 depending on whether this is considered smaller than, equal to or larger than oth.

MULTINOMIAL PERMUTATIONS AVOIDING CLUSTERS 11

68 */

69 public int compareTo(MultState oth)

70 {

71 /* consider tagged states to be larger

72 */

73 if (tagged && ! oth.tagged)

74 return 1;

75 else if (! tagged && oth.tagged)

76 return -1;

77 else

78 {

79 /* same tagged class. consider larger if items left larger

80 */

81 if (leftN > oth.leftN)

82 return 1;

83 else if (leftN < oth.leftN)

84 return -1;

85 else

86 {

87 if (leftFreq > oth.leftFreq)

88 return 1 ;

89 else if (leftFreq < oth.leftFreq)

90 return -1 ;

91 else

92 return 0 ;

93 }

94 }

95 } /* compareTo */

96 } /* MultState */

A.2. RemState.java.

1 /* package de.mpg.mpia.rjm

2 */

3

4 import java.util.* ;

5 import java.math.* ;

6

7 /** A RemState object is a label, a bag of remaining objects with a weight.

8 * @author R. J. Mathar

9 * @since 2015-11-02

10 */

11 public class RemState implements Comparable<RemState>

12 {

13 /** The remaining choices of states, sorted in increasing order left (smallest index) to right.

14 * This will usually contain exactly one state with a primed subsymbol, unless this

15 * is the root of the tree where no color is in the forbidden list.

16 */

17 public Vector<MultState> state ;

18

19 /** Number of occurrences and the combinatorial number of paths to that state.

20 * The piece in the label after the colon, representing the node count in the sparse representation

21 * of the tree of placements.

22 */

12 RICHARD J. MATHAR

23 public BigInteger weight ;

24

25 /** ctor representing an impossible state.

26 * The weight and the total number of items in the bag are set to zero.

27 */

28 public RemState()

29 {

30 state = new Vector<MultState>() ;

31 weight = BigInteger.ZERO ;

32 } /*ctor */

33

34 /** ctor with initial state of c colors each multiplicity m.

35 * The total number of items is c times m and there is no tagged (forbidden) color yet.

36 * This is the bag at generation zero at the root of the tree, where all objects

37 * are still to be distributed and none has yet been placed.

38 * @param c the number of different colors of the items

39 * @param m the multiplicity. The number of items with the same color.

40 */

41 public RemState(int c, int m)

42 {

43 state = new Vector<MultState>() ;

44 state.add(new MultState(m,c,false)) ;

45 weight = BigInteger.ONE ;

46 } /*ctor */

47

48 /** ctor with initial state of c colors each multiplicity m

49 * The total number of items is c times m.

50 * @param c the number of different colors of the items

51 * @param m the multiplicity. The number of items with the same color.

52 * @param w the combinatorial weight.

53 * @obsolete not needed

54 public RemState(int c, int m, BigInteger w)

55 {

56 state = new Vector<MultState>() ;

57 state.add(new MultState(m,c,false)) ;

58 weight = w ;

59 }

60 */

61

62 /** A ASCII representation of the contents of this type of bag.

63 * @return The list of subsymbols followed by a colon and the weight surrounded by parenthesis.

64 */

65 public String toString()

66 {

67 String str = new String() ;

68 str += "(" ;

69 for (MultState s: state)

70 str += s.toString() + " " ;

71 str += ":" + weight + ")" ;

72 return str ;

73 }

74

75 /** Select an object by index in the state vector and place it.

MULTINOMIAL PERMUTATIONS AVOIDING CLUSTERS 13

76 * @param itmNo A number from 0 to state.size()-1.

77 * @return The state in the next generation after itmNo has been placed.

78 * If this cannot be done because itmNo points to a subsymbol that does not

79 * exist or points to a subsymbol with no objects left, this state may be the empty state.

80 */

81 public RemState place(int itmNo)

82 {

83 /* Index out of bounds, meaning we are pointing not to a subsymbol.

84 */

85 if (itmNo <0 || itmNo >= state.size())

86 return new RemState() ;

87

88 /* for shorter notation below: a reference to the selected subsymbol.

89 */

90 final MultState modf = state.elementAt(itmNo) ;

91

92 /* Cannot place the tagged item, either because this is in the forbidden list

93 * or because there are no objects left in that subsymbol’s class.

94 */

95 if (modf.tagged || modf.leftFreq <= 0 || modf.leftN <= 0)

96 return new RemState() ;

97

98 /* Place the element (and copy the weight).

99 * Virtually split off remaining elements (which get frequency one less)

100 * (itms0^colno0, itm1^colno1, itm2^colon2, ..itmi^colnoi, itmtagge^1:...)

101 * becomes

102 * (itms0^colno0, itm1^colno1, itm2^colon2, ..itmi^(colnoi-1), itmi^1, ..., itmtagge^1:...).

103 * The previously primed/tagged item returns to the non-primed elements (and optionally

104 * merged with an existing one if possible), and the new primed element is

105 * constructed as nextTagged.

106 */

107 MultState nextTagged = new MultState(modf.leftN-1,1,true) ;

108

109 /* nextUnTagged is what results if the currently tagged/primed subsymbol is

110 * merged into the pool of untagged states. We search for the primed/tagged

111 * subsymbol (although just picking the last should suffice if that is not

112 * the root tree), and toggle its tagged flag.

113 */

114 MultState nextUnTagged = null ;

115 for(MultState s : state)

116 {

117 if (s.tagged)

118 {

119 /* toggle the tag; keep the number of objects with that particular color.

120 */

121 nextUnTagged = new MultState(s.leftN,1,false) ;

122 /* there should be only one tagged state, so we leave the loop

123 * early if that one is detected.

124 */

125 break;

126 }

127 }

128

14 RICHARD J. MATHAR

129 /* Compose the new state vector in increasing order by moving upwards

130 * through the existing elements, merging in or copying in the nextUnTagged

131 * where the ordering defines its place in the vector of subsymbols.

132 */

133 RemState deriv = new RemState() ;

134

135 /* The weight of the new bag is the old weight times the multiplicity of the colors

136 * associated with index itmNo.

137 */

138 deriv.weight = weight.multiply(new BigInteger(""+modf.leftFreq)) ;

139

140 /* The new state vector composed by scanning the existing subsymbols

141 * of the previous bag in order.

142 */

143 for(int i=0 ; i < state.size() ; i++)

144 {

145 MultState s = state.elementAt(i) ;

146 /* if this was the type of objects out of which itmNo was taken: the actual residual

147 * frequency has diminished by 1. This has not changed the position of

148 * this s in the vector because we are using the "base" of the subsymbol

149 * as the major ordering.

150 */

151 if (i == itmNo)

152 /* Here s.tagged is false, because those cases returned already above

153 * where the modf.tagged cases returned the empty state.

154 */

155 s = new MultState(s.leftN, s.leftFreq-1,false) ;

156

157 /* reinsert any non-tagged s; the new tagged/primed one will

158 * be appended after this loop over the i is finshed. Instead of

159 * admitting the subsymbol with s.tagged =true we insert the

160 * nextUnTagged constructed above.

161 */

162 if (! s.tagged)

163 {

164 if (nextUnTagged != null)

165 {

166 /* take care of inserting and/or merging the previously tagged subsymbol

167 */

168 if (s.leftN < nextUnTagged.leftN)

169 {

170 /* not yet reached the position of inserting nextUnTagged.

171 */

172 deriv.state.add(s) ;

173 }

174 else if (s.leftN == nextUnTagged.leftN)

175 {

176 /* The place of merger of prviously tagged and untagged symbols.

177 * The frequence is the sum of the frequencies and they have a common

178 * "base" in the subsymbol notation.

179 */

180 MultState merg = new MultState(s.leftN,s.leftFreq+nextUnTagged.leftFreq,false) ;

181 /* do not put s but the merged subsymbol into the new label

MULTINOMIAL PERMUTATIONS AVOIDING CLUSTERS 15

182 */

183 deriv.state.add(merg) ;

184 /* Invalidate the nextUnTagged to indicate to the trigger

185 * right after the loop that this is already dealt with.

186 */

187 nextUnTagged = null ;

188 }

189 else

190 {

191 /* given state larger: two cases for the old primed label, either already merged

192 * the untagged state or the untagged state must be inserted prior to s.

193 */

194 if (nextUnTagged != null)

195 {

196 deriv.state.add(nextUnTagged) ;

197 nextUnTagged = null ;

198 }

199 deriv.state.add(s) ;

200 }

201 }

202 else

203 deriv.state.add(s) ;

204 }

205 }

206

207 /* If not yet merged inside the previous loop drop the nextUnTagged subsymbol

208 * at the end of the label.

209 */

210 if (nextUnTagged != null)

211 deriv.state.add(nextUnTagged) ;

212

213 /* by the choice of ordering, the new primed/tagged subsymbol goes last in the list

214 */

215 deriv.state.add(nextTagged) ;

216

217 return deriv ;

218 } /* place */

219

220 /** Distance to the leaf states of the tree.

221 * @return The sum over the products of leftN and leftFreq over all terms in state.

222 * @obsolete Not needed

223 public int distToLeaf()

224 {

225 int dist =0 ;

226 for(MultState s : state)

227 dist += s.leftN * s.leftFreq ;

228 return dist ;

229 }

230 */

231

232 /** The descendants in the next generation derived by placing any one item.

233 * @return A new set of bags that are created by considering all unprimed subsymbols.

234 * This may be an empty vector if there are no ways to place another object taken from the current bag.

16 RICHARD J. MATHAR

235 */

236 public Vector<RemState> branches()

237 {

238 Vector<RemState> br = new Vector<RemState>() ;

239 /* The loop of all non-tagged items considered for new types of bags.

240 */

241 for(int itmIdx =0 ; itmIdx < state.size () ; itmIdx++)

242 {

243 /* this is the type of bag created with that selection in the new generation

244 */

245 RemState child = place(itmIdx) ;

246

247 /* zero weight means there was no way to place another object.

248 * dismiss these cases.

249 */

250 if (child.weight.compareTo(BigInteger.ZERO) > 0)

251 {

252 /* Search in the already generated types of bag if this is

253 * already produced. If yes then merge, adding weights

254 */

255 for(RemState given : br)

256 {

257 if (given.compareTo(child) == 0)

258 {

259 /* same list of subsymbols: can merge them

260 * and delete child to indicate to the post-loop decision

261 * that this is already dealt with.

262 */

263 given.weight = given.weight.add(child.weight) ;

264 child = null ;

265 break;

266 }

267 }

268 /* if not mergeable with a label already in the list:

269 * add it to the labels list to be returned.

270 */

271 if (child != null)

272 br.add(child) ;

273 }

274 }

275 return br ;

276 } /* branches */

277

278 /** Comparator with respect to similarity of the subsymbols.

279 * @param oth The label this is to be compared with.

280 * @return 1 if in a left-right comparison of the states this here is

281 * larger than oth, 0 if equal, -1 if less.

282 */

283 public int compareTo(RemState oth)

284 {

285 /* on a rough scale order by the number of subsymbols

286 */

287 if (state.size() > oth.state.size())

MULTINOMIAL PERMUTATIONS AVOIDING CLUSTERS 17

288 return 1;

289 else if (state.size() < oth.state.size())

290 return -1;

291 else

292 {

293 /* Assume that inside the list state of subsymbols the

294 * items are already ordered,

295 * so we do not need to sort the state first.

296 */

297 for (int s =0 ; s < state.size() ; s++)

298 {

299 if (state.elementAt(s).compareTo(oth.state.elementAt(s)) > 0)

300 return 1;

301 else if (state.elementAt(s).compareTo(oth.state.elementAt(s)) < 0)

302 return -1;

303 }

304 /* if we arrive here the number and type of all subsymbols are equal.

305 * This indicates to RemState.branches() that we can merge this with oth.

306 */

307 return 0 ;

308 }

309 } /* compareTo */

310 } /* RemState */

A.3. StateVector.java.

1 import java.util.* ;

2 import java.math.* ;

3

4 /** An object of the StateVector type is a collection of labels representing all merged nodes of a generation.

5 * @author R. J. Mathar

6 * @since 2015-11-02

7 */

8 public class StateVector

9 {

10 /* the collection of all labels in this generation

11 */

12 public Vector<RemState> generat ;

13

14 /** ctor that creates the unique state of the 0’th generation, label (c^m :1)

15 * @param c Number of different colors of the objects.

16 * @param m Multiplicity. The number of objects with the same color.

17 */

18 public StateVector(int c, int m)

19 {

20 /* put exactly one state with label (c^m:1) into the set of labels/bags

21 */

22 generat = new Vector<RemState>() ;

23 RemState root = new RemState(c,m) ;

24 generat.add(root) ;

25 } /* ctor */

26

27 /** ctor given a known set of labels/bags.

28 * @param stats The collection of labels to be considered.

18 RICHARD J. MATHAR

29 * Note that there are no consistency checks that the stats are all of the

30 * the same generation. [Basically one would check that the sum of all subsymbols

31 * (sum over products of base and exponent, primed or not) is the same number for

32 * all elements in stats.]

33 */

34 public StateVector(Vector<RemState> stats)

35 {

36 generat = stats ;

37 } /* ctor */

38

39 /** A representation as a set of parenthesis, each parentheses a label.

40 * @return The set of bags/labels in the form (...)(....).

41 */

42 public String toString()

43 {

44 String str = new String() ;

45 for (RemState s : generat)

46 str += s.toString() ;

47 return str ;

48 } /* toString */

49

50 /** Factorial of a positive integer

51 * @param n The argument of the factorial .

52 * @return n! The product 1*2*3*4*...*n.

53 */

54 static public BigInteger factorial(int n)

55 {

56 BigInteger f = BigInteger.ONE ;

57 for (int i=2 ; i <= n ; i++)

58 f = f.multiply(new BigInteger(""+i)) ;

59 return f;

60 } /* factorial */

61

62 /* Graph-theoretical distance to the leafes of the tree.

63 * equivalent to the number of objects yet to be placed.

64 * @obsolete Not needed

65 public int distToLeaf()

66 {

67 * this number is the same for all elements in the generation,

68 * so we can get it from the first element (which exists)

69 return generat.firstElement().distToLeaf() ;

70 }

71 */

72

73 /** Combinatorial weight: sum over all weights in all bags/labels.

74 * @return The number of combinations admitted up to this generation.

75 */

76 public BigInteger Ncombinat()

77 {

78 BigInteger w = BigInteger.ZERO ;

79 for(RemState s : generat)

80 {

81 w = w.add(s.weight) ;

MULTINOMIAL PERMUTATIONS AVOIDING CLUSTERS 19

82 }

83 return w;

84 } /* Ncombinat */

85

86 /** Generate the next generation equivalent to placing one more object at all current leafs of the tree.

87 * @return The set of bags/labels that are created if all branches of all

88 * bags/lables in this state are created.

89 * This vector of new labels is condensed by merging labels with the same subsymbol set.

90 */

91 public StateVector nextgen()

92 {

93 /* children states, the next generation where each back has one object less than this

94 */

95 Vector<RemState> childr = new Vector<RemState>();

96 /* for each of the labels/bags : construct all branches (new states)

97 */

98 for(RemState s : generat)

99 {

100 /* generate all new labels from that particular label/bag

101 */

102 Vector<RemState> sderiv = s.branches() ;

103

104 /* try to merge them into the existing set of labels, superimposing branches.

105 * To this purpose scan the already known types of bags in childr

106 * and compare their signatures for each label just created.

107 */

108 for(RemState nxt : sderiv)

109 {

110 /* flag that nxt was not yet found in childr and not yet merged

111 */

112 boolean mrgd = false ;

113 for(RemState given : childr)

114 {

115 if (given.compareTo(nxt) == 0)

116 {

117 given.weight = given.weight.add(nxt.weight) ;

118 mrgd = true;

119 break ;

120 }

121 }

122 /* append the label derived from s to the labels of the next generation

123 */

124 if (! mrgd)

125 childr.add(nxt) ;

126 }

127 }

128

129 return new StateVector(childr) ;

130 } /* nextgen */

131

132 /** Main executable function.

133 * Usage:

134 * javac *.java

20 RICHARD J. MATHAR

135 * java -cp . StateVector [-q] c m

136 * where the optional switch -q leads to a quieter output, which means that the

137 * explicit printing of all the labels in all generations is skipped.

138 * The two positive integer parameters c and m are the number of colors

139 * and the number of objects with the same color (multiplicity/frequence of each

140 * color). The number of generations to be constructed is the product c*m.

141 * The output (if -q is given) is c followed by a blank and m followed by

142 * a blank and the M_{c,m}/c! number of permutations inequivalent under the

143 * permutation of the colors.

144 * @author R. J. Mathar

145 * @since 2015-11-02

146 */

147 public static void main(String[] args)

148 {

149 if (args.length < 2)

150 {

151 System.err.println("Usage: StateVector [-q] #colors #multiplic") ;

152 System.exit(1) ;

153 }

154 int optind=0 ;

155

156 /* verbosity on by default, but switched off if -q in the argument list.

157 */

158 boolean verb=true ;

159 if (args[optind].compareTo("-q") == 0)

160 {

161 verb = false;

162 optind++ ;

163 }

164

165 /* collect the two parameters c and m from the command line.

166 */

167 int c = (new Integer(args[optind++])).intValue() ;

168 int m = (new Integer(args[optind++])).intValue() ;

169

170 /* degenarcy factor c! with respect to permutations of the colors

171 */

172 BigInteger cDegen = factorial(c) ;

173

174 /* construct the top of the tree, generation 0

175 */

176 StateVector curr = new StateVector(c,m) ;

177

178 /* loop over all generations, of which there are c*m more

179 */

180 for(int g=0 ; g <= 1+c*m; g++)

181 {

182 /* count the sum of the weights (number of combinations) in that generation

183 * and divide by c!

184 */

185 BigInteger canDegen = BigInteger.ZERO ;

186 if (curr.Ncombinat().mod(cDegen).compareTo(BigInteger.ZERO) == 0)

187 canDegen = curr.Ncombinat().divide(cDegen) ;

MULTINOMIAL PERMUTATIONS AVOIDING CLUSTERS 21

188

189 if (verb)

190 {

191 /* if verbose, print all labels in the current generation

192 */

193 System.out.println(curr);

194 System.out.print("gen " + g + " N= " + curr.Ncombinat());

195 if (g>= 2 && canDegen.compareTo(BigInteger.ZERO) > 0)

196 System.out.println(" reduced by " + cDegen + " " + canDegen);

197 else

198 System.out.println();

199

200 System.out.println() ;

201 }

202 else if (g == c*m)

203 {

204 /* reached the leaf of the tree, so report the number of combinations

205 */

206 System.out.println(c + " " + m + " " + canDegen);

207 }

208

209 /* consider this a stack of 2 generations. Generate the next generation in nxt,

210 * and replace the current generation by this.

211 */

212 StateVector nxt = curr.nextgen() ;

213 curr = nxt ;

214 }

215 } /* main */

216 } /* StateVector */

References

1. Neil J. A. Sloane, The On-Line Encyclopedia Of Integer Sequences, Notices Am. Math. Soc.
50 (2003), no. 8, 912–915, http://oeis.org/. MR 1992789 (2004f:11151)

2. Jacques Touchard, Nombres exponentiels et nomber de bernoulli, Can. J. Math. 8 (1956), 305–

320.

URL: http://www.mpia.de/~mathar

Max-Planck Institute of Astronomy, Königstuhl 17, 69117 Heidelberg, Germany

	1. Unrestricted Multinomial Distributions
	2. Multinomials With Even Frequencies
	3. Multinomials Without Clusters
	3.1. Definition of cluster avoidance
	3.2. Representation of Combinations as a Tree
	3.3. Subtree Mergers
	3.4. Example
	3.5. Overview of the Program

	4. Numerical Results
	Appendix A. JAVA Source Code
	A.1. MultState.java
	A.2. RemState.java
	A.3. StateVector.java

	References

