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Abstract

In this paper, direct links between generalized harmonic numbers, lin-
ear Euler sums and Tornheim double series are established in a more
perspicuous manner than is found in existing literature. The high
point of the paper is the discovery of certain combinations of Euler
sums that are reducible to Riemann zeta values.
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1 Introduction

1.1 Generalized harmonic numbers and linear Euler sums

Generalized harmonic numbers have a long history, having been studied since
the time of Euler. The rth generalized harmonic number of order n, denoted
by Hr,n in this paper, is defined by

Hr,n =
r∑

s=1

1

sn
,

where Hr,1 = Hr is the rth harmonic number and H0,n = 0. The generalized
harmonic number converges to the Riemann zeta function, ζ(n):

lim
r→∞

Hr,n = ζ(n), R[n] > 1 , (1.1)

since ζ(n) =
∑∞

s=1 s−n .

Of particular interest in the study of harmonic numbers is the evaluation
of infinite series involving the generalized harmonic numbers, especially linear
Euler sums of the type

E(m,n) =
∞∑

ν=1

Hν,m

νn
.

The linear sums can be evaluated in terms of zeta values in the following
cases: m = 1, m = n, m + n odd and m + n = 6 (with n > 1), (see [1]).

Evaluation of Euler sums, E(m,n) of odd weight, m+n in terms of ζ values
can be accomplished through Theorem 3.1 of [1].
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As for the case m = 1, we have:

THEOREM 1.1 (Euler). For n− 1 ∈ Z+ holds

2E(1, n) = 2
∞∑

ν=1

Hν

νn
= (n + 2)ζ(n + 1)−

n−2∑
j=1

ζ(j + 1)ζ(n− j) .

1.2 Tornheim double series and relation to linear Euler
sums

Tornheim double series, T(r,s,t), is defined by

T (r, s, t) =
∞∑

µ=1

∞∑
ν=1

1

µrνs(µ + ν)t

and named after Leonard Tornheim who made a systematic and extended
study of the series in a 1950 paper, [2]. T (r, s, t) has the following basic
properties [5]:

T (r, s, t) = T (s, r, t) , (1.2a)

T (r, s, t) is finite if and only if r + t > 1, s+ t > 1 and r + s+ t > 2 , (1.2b)

T (r, s, 0) = ζ(r)ζ(s) , (1.2c)

T (r, 0, t) + T (t, 0, r) = ζ(r)ζ(t)− ζ(r + t) , r ≥ 2 (1.2d)

and

T (r, s− 1, t + 1) + T (r − 1, s, t + 1) = T (r, s, t), r ≥ 1, s ≥ 1. (1.2e)

In light of (1.1), the useful identity

N∑
ν=1

1

(µ + ν)t
= HN+µ,t −Hµ,t , (1.3)

leads to
∞∑

ν=1

1

(µ + ν)t
= ζ(t)−Hµ,t , (1.4)

which establishes the link between the Hurwitz zeta function, ζ(t, µ), the
Riemann zeta function and the generalized harmonic numbers (see also equa-
tion (1.19) of [9]) as

ζ(t, µ) = ζ(t)−Hµ−1,t , (1.5)
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since

ζ(t, µ) =
∞∑

ν=0

1

(µ + ν)t
.

The identity (1.4) also brings out the direct connection between the linear
Euler sums and the Tornheim double series, namely,

E(n,m) = ζ(n)ζ(m)− T (m, 0, n), n > 1, m > 1 . (1.6)

Differentiating the identity

1

ν
− 1

µ + ν
=

µ

ν(µ + ν)
, (1.7)

n− 1 times with respect to ν gives

1

νn
− 1

(µ + ν)n
=

n−1∑
p=0

µ

νp+1(µ + ν)n−p
, n ∈ N0 ,

from which we obtain

HN,n −HN+µ,n + Hµ,n =
n−1∑
p=0

N∑
ν=1

µ

νp+1(µ + ν)n−p
,

and hence, in the limit N → ∞ we have (see also [7] and [8] for alternative
derivations of the particular case of n = 1)

Hµ,n =
n−1∑
p=0

∞∑
ν=1

µ

νp+1(µ + ν)n−p
,

which gives the interesting relation

∞∑
µ=1

Hµ,n

µr
=

n−1∑
p=0

∞∑
µ=1

∞∑
ν=1

1

µr−1νp+1(µ + ν)n−p
,

that is,

E(n, r) =
n−1∑
p=0

T (r − 1, p + 1, n− p) ,
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or equivalently,

E(n, r) =
n∑

p=1

T (r − 1, n− p + 1, p) .

In particular,
E(1, r) = T (r − 1, 1, 1), r > 1 . (1.8)

Throughout this paper we shall make frequent tacit use of the following
index shift identity:

u−a∑
i=u−b

f(u− i) ≡
b∑

i=a

f(i) . (1.9)

2 Generalized harmonic numbers and summation
of series

In this section we discuss the evaluation of certain sums in terms of the
Riemann zeta function and the generalized harmonic numbers.

LEMMA 2.1. Let a, c and f be arbitrary functions such that a 6= 0, c 6= 0
and af = c + a, then for m ∈ Z+ holds

afm = af +
m−1∑
i=1

cf i ,

or, equivalently, using the index shift identity,

afm = af +
m−2∑
i=0

cfm−i−1 .

The Lemma is easily proved by the application of mathematical induction
on m.

Choosing a = −1/(µ + ν), c = 1/ν and f = −µ/ν in Lemma 2.1 gives
the partial fraction decomposition

(−1)m−1 µm

νm(µ + ν)
=

µ

ν(µ + ν)
+

m−1∑
i=1

(−1)i µi

νi+1
, (2.1)
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which, after n times differentiation with respect to µ, yields, for m ∈ Z+ and
n ∈ N0, the identity

(−1)m−1

n∑
p=0

{
(−1)p

(
m

p

)
µm−p

νm(µ + ν)n−p+1

}

= − 1

(µ + ν)n+1
+ (−1)n

m−1∑
i=n

{
(−1)i

(
i

n

)
µi−n

νi+1

}
,

(2.2)

from which upon summing from ν = 1 to ν = N we have

THEOREM 2.2. For m ∈ Z+ and n ∈ N0, µ ∈ C\Z− holds

(−1)m−1

n∑
p=0

{
(−1)p

(
m

p

) N∑
ν=1

µm−p

νm(µ + ν)n−p+1

}

= Hµ,n+1 −HN+µ,n+1 + (−1)n

m−1∑
i=n

{
(−1)i

(
i

n

)
µi−nHN,i+1

}
,

which in the limit N →∞ gives

COROLLARY 2.3. For m ∈ Z+ and n ∈ N0, µ ∈ C\Z− holds

(−1)m−1

n∑
p=0

{
(−1)p

(
m

p

) ∞∑
ν=1

µm−p

νm(µ + ν)n−p+1

}

= Hµ,n+1 + (−1)n

m−1∑
i=n+1

{
(−1)i

(
i

n

)
µi−nζ(i + 1)

}
.

In particular, for m, n ∈ Z+ and µ ∈ C\Z−, we have

(−1)m−1

∞∑
ν=1

µm

νm(µ + ν)
= Hµ +

m−1∑
i=1

(−1)iµiζ(i + 1) , (2.3)

n∑
p=0

{
(−1)p

(
n

p

) ∞∑
ν=1

µp

νn(µ + ν)p+1

}
= ζ(n + 1)−Hµ,n+1
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and
n∑

p=1

{
(−1)p−1

(
n

p

) ∞∑
ν=1

µp

νn(µ + ν)p

}
= Hµ,n .

m = 1 in (2.3) gives the beautiful formula
∞∑

ν=1

µ

ν(µ + ν)
= Hµ , µ ∈ C\Z− , (2.4)

which was also derived in [7] and [8].

Differentiating 2.1 n times with respect to ν, we obtain, for m ∈ Z+ and
n ∈ N0, the identity

(−1)m

n∑
p=0

{(
m + p− 1

p

)
µm+1

νm+p(µ + ν)n−p+1

}

=
µ

(µ + ν)n+1
+

m∑
i=1

{
(−1)i

(
i + n− 1

n

)
µi

νi+n

}
,

(2.5)

from which upon summing from ν = 1 to ν = N we have
THEOREM 2.4. For m ∈ Z+, µ ∈ C\Z− and n ∈ N0 holds

(−1)m

n∑
p=0

{(
m + p− 1

p

) N∑
ν=1

µm+1

νm+p(µ + ν)n−p+1

}
= µHN+µ,n+1 − µHN,n+1

− µHµ,n+1

+
m∑

i=2

(−1)i

(
i + n− 1

n

)
µiHN,i+n ,

which in the limit N →∞ gives
COROLLARY 2.5. For m ∈ Z+, µ ∈ C\Z− and n ∈ N0 holds

(−1)m

n∑
p=0

{(
m + p− 1

p

) ∞∑
ν=1

µm+1

νm+p(µ + ν)n−p+1

}

= −µHµ,n+1 +
m∑

i=2

(−1)i

(
i + n− 1

n

)
µiζ(n + i) .
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Using a = 1/µν, c = −1/ (µ(µ + ν)) and f = µ/(µ + ν) in Lemma 2.1
gives the identity

µm

ν(µ + ν)m
=

1

ν
−

m∑
i=1

µi−1

(µ + ν)i
,

which, after n differentiations, gives

n∑
p=0

(
m + n− p− 1

m− 1

)
µm

νp+1(µ + ν)m+n−p

=
1

νn+1
−

m∑
i=1

(
i + n− 1

i− 1

)
µi−1

(µ + ν)i+n
,

from which we get, after summing over ν,

THEOREM 2.6. For m ∈ Z+, µ ∈ C\Z− and n ∈ N0 holds

n∑
p=0

{(
m + n− p− 1

m− 1

) N∑
ν=1

µm

νp+1(µ + ν)m+n−p

}

= HN,n+1 −
m∑

i=1

(
i + n− 1

i− 1

)
µi−1HN+µ,i+n +

m∑
i=1

(
i + n− 1

i− 1

)
µi−1Hµ,i+n ,

which in the limit N →∞ gives

COROLLARY 2.7. For µ ∈ C\Z− and m, n ∈ N0 holds

n∑
p=0

{(
m + p

m

) N∑
ν=1

µm+1

νn−p+1(µ + ν)m+p+1

}

=
m+n∑
i=n

(
i

i− n

)
µi−nHµ,i+1 −

m+n∑
i=n+1

(
i

i− n

)
µi−nζ(i + 1) .

In particular, for m ∈ N0 and µ ∈ C\Z−, we have

∞∑
ν=1

µm+1

ν(µ + ν)m+1
= Hµ −

m∑
i=1

µiζ(i + 1) +
m∑

i=1

µiHµ,i+1 .
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3 Functional relations for the Tornheim double series
Dividing through the identity of Corollary 2.3 by µr and summing over µ we
obtain

THEOREM 3.1. For m, r − 1 ∈ Z+ and n ∈ N0 holds

(−1)m−1

n∑
p=0

{
(−1)p

(
m

p

)
T (r −m + p, m, n− p + 1)

}

= E(n + 1, r) + (−1)n

m−1∑
i=n+1

{
(−1)i

(
i

n

)
ζ(i + 1)ζ(r − i + n)

}
.

COROLLARY 3.2. For m, n ∈ Z+ holds

(−1)m−12
n∑

p=0

{
(−1)p

(
m

p

)
T (n−m + p + 1, m, n− p + 1)

}
= ζ(n + 1)2 + ζ(2n + 2)

+ (−1)n2
m−1∑

i=n+1

{
(−1)i

(
i

n

)
ζ(i + 1)ζ(2n− i + 1)

}
.

Setting m = n in Corollary 3.2, substituting n for n + 1 and utilizing the
index shift identity (1.9) gives, for n− 1 ∈ Z+,

2
n∑

p=1

(−1)p−1

(
n

p

)
T (n− p, n, p) = ζ(n)2 + ζ(2n) ,

from which, with the aide of Corollary 4.2 and after some manipulation, we
get,

2n−1∑
p=1

(−1)p−1

(
2n

p

)
T (2n− p, 2n, p) = ζ(2n)2 , n ∈ Z+

and

2n∑
p=1

(−1)p−1

(
2n + 1

p

)
T (2n− p + 1, 2n + 1, p)

= ζ (2(2n + 1))2 , n ∈ Z+ .
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In particular,
2T (1, 2, 1) = ζ(2)2 .

Dividing the identity of Corollary 2.5 by µr, and summing over µ, we
obtain

THEOREM 3.3. For m ∈ Z+, r − 2 ∈ Z+ and n ∈ N0 holds

(−1)m

n∑
p=0

(
m + p− 1

p

)
T (r −m− 1, m + p, n− p + 1)

= −E(n + 1, r − 1) +
m∑

i=2

(−1)i

(
i + n− 1

n

)
ζ(n + i)ζ(r − i) .

COROLLARY 3.4. For m, n ∈ Z+ holds

(−1)m2
n∑

p=0

(
m + p− 1

p

)
T (n−m + 1, m + p, n− p + 1)

= −ζ(n + 1)2 − ζ(2n + 2) + 2
m∑

i=2

(−1)i

(
i + n− 1

n

)
ζ(n + i)ζ(r − i) .

In particular,

2
n∑

p=1

T (n− 1, n− p + 1, p) = ζ(n)2 + ζ(2n) .

Dividing through the identity of Corollary 2.7 by µr and summing over
µ gives

THEOREM 3.5.
n∑

p=0

(
m + p

m

)
T (r −m− 1, n− p + 1, m + p + 1)

=
m+n∑
i=n

(
i

i− n

)
E(i + 1, r − i + n) +

m+n∑
i=n+1

(
i

i− n

)
ζ(i + 1)ζ(r − i + n) .
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4 Evaluation of Tornheim double series

4.1 Euler-Zagier double zeta function

Before discussing the general Tornheim double series for finite r, s and t,
we first consider the double series T (r, 0, t) and T (0, s, t), with r + t > 2 or
s + t > 2 and t > 0.

According to (1.6), when r and t are positive integers greater than unity,
then

T (r, 0, t) = ζ(r)ζ(t)− E(t, r) . (4.1)

Thus, reduction of T (r, 0, t) to ζ values is possible when r and t are of different
parity, in view of Theorem 3.1 of [1], and also when r = t or r + t = 6.

Using, in (4.1), the symmetry property of linear Euler sums,

E(m, n) + E(n, m) = ζ(m + n) + ζ(m)ζ(n) , [1, 6] ,

we have

THEOREM 4.1.

T (0, s, t) + T (0, t, s) = ζ(s)ζ(t)− ζ(s + t) , s− 1, t− 1 ∈ Z+ .

COROLLARY 4.2.

2 T (0, s, s) = ζ(s)2 − ζ(2s) , s− 1 ∈ Z+ .

T (0, 0, t) is evaluated as

THEOREM 4.3.

T (0, 0, t) = ζ(t− 1)− ζ(t) , t > 2 ,

which was derived in [2]. Here we give a different derivation as follows.
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Proof. From (1.3), we have

N∑
µ=1

N∑
ν=1

1

(µ + ν)t
=

N∑
µ=1

(HN+µ,t −Hµ,t)

=
N∑

µ=1

HN+µ,t −
N∑

µ=1

Hµ,t

=
2N∑

µ=N+1

Hµ,t −
N∑

µ=1

Hµ,t

=
2N∑
µ=1

Hµ,t − 2
N∑

µ=1

Hµ,t

= 2NH2N,t + H2N,t −H2N,t−1

− 2NHN,t − 2HN,t + 2HN,t−1 ,

and the result follows on taking limit N →∞.

Note that in the final step of the above proof, we used

N∑
r=1

Hr,N = (N + 1)HN,n −NHN,n−1 , (identity 3.1 of [6]) .

4.2 The general Tornheim double series

Consider the following identity (equation (2.4) of [3], slightly rewritten)

1

µrνs(µ + ν)t
=

s−2∑
i=0

(
t + i− 1

t− 1

)
(−1)i

νs−iµt+r+i
+

t−2∑
i=0

(
s + i− 1

s− 1

)
(−1)s

νs+r+i(µ + ν)t−i

+ (−1)s−1

(
s + t− 2

s− 1

)
1

µr+s+t−1

µ

ν(µ + ν)
,

which is valid for r ∈ N0 and s, t ∈ Z+. Summing over µ and ν and taking
into cognizance identities (1.4) and (2.4), we obtain
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THEOREM 4.4. For r ∈ N0, s, t ∈ Z+, r+s>1 and r+t>1 holds

T (r, s, t) =
s−2∑
i=0

(−1)i

(
t + i− 1

t− 1

)
ζ(s− i)ζ(r + t + i)

+ (−1)s

t−2∑
i=0

(
s + i− 1

s− 1

)
ζ(t− i)ζ(r + s + i)

− (−1)s

t−2∑
i=0

{(
s + i− 1

s− 1

) ∞∑
µ=1

Hµ,t−i

µr+s+i

}

− (−1)s

(
s + t− 2

t− 1

) ∞∑
µ=1

Hµ

µr+s+t−1
.

COROLLARY 4.5.

T (r, s, 1) =
(−1)s−1

2

[
(r + s + 2)ζ(r + s + 1)−

s−2∑
i=1−r

ζ(s− i)ζ(r + i + 1)

]

+
s−2∑
i=0

(−1)iζ(s− i)ζ(r + i + 1) .

In particular, we have the beautiful and well-known result

T (1, 1, 1) =
∞∑

µ=1

Hµ

µ2
= 2ζ(3) .

We see immediately from Theorem 4.4 that due to the presence of the
Euler sum E(t− i, i + r + s), of weight w = r + s + t, complete reduction of
T (r, s, t) to ζ values is achieved, in general, if w is a positive odd integer or
if t = 1.

Using the index shift identity (1.9), the identity of Theorem 4.4 can also
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be written as

T (r, s, t) = (−1)t

t∑
i=t−s+2

(−1)i

(
2t− i− 1

t− 1

)
ζ(s− t + i)ζ(r + 2t− i)

+ (−1)s

t∑
i=2

(
s + t− i− 1

s− 1

)
ζ(i)ζ(r + s + t− i)

− (−1)s

t∑
i=1

(
s + t− i− 1

s− 1

) ∞∑
µ=1

Hµ,i

µr+s+t−i
,

(4.2)

giving, in particular, for s ∈ Z+ and r + s > 1,

(−1)s−1T (r, s, s) = −
s∑

i=2

(
2s− i− 1

s− 1

) (
(−1)i + 1

)
ζ(i)ζ(r + 2s− i)

+
s∑

i=1

(
2s− i− 1

s− 1

) ∞∑
µ=1

Hµ,i

µr+2s−i

= −2

bs/2c∑
i=1

(
2s− 2i− 1

s− 1

)
ζ(2i)ζ(r + 2s− 2i)

+
s∑

i=1

(
2s− i− 1

s− 1

) ∞∑
µ=1

Hµ,i

µr+2s−i
.

(4.3)

5 On linear Euler sums
Using the reflection symmetry (1.2a) of the Tornheim double series in the
identity of Theorem 4.4 and setting r = s + 1 to ensure that r and s have
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different parity, we obtain

t−1∑
i=1

[(
i + s− 1

s

)
2s + i− 1

i + s− 1

∞∑
µ=1

Hµ,t−i+1

µ2s+i

]
+

2s + t− 1

s + t− 1

(
s + t− 1

t− 1

) ∞∑
µ=1

Hµ

µ2s+t

=
t−1∑
i=1

(
i + s− 1

s

)
2s + i− 1

i + s− 1
ζ(t− i + 1)ζ(2s + i)

+ (−1)s+1

s−1∑
i=0

(−1)i

(
i + t− 1

t− 1

)
2i + t− 1

i + t− 1
ζ(s− i + 1)ζ(s + i + t) .

(5.1)

5.1 Variants of Euler formula for E(1, 2s + 1)

On setting t = 1 in (5.1), we obtain

THEOREM 5.1. For s ∈ Z+holds

2(−1)s+1

∞∑
µ=1

Hµ

µ2s+1
= ζ(s + 1)2 + 2

s−1∑
i=1

(−1)iζ(s− i + 1)ζ(s + i + 1) ,

or equivalently, using the index shift identity,

2
∞∑

µ=1

Hµ

µ2s+1
= (−1)s−1ζ(s + 1)2 + 2

s−2∑
i=0

(−1)iζ(i + 2)ζ(2s− i) . (5.2)

Dividing through (2.3) by µm+1 and summing over µ gives

(−1)m−1

∞∑
ν=1

{
1

νm

∞∑
µ=1

Hµ

µ(µ + ν)

}
=

∞∑
µ=1

Hµ

µm+1
+

m−1∑
i=1

(−1)iζ(i + 1)ζ(m− i + 1) ,

that is

(−1)m−1

∞∑
ν=1

Hν

νm+1
=

∞∑
ν=1

Hν

νm+1
+

m−1∑
i=1

(−1)iζ(i + 1)ζ(m− i + 1) ,

from which, by setting m = 2s and shifting the summation index in the
second sum of the right hand side, we obtain
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THEOREM 5.2. For s ∈ Z+ holds

2
∞∑

ν=1

Hν

ν2s+1
=

2s−2∑
i=0

(−1)iζ(i + 2)ζ(2s− i) , (5.3)

a result that was derived first in [7] and later in [10].

Note that the identities (5.2) and (5.3) are equivalent since

(−1)s−1ζ(s + 1)2 + 2
s−2∑
i=0

(−1)iζ(i + 2)ζ(2s− i)

=
s−2∑
i=0

(−1)iζ(i + 2)ζ(2s− i)

+
s−1∑
i=0

(−1)iζ(i + 2)ζ(2s− i)

which is equivalent to the sum on right side of (5.3).

5.2 Certain combinations of linear Euler sums that eval-
uate to zeta values

Researchers have noted that linear Euler sums of even weight are probably
not reducible to zeta values alone [7, 4, 1]. In a 1998 paper [1], Flajolet and
Salvy gave a couple of examples of linear combinations of Euler sums of even
weight, expressed in terms of the Riemann zeta function. Such evaluations
are also found in [5, 11, 12]. In this section we discover certain combinations
of linear Euler sums that evaluate to zeta values. The Flajolet and Salvy
relations and those of the other authors are particular cases of one of the
formulas derived here, Theorem 5.8 to be precise.

Tornheim proved that (equation (8) of [2])

T (1, 1, s) = (s + 1)ζ(s + 2)−
s∑

i=2

ζ(i)ζ(s− i + 2), s ∈ Z+ ,

which, in view of (4.2), gives
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THEOREM 5.3. For s ∈ Z+ holds
s∑

i=1

[
∞∑

µ=1

Hµ,i

µs−i+2

]
=

s∑
i=1

E(i, s− i + 2) = (s + 1)ζ(s + 2) .

Setting r = 0 in (4.3) and using Corollary 4.2, we obtain

2
s∑

i=1

(
2s− i− 1

s− 1

) ∞∑
µ=1

Hµ,i

µ2s−i

= 4

bs/2c∑
i=1

(
2s− 2i− 1

s− 1

)
ζ(2i)ζ(2s− 2i)

+ (−1)s−1
(
ζ(s)2 − ζ(2s)

)
,

from which we get

THEOREM 5.4. For s− 1 ∈ Z+ holds

2
s−1∑
i=2

(
2s− i− 1

s− 1

) ∞∑
µ=1

Hµ,i

µ2s−i

= 4

bs/2c∑
i=1

(
2s− 2i− 1

s− 1

)
ζ(2i)ζ(2s− 2i)

− 2

(
2s− 2

s− 1

) s∑
i=2

(−1)iζ(i)ζ(2s− i)

− (−1)s−1ζ(s)2

[(
2(s− 1)

(s− 1)

)
+ (−1)s−1 − 1

]
− (−1)s−1ζ(2s)

[
(−1)s−1 + 1

]
,

after using Theorem 1.1 to write E(1, 2s − 1) and using also the fact that
2E(s, s) = ζ(s)2 + ζ(2s).

COROLLARY 5.5.

7
∞∑

µ=1

Hµ,2

µ8
+ 3

∞∑
µ=1

Hµ,3

µ7
+

∞∑
µ=1

Hµ,4

µ6

= −12ζ(4)ζ(6) + 14ζ(3)ζ(7) + 7ζ(5)2 − ζ(10)

5
.

17



COROLLARY 5.6.

126
∞∑

µ=1

Hµ,2

µ10
+ 56

∞∑
µ=1

Hµ,3

µ9
+ 21

∞∑
µ=1

Hµ,4

µ8
+ 6

∞∑
µ=1

Hµ,5

µ7

= −210ζ(4)ζ(8)− 125ζ(6)2 + 252ζ(3)ζ(9) + 252ζ(5)ζ(7) .

It was proved in [5] that

T (s, s, s) =
4

1 + 2(−1)s

bs/2c∑
i=0

(
2s− 2i− 1

s− 1

)
ζ(2i)ζ(3s− 2i) . (5.4)

Setting r = s in (4.3) and equating with (5.4) gives

s∑
i=1

(
2s− i− 1

s− 1

) ∞∑
µ=1

Hµ,i

µ3s−i

=

(
2s− 1

s− 1

)
2ζ(3s)

2 + (−1)s

+
2

2(−1)s + 1

bs/2c∑
i=1

(
2s− 2i− 1

s− 1

)
ζ(2i)ζ(3s− 2i) ,

from which we get

THEOREM 5.7. For s ∈ Z+ holds
s∑

i=2

(
2s− i− 1

s− 1

) ∞∑
µ=1

Hµ,i

µ3s−i

=

(
2s− 1

s− 1

)
2ζ(3s)

2 + (−1)s

−
(

2s− 2

s− 1

)
(3s + 1)ζ(3s)

2

+
1

2

(
2s− 2

s− 1

) 3s−3∑
i=1

ζ(3s− i− 1)ζ(i + 1)

+
2

2(−1)s + 1

bs/2c∑
i=1

(
2s− 2i− 1

s− 1

)
ζ(2i)ζ(3s− 2i) .
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When t > 1 in (5.1) and we use Theorem 1.1 to write E(1, 2s+ t) we have

THEOREM 5.8. For s, t− 1 ∈ Z+ holds

t−1∑
i=1

[(
s + i− 1

s

)
2s + i− 1

s + i− 1

∞∑
µ=1

Hµ,t−i+1

µ2s+i

]

=
t−1∑
i=1

(
s + i− 1

s

)
2s + i− 1

s + i− 1
ζ(t− i + 1)ζ(2s + i)

+ (−1)s+1

s−1∑
i=0

(−1)i

(
t + i− 1

t− 1

)
t + 2i− 1

t + i− 1
ζ(s− i + 1)ζ(s + i + t)

+
1

2

(2s + t− 1)

(s + t− 1)

(
s + t− 1

t− 1

) 2s+t−2∑
i=1

ζ(i + 1)ζ(2s + t− i)

− 1

2

(2s + t− 1)(2s + t + 2)

(s + t− 1)

(
s + t− 1

t− 1

)
ζ(2s + t + 1) .

COROLLARY 5.9.

2
∞∑

µ=1

Hµ,3

µ2s+1
+ (2s + 1)

∞∑
µ=1

Hµ,2

µ2s+2

= 2ζ(3)ζ(2s + 1)

+
(−1)s+1

2
(s + 1)2ζ(s + 2)2

+ (−1)s+1

s−1∑
i=1

(−1)i(s− i + 1)(s + i + 1)ζ(s− i + 2)ζ(s + i + 2) .

In particular (see also [1], page 23),

2
∞∑

µ=1

Hµ,3

µ5
+ 5

∞∑
µ=1

Hµ,2

µ6
= −9

2
ζ(4)2 + 10ζ(3)ζ(5)

and

2
∞∑

µ=1

Hµ,3

µ7
+ 7

∞∑
µ=1

Hµ,2

µ8
= −15ζ(4)ζ(6) + 14ζ(3)ζ(7) + 8ζ(5)2 .
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6 Conclusion
Salient aspects of the relationship between generalized harmonic numbers,
Euler sums and Tornheim series were discussed in this paper. In particular,
we derived certain combinations of linear Euler sums that evaluate to zeta
values.
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