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The tunneling Hamiltonian is a proven method to treat particle tunneling between different states 

represented as wavefunctions in many-body physics. Our problem is how to apply a wave functional 

formulation of tunneling Hamiltonians to a driven sine-Gordon system. We apply a generalization of the 

tunneling Hamiltonian to charge density wave (CDW) transport problems in which we consider tunneling 

between states that are wavefunctionals of a scalar quantum field. We present derived I-E curves that match 

Zenier curves used to fit data experimentally with wave-functionals congruent with the false vacuum 

hypothesis. The open question is whether the coefficients picked in both the wave-functionals and the 

magnitude of the coefficients of the driven sine Gordon physical system should be picked by topological 

charge arguments that in principle appear to assign values that have a tie in with the false vacuum 

hypothesis first presented by Sidney Coleman. Our supposition is that indeed this is useful and that the 

topological arguments give evidence as to a first order phase transition which gives credence to the 

observed and calculated I-E curve as evidence  
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INTRODUCTION 

This paper’s main result has a very strong convergence with the slope of graphs of electron-positron pair 

production representations. The newly derived results include a threshold electric field explicitly as a 

starting point without an arbitrary cut off value for the start of the graphed results, thereby improving on 

both the Zener plots and Lin’s generalization of Schwingers 1950 electron-positron nucleation values 

results for low dimensional systems. The similarities in plot behavior of the current values after the 

threshold electric field values argue in favor of the Bardeen pinning gap paradigm.  We conclude with a 

discussion of how these results can be conceptually linked to a new scheme of exact evolution of the 

dynamics of quantum 
4 field theory in 1+1 dimensions.  

This leads to writing the new Gaussian wavefunctional to be looking like 
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Making this step from Eq. (1) to Eq. (2)involves recognizing, when we go to one-dimension, that 

we look at a washboard potential with pinning energy contribution from 2
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The fourth-order phase term is relatively small, so we look instead at contributions from the quadratic term 

and treat the fourth order term as a small perturbing contribution to get our one dimensional CDW 

potential, for lowest order, to roughly look like Eq. (2). In addition, we should note that the c is due to an 
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error functional-norming procedure, discussed below;   is proportional to one over the length of distance 

between  instaton centers. This leads to   
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As well as 
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The tunneling Hamiltonian incorporates wavefunctionals whose Gaussian shape keeps much of the 

structure as represented by Fig. .Following the false vacuum hypothesis, we have a false vacuum phase 

value  1F  very small value, as well as having in CDW, a final true vacuum 

   22T . This led to Gaussian wavefunctionals with a simplified structure. For 

experimental reasons, we need to have (if we set the charge equal to unity, dimensionally speaking) 

   TEFEgap VVEL   1   (5) 

This is equivalent to the situation as represented by Fig. 1 
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Fig 1Fate of the false vacuum representation of what happens in CDW. This shows how we have a 

difference in energy between false and true vacuum values. This eventually leads to a current along the 

lines of  
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The current expression is a great improvement upon the phenomenological Zener current expression, where 

PG  is the limiting Charge Density Wave (CDW) conductance. 
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         0                             otherwise 

Fig. 4 illustrates to how the pinning gap calculation improve upon a phenomenological curve fitting result 

used to match experimental data. The most important feature here is that the theoretical equation takes care 
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of the null values before thre threshold is reached by itself. I.e. we do not need to set it to zero as is done 

arbitrarily in Eqn (7).  

 

Fig 2Experimental and theoretical predictions of current values versus applied electric field. The dots   

represent a Zenier curve fitting polynomial, whereas the blue circles  are for the S-S’  transport expression 

derived with a field theoretic version of a  tunneling Hamiltonian. 

 

So then, we have 
1 EL .. When we consider a Zener diagram of CDW electrons with tunneling only 

happening when GLEe 
 where 

e  is the effective charge of each condensed electron and 
G  

being a pinning gap energy, we find , assuming that x is the de facto distance between an instanton pair and 

a measuring device. 

 

In the current vs. applied electric field derivation results, we identify the i[]as the initial wave function 

at the left side of a barrier and f[]as the final wave function at the right side of a barrier.  
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CONCLUSION- AND LINKAGE TO EXACT  DYNAMICS 

OF 
4 FIELD THEORY IN 1+1 DIMENSIONS 

We restrict this analysis to ultra fast transitions of CDW; this is realistic and in sync with how the 

wavefunctionals used are formed in part by the fate of the false vacuum hypothesis. 

 

A kink-anti kink structure so implied by the Gaussian wave functional is stated by Cooper, quoting 

Moncrief to have an evolution given by a sympletic evolution equation, as given below assuming an 

averaging procedure we can write as 
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And 
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This is assuming that we spatially discretize a Hamiltonian density via  
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Following a field theory replacement of  txx op ,ˆ  , and a discretized time structure given by  jt  

This leads to the possibility of looking at a quantum foam evolution as given in Fig 1 via the following 

sympletic structures , with i  the ‘spatial component along a chain’ , and j the ‘time component’ along a 

chain. Eqn. (19e) and Eqn (19f) are materially no different than having energy course through a wave 

lattice as seen in ocean swells accommodating an energy pulse through the water. 
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A proper understanding of this evolution dynamic should permit a more mature quantum foam 

interpretation of false vacuum nucleation.  
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