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Abstract: The main conceptual foundation of previous work on the Combined Gravitational Action is 

briefly surveyed. Next, we derive a general expression for the CGA-effective (radial) potential energy in 

order to investigate the behavior and shape of the orbits of a test-body during its orbital motion inside 

the vicinity of the principal gravitational source. And as direct consequences, two expressions for the 

concepts of gravitational momentum and dynamic gravitational force are derived. Starting from the 

concept of the combined gravitational potential energy and using only the familiar tools of Newtonian 

mechanics, the classical Binet's orbital equation is combgravactionalized and its physico-mathematical 

expression is exactly identical to that already found in the context of general relativity theory, which 

enables us to calculate, among other things, the secular perigee precession of the Moon; the secular 

perihelion advance of the planets and the angular deflection of light passing near the massive object. 
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1. Introduction 

      As it was repeatedly mentioned in a series of articles [1,2,3,4,5] relative to the Combined 

Gravitational Action (CGA) as an alternative gravity theory that should regard as a refinement 

and generalization of Newton's one. Also in the same papers we have shown that the CGA is 

very capable of investigating, explaining and predicting some old and new gravitational 

phenomena [1,2,3,4,5]. This characteristic is greatly due to the coherence and simplicity of the 

CGA-formalism that is exclusively based on the concept of combined gravitational potential 

energy (CGPE), which is actually a new form of velocity-dependent gravitational potential 

energy defined by the following expression 
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where GMmk  ; G  being the Newton’s gravitational constant; M and m  are the masses of the 

gravitational source  A  and the moving test-body B ; 2
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zyx vvvv   with dtdxvx /  etc, is the velocity 

of the test-body B relative to the inertial reference frame of source A ; and w  is a specific 

kinematical parameter having the physical dimensions of a constant velocity defined by  
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where  0c  is the light speed in local vacuum and  escv  is the escape velocity at the surface of the 

gravitational source  A.   
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    The CGPE (1) ,which is conceptually the core of CGA and considered to be simpler and more 

useful than the usual velocity-dependent-GPSs because it contains several properties. This ‒as 

we know from [1,2,3,4,5]‒ has allowed us to carry out our calculations using only the familiar 

tools of classical mechanics.   

 

2. Classical Effective(radial) potential Energy 

    As it is well established, the concept of effective (radial) potential energy (EPE) is mainly 

inherited from the classical and celestial mechanics and it is largely used, as a very important 

tool, in many branches of physics, particularly, gravitational physics and quantum physics to 

analyze, for example, the behavior and shape of orbits. Usually, the classical-EPE is defined like 

this   
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Therefore, in pure energetic terms, we can write the classical equation of motion in form of a 

one- dimensional equation in radial coordinate r as follows 
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    The importance of doing this is that we are usually very familiar with one-dimensional 

equation's solutions for a test-particle moving in a potential well determined by  rVCL . 

Depending on the total energy E, the test-particle may possibly escape the well and travel to 

infinity, or it may be trapped in the well and oscillate backward and forward in the bottom of the 

well. For suitably small energy it may be at relative rest at the bottom. Thus, dimensionally, the 

use of the radial coordinate r as a one-dimension facilitates considerably the study of the 

classical orbits around a spherical material body.  

 

    The investigation of the behavior and shape of the orbits depending on  rVCL  and also on the 

total energy E. For example, the radii of the circular orbits are found by finding the maximum 

and minimum of the EPE by solving 0/CL drdV . 

 

     In terms of the total energy (4), that is when the test-particle having   < E 0 , the test-particle 

oscillates around the bottom between  rmin  and rmax . Hence, at these two radii, we have elliptical 

orbits.  For the case    E 0  that is when the test-particle comes in from infinity, reach a point of 

closest approach and then return to infinity. The orbits are typically hyperbolic ones. Lastly, the 

test-particle with    E 0 should do a comparable course, but at this time the orbits are 

characteristically parabolic.        

 

However, all these considerations and characteristics are in fact a special case of the CGA-EPE 

as we shall see soon.    
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3. CGA-Effective (Radial) Potential Energy 

 

    In what follows, our central goal is to derive a general expression for the effective (radial) 

potential energy (EPE) in the context of the CGA when the test-body B evolving inside the 

vicinity of the principal gravitational source A. This EPE is called CGA-EPE because it contains 

the CGA-terms. In other words, this means that we have combgravactionalized the classical-EPE 

(3) to facilitate the study of CGA-orbits, i.e., as we know from[1,2,3], when the test-body 

orbiting the principal gravitational source, it is permanently under the action of the combined 

gravitational field.  

3.1. Derivation 

   Considering  the aforementioned test-body B orbiting the principal gravitational source A at the 

relative radial distance r  with the velocity v . Under such conditions, we have in the CGA-

context [1-5] the following expression for the total energy of the moving test-body B 
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    Now, rewriting (5) in spherical coordinate, that is, with  cossinθrx ;  sinsinθry ;

θrz cos . Let's simplify by supposing that the motion taking place in the (x, y)-plan so 0z ; 

π/2θ  and 0θ . Then  sincos  rrx ;  cossin  rry . Substituting this in (5) and 

using 1sincos 22  , we find 
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Next defining the angular momentum 2
rmrmv  

 , so  mrr /  , thus we can rewrite (6) 

as follows  
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from where we deduce the very expected expression for the CGA-EPE 
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Therefore, the total energy (7) may be finally rewritten in the form ),()( rrVrK  E  where 

2

2

1
)( rmrK   . It is worthwhile to note that the CGA-EPE (8) is in fact a function of tow 
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variables, viz., r  and r . Also, it is clear from expression (8),  rrV ,  may be reduced to  rVCL  

for the case   1/ 2

0

2222  
crmr  , that is when the CGA-terms are sufficiently smaller than 

unity. Moreover, since as we know GMmk  , thus the well-known general relativistic-EPE 
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is obviously included in the CGA-EPE (8). This inclusion implies, among other things, that the 

geometrization of gravity is not necessary at all and the (curved) space-time is a pure 

mathematical concept, an abstract entity and consequently it is not a tangible physical reality. 

Therefore, according to the CGA-context, this form of GR-EPE (9) is highly questionable since 

in the framework of general relativity theory (GRT), the gravity is not a fundamental force of 

Nature but it is supposed to be caused by the curvature of space-time. However, as it was 

mentioned, the space-time itself is no more than an abstract notion.  

 

    But unfortunately many theories depend on this mathematical concept, which artificially 

becomes a real entity that is capable of acting on matter and can be acted upon, therefore, curved 

space-time itself behaves like a sort of matter and logically speaking ‒we can ask the following 
naive question: what are the physical and chemical proprieties of space-time?! Of course, the 

answer is simply negative because phenomenologically speaking, the geometrization of gravity 

implies the materialization of curved space-time itself, and as a direct result the usual principle 

of causality is violated because the causal source of such materialization is absolutely without 

existence. The interested reader is referred to [6].  

 

3.2. Circular orbits and their stability 

    As previously mentioned, the EPE is a pivotal tool of analysis and computation. Since we are 

presently concerned with the circular orbits and their stability, thus let us examine the expression 

(8): the first two terms are well-known classical energies, the first being the Newtonian 

gravitational potential energy and the second corresponding to the centrifugal potential energy; 

however, the third term is an energy unique to the CGA. As shown in [2,4], this extra energy 

causes elliptical orbits to precess gradually by a very small angle per revolution. Therefore, 

CGA-term is typically attractive and dominates at small r  values, giving a critical inner radius 

which in fact a minimum possible radius rmin at which the test-body A is drawn inexorably 

inwards to r = 0; this minimum (inner) radius is a function of  A's  angular momentum   and the 

velocity r  as it is shown below. 

Physico-mathematically, the circular orbits are possible when the effective total force is zero:  
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i.e., when the two attractive forces — Newtonian gravity (first term) and the attraction unique to 

CGA (third term) — are exactly balanced by the repulsive centrifugal force (second term). There 

are two radii at which this balancing can occur, denoted here as  rmin  and  rmax : 

 

https://en.wikipedia.org/wiki/Centrifugal_force


5 

 

                                        

 
1

2

0

2

2

0

2

2

0

2
2

minmin 11,
12

2


































c

r

c

r

c

k

km
rrr





 ,                    (11) 

 

                                

 
1

2

0

2

2

0

2

2

0

2
2

maxmax 11,
12

2


































c

r

c

r

c

k

km
rrr





 ,                    (12) 

which are obtained using the quadratic formula and supposing the quantity in the square root to 

be positive, i.e.,  2

0

22

0

22 112
  crck  . Thus, we have two circular orbits at  rmin  and  rmax , 

respectively. Mathematically, when there are two orbits we can investigate their behavior, i.e., 

their stability or instability by taking the second derivative 
22 /),( rrrV   , and physically we can 

also use the effective total force (10) for the same investigation as discussed below. 

3.3. Discussion 

i) At the minimum (inner) radius  rmin, the circular orbit is unstable, because the attractive third 

force (CGA-term) strengthens much faster than the other two forces when r becomes small.  

 

ii) If the test-body falls slightly inwards from  rmin (where all three forces are in balance), the 

third force dominates the other two and draws the test-body inexorably inwards to r = 0.  

 

iii) At the maximum (outer) radius, however, the circular orbits are stable; the third term is less 

important and the system behaves more like the classical Kepler problem. 

 

iv) Further,  when  2

0

22

0

22 112
  crck   is much smaller than unity and 0cr   ,i.e. the classical 

case, the formulae (11) and (12) become approximately  
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where 2

0G

GMcr  is the well-known gravitational radius. 

v) The quadratic solutions above ensure that  rmax  is always greater than G3r , whereas  rmin  is 

less than or equal to G3r .In CGA-context, circular orbits smaller than G3r  are not possible. 

vi) At the other extreme, when   2

0

22

0

22 112
  crck    from (11) and (12), the two radii become 

equal to a single value 

                                                                  Gmaxmin 6rrr  ,                                                        (15) 

 

that is just exactly six times the gravitational radius. It is clear from this equality (15), the orbit at 

radius G6r  is neither stable nor unstable, but neutral, which may be interpreted as a radius of 

transition. Therefore, the total effective force (10) manifesting its neutrality just during the 

https://en.wikipedia.org/wiki/Quadratic_equation#Quadratic_formula_and_its_derivation
https://en.wikipedia.org/wiki/Kepler_problem
https://en.wikipedia.org/wiki/Quadratic_equation#Quadratic_formula_and_its_derivation
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process of transition when the antagonism between the attractive forces (Newton's and CGA-

term) and centrifugal force (repulsive-term) ceases at least momentarily for the reason that at the 

radius G6rr   the attractive forces together balance the repulsive force, i.e., physico-

mathematically, we have for the case  2

0
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     In passing, we can determine the other different types of orbits (i.e., elliptical, hyperbolic and 

parabolic orbits) exactly as we did for the classical-EPE. However, it is worthwhile to note that 

close inspection should show that, in the CGA-context, the three orbits are not exactly 

comparable to those found in the framework of Newton's gravity. For example, the CGA-

elliptical orbits are not close that's why the perihelion of each planet advances [2,3,4].  

 

4. Consequence of CGA-EPE 

 

    Generally speaking, the CGA-formalism [1,2,3,4,5] containing many new physical quantities 

defined as original concepts. For instance in the present work, the CGA-third term in the 

effective total force (10) is an additional attractive force to the main attractive force, namely, the 

gravitational force represented by the first term. Phenomenologically, the existence of this extra-

attractive term is in fact caused/induced by the motion of the test-body B of mass m inside the 

vicinity of the principal gravitational source A of mass M, where in general 1/ Mm . For 

detailed discussion on this theme, the reader may be referred to the papers [3,4]. Now, as a 

clarification, the emergence of the CGA-terms reflecting the influence of motion on the 

gravitation and in this sense, Einstein himself argued in 1912, “The gravitation acts more 

strongly on a moving body than on the same body in case it is at  rest.”[7].  But Einstein's claim 

has been stated in 1912, that is to say, before the publication of the final version of GRT in 1915 

in which, as we know, the very realistic concept of the gravitational force is abandoned and 

replaced by the concept of the curvature of space-time, and at the same time, Einstein claimed 

that GRT may be reduced to Newtonian gravity theory for low-velocities and weak-gravitational 

fields! 

 

    Curiously, Lorentz has already arrived at some conclusion very comparable to that of Einstein, 

but more than one decade before him. In his very influential work entitled ‘Considerations on 
Gravitation’ published in 1900, Lorentz wrote “Every theory of gravitation has to deal with the 

problem of the influence, exerted on this force by the motion of the heavenly bodies.” [8]. Again, 

Lorentz’ claim clearly reinforcing the fact that the CGA-terms are really induced by the motion 

of massive test-body B in the gravitational field of the central body A. 
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4.1. Gravitational momentum 

 

    In the paper [4], Section 3 entitled consequence of potential equations, we have derived an 

expression for a new physical quantity called 'gravitational momentum' which is in reality one of 

the  several consequences of CGA-formalism. Thus, the conceptual existence and formulation of 

the gravitational momentum is a direct result of the influence of the motion on the gravitation as 

cleverly pointed out by Einstein and Lorentz. Here, our central object is to derive, once again,  

the expression of the gravitational momentum (vector) from the CGA-EPE (8) as follows: 
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and its magnitude GG PP  is given by the relation 

 

                                                                  rİmP G ,                                                                 (18) 

where  

                                                            
rrrİİ /)( G2 ,   2

0G /cGMr  .                                                 (19) 

 

      It is helpful to note that since İ  in (18) is a dimensionless physical quantity and  rm  is the 

magnitude of the classical (linear) momentum vector, thus the gravitational momentum is 

proportional to the classical momentum, and the constant of this proportionality is exactly İ . 

Therefore, in the CGA-context, the gravitational momentum vector (17) should be associated to 

any moving material body inside the vicinity of the main gravitational source.  

 

Since we are exclusively dealing with the orbital motion, thus for an elliptical orbit r  should 

play the role of the average orbital velocity  

                                                                
r

GM
vr  orb

                                                           (20) 

                                                                       
 

of a test-body orbiting the principal gravitational source  and r  is the semi-major axis of the 

elliptical orbit. Here, without loss of generality, we have implicitly supposed 1/ Mm  . 

  

4.2. Dynamic gravitational force  

 

     In the previous papers [1,2,3,4,5], we have seen that the main consequences of the CGA-

formalism [1,2,3] is the dynamic gravitational field and the dynamic gravitational force, together 

represented by the couple  D,FΛ , which are gravito-dynamically induced due to the relative 

motion of the material test-body in the vicinity of the principal gravitational source. However, if 

historically, the GRT was capable of explaining the secular perihelion advance of Mercury this 

exploit is due in great part to the extra-field Λ or equivalently to the extra-force DF that may be 

deduced from Eq.(25) in Ref.[3] which is a direct consequence of GRT for a test-body orbiting 

the main gravitational source and coincided perfectly with CGA-Eq.(27) in Ref.[3]. Therefore, 

physically, the secular perihelion advance of Mercury and other planets of the Solar System is 
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not caused by the curvature of space-time but causally is due to the couple  D,FΛ  that acting on 

each planet as an extra field-force.  

 

     In the present work, the dynamic gravitational force, as a new concept proper to the CGA-

formalism, is a direct consequence of CGA-EPE, therefore, in order to preserve the simplicity 

and uniformity of the original expression of DF , it is very convenient to define this dynamic 

gravitational force as follows   
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from where we get the following expression for the dynamic gravitational field 

 

                                                                    m
D

FΛ  .                                                                  (23) 

  

The magnitude DD FF  is, after computation, defined by the relation 

 

                                                                 rİmF 
2
1

G  .                                                               (21) 

 

Like before, i.e., for an elliptical orbit r  should play the role of the centripetal acceleration   

 

                                                                   r
v

r
2
orb

                                                                   
 (22) 

 

of a test-body orbiting the principal gravitational source.
 
Finally, to be sure that the relation (21) 

is the correct definition of the magnitude of DF , the reader ‒who is already familiarized with the 

CGA-formalism‒ can verify this easily. To this end, it suffices to combine the relations (20) and 

(22), and after substitution in (21) and by taking into account the relation (19), we get  
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which is exactly the usual expression. The detailed study of the couple  D,FΛ  is published in 

Ref.[3]. 

 

     To my great surprise, when I read the Lorentz article [8] for the first time, that is, after having 

written the CGA, I found, among other interesting things, that Lorentz had arrived at an extra-

gravitational force (Eqs.(24) in Ref.[8]) whose components are very similar to those of DF .  

Also, Broginsky, Caves and Thorn, in their seminal paper [9] entitled ‘Laboratory experiments to 

test relativistic gravity’ published in 1977, they found an extra-gravitational acceleration called 

by them post-Newtonian gravitational acceleration (Eq.(2.1) in Ref.[9]) whose magnitude is also 

comparable to that of Λ . 
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     Now, as an illustration, let us apply the formula (18) to the solar system. Our goal is to 

calculate the magnitude of the gravitational momentum vector associated to each planet. But 

before this, we prefer beginning with the Earth-Moon system in order to facilitate the 

comprehension and familiarize the reader with the calculations. Since in this system, the Earth 

playing the role of principal gravitational source A and the Moon has the role of test-body B . We 

have for the Moon's orbital and physical parameters:  semi-major axis m10844.3 8r , average 

orbital velocity  
-13

orb ms10022.1 v , kg103420.7 22m ; while for the values of the Earth's 

mass and of the physical constants, we take kg1097260.5 24M , 

21311 skgm1067384.6 --
G

 , 1

0 sm458792299 c . After substituting all these quantities in 

(18), we find the magnitude of the gravitational momentum vector associated to the Moon 

 

                                                      
115

G mskg101.731450 P .                                               (24)            

                                                          
 

      Now, like above, from the formula (18), the predicted average magnitude of the gravitational 

momentum vector associated to each planet is computed and listed in Table 1. 

 

 

                                                                        

            Planet                     r                              m                                  orbv                                       GP                                           

                                        m                        kg                        ms
‒1                        (kg ms

‒1)                                                                

   

         Mercury          57.9210
9 

            3.3010010
23 

            47.4010
3 

  
                 

7.98024210
20 

                          
                   

 

          Venus             108.2510
9
           4.8676010

24
           

  
35.0310

3                     
4.65316010

21                      
 

                            

                                  Earth             149.6010
9
             5.9726010

24
            29.8010

3 
             3.51454310

21
                          

   
                 

                                  Mars             227.9510
9
             6.4174010

23
            24.1210

3 
            2.00593810

20
     

                                  Jupiter           778.6010
9
            1.898010

27
              13.0610

3 
            9.40471710

22
    

                                  Saturn            1.43310
12 

           5.6836010
26

              9.6410
3 

             1.12947110
22

        

                                  Uranus           2.87210
12  

          8.6816010
25

              6.8010
3 

             6.07218510
20

     

                                  Neptune        4.49510
12

           1.0242010
26                  

  5.4310
3              

     3.65490110
20

          

                                  Pluto              5.90610
12

           1.3030010
22

             4.7310
3 

              3.08271110
16

                 

   

                  Table 1. Above, column 1 gives the planet’s name; column 2 gives the semi-major axis of each  

               planet; columns 3 and 4 give, respectively, the mass and average orbital velocity of each planet;  

               column 5 gives the value of GP for each planet.         

 

                Note: The values in columns 1, 2 and 3 are from  Planetary Fact Sheet-NASA 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCQQFjAAahUKEwjprOSk0fzIAhUGnnIKHcEbBnc&url=http%3A%2F%2Fnssdc.gsfc.nasa.gov%2Fplanetary%2Ffactsheet%2F&usg=AFQjCNEWq8GMgh4rQQOLWjAddKVh2Fm-xw
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5. Combgravactionalization of Binet's Orbital Equation  

 

      Historically, the Binet's orbital equation, derived by the French scientist Jacques Philippe 

Marie Binet (1786 –1856), provides the form of a central force given the shape of the orbital 

motion in plane polar coordinates  

                                                                    
22

2

h

GM
u

d

ud



.                                                    (25) 

 

This equation can also be used to derive the shape of the orbit for a given force law, but this 

usually involves the solution to a second order nonlinear ordinary differential equation. Actually, 

we have already combgravactionalized this classical form (25) in earlier work [2,4],i.e., rewriting 

the Binet's orbital equation in the CGA-context. 

 

     Presently, we are so motivated by the fact that through the previous papers [1,2,3,4,5] we 

have seen that the CGA as an alternative post-Newtonian gravity theory is very capable of 

exploring, predicting and explaining some old and new gravitational phenomena. For example, 

in [2] we have derived two important formulae one for the perihelion advance of Mercury and 

the other for the angular deflection of starlight. Indeed, the two formulae had been deduced from 

the CGA-Binet's orbital equation, which has exactly the same physico-mathematical structure as 

the general relativistic Binet's orbital equation developed in the framework of curved space-time 

and Schwarzschild metric [10,11,12]. The fact seemed a pure coincidence at first sight, but when 

one analyzes the paper [3] with fully open mind, he/she will find that in spite of the concept of 

curved space-time there is a certain compatibility  between CGA and GRT reflected by Eq.(25) 

deduced from Eq.(24) which itself is an expression of the gravitational force derived by Ridgely 

[13] in the framework of GRT. Also, from the same Eq.(25) in Ref.[3] we can deduce the basic 

result of CGA, namely, the dynamic gravitational field-force  D,FΛ . 

 

     Again, from all that, we can logically assert that the concept of curved space-time is nothing 

but only a mathematical artifact and the existence of such compatibility signifies, among other 

things, the CGA is a counterexample to GRT because, before the advent of the CGA as an 

alternative gravity theory, it was constantly stressed that the study of the compact stellar objects 

is exclusively belonging to GRT-domain because their strong compactness is enough to bend the 

local space-time in such a way that some observable GRT-effects should occur. However, as we 

have already seen in [3], the CGA is also able to investigate, predict and explain the same type of 

effects in compact stellar objects and all that in the framework of Euclidean geometry and 

Galilean relativity principle. This is a sign of a tangible fact that the propagation of gravitational 

field and the action of gravitational force both are independent of the topology of space-time. 

 

      Furthermore, in order to make the cited counterexample more lucid, more localizable and 

more understandable, we shall combgravactionalize once again the Binet's orbital equation as 

follows. Let us consider the test-body B of mass m orbiting the gravitational source A of mass M. 

Therefore B evolving in the combined gravitational field. Moreover, supposing that the orbital 

motion takes place in the polar plan ),,0( eer inside the vicinity of A; so exactly like before (see 

Section 3), that is in such case, the CGPE-function (1) takes the form  

https://en.wikipedia.org/wiki/Jacques_Philippe_Marie_Binet
https://en.wikipedia.org/wiki/Jacques_Philippe_Marie_Binet
https://en.wikipedia.org/wiki/Central_force
https://en.wikipedia.org/wiki/Orbital_motion
https://en.wikipedia.org/wiki/Orbital_motion
https://en.wikipedia.org/wiki/Polar_coordinates
https://en.wikipedia.org/wiki/Nonlinear
https://en.wikipedia.org/wiki/Ordinary_differential_equation
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                                                





















2

0

2

22

0

2

2

1,
c

r

rcmr

k
rrUU


 .                                      (26)    

                                                  

We can now write directly the force due to the CGPE as follows 

 

                                  




































2

0

2

0

2

22

0

2

2

2

23
1

c

rr

c

r

rcmr

k

r

U

r

U

dt

d
F




.                           (27)                             

                                                                                   

We have also for a velocity-dependent central force  rr ,f for an orbit in the polar plane

),,0( eer :  

                                                                       rF rr ,f ,                                                          (28)                         

and according to Newton's second law 

                                                                         aF m ,                                                             (29)                                         

or more explicitly  

                                                     eerF  rrmrrmrr r 2,f 2 .                               (30)       

                                 

The differential equations relative to the directions re  and e are: 

 

                                                               
  2,f

 


rr
m

rr

m

F
,                                                   (31)                                                        

                                                   

                                                         02 2   r
dt

d

r

m
rrm .                                                (32)                                                

That implies      

                                                           constant2  hr  .                                                         (33)                                                      

Let us put  

                                                                       
u

r
1

 .                                                                   (34)                                                               

 

By differentiating relation (34) with respect to time, we get 

 

                                                        
dt

d

d

du

udt

du

udt

dr 











22

11
,                                             (35) 

thus   

                                                                



d

du

u
r 

2

1
 .                                                            (36)                         

We have from (33) and (34)
  

                                                                     

2

2
uh

r

h
 ,                                                        (37) 
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By substituting (37) in (36), we obtain                                                                  

                                                                       



d

du
hr .                                                           (38)                                                            

From (39), the second time derivative is  

 

          
dt

d

d

du

d

d
h

d

d

d

du

dt

d
h

d

du

dt

d
hr




































 , 

thus  

                                                                   


 
2

2

d

ud
hr .                                                         (39)                             

Taking account of (37), Eq.(39) becomes 

                                                                  
2

2
22




d

ud
uhr ,                                                        (40) 

From (37) and (40), Eq.(31) 

 

                                                    
  32

2

2
22,f

uh
d

ud
uh

m

rr

m

F






.                                          (41)                       

 

Taking into consideration the relations (34) and (38), we find from (27) and (41) the 

following equation 

                                         






























2

0

2

22

2

2

2

0

2

2

2

0

3
1

2
1

cm

u

mh

k
u

d

du

mc

k

d

ud

mc

ku 
.                       (42)                                        

Recall GMmk  , thus for the case of planetary motion, the dimensionless quantity 
2
0

2

mc

ku  and the 

term  2
2
0

d
du

mc

k in the above equation may be practically neglected , and  without loss of 

generality, Eq.(42) reduces to 

                                           

                                                   
2

2

22

0

2

2

2

2 3
1

h

GM
u

hcm

GM
u

d

ud














.                                     (43) 

                                               

 

Remark since 2
rm  and 

2
rh   , thus the quantity in square brackets on the left-hand side of 

Eq.(43), becomes 









 

2
0

22
0

2

2 33

c

GM

hcm

GM 
and finally after substitution in (43), we get the very 

expected CGA-Binet's orbital equation 

 

                                                     
2

2

2

0

2

2 3

h

GM
u

c

GM
u

d

ud












.                                            (44) 
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 Eq.(44) has exactly the physico-mathematical structure of the general relativistic Binet's orbital 

equation developed in the context of curved space-time and Schwarzschild metric [10,11,12]. 

This equation is highly important because as it was already shown in [2] and also in many well 

written pedagogical textbooks on GRT, particularly Refs.[10,11,12]. For example, as previously 

reported, we have already derived from Eq.(32) of Ref.[2], which is identical to Eq.(44), the 

formula: 

                                                                22
0

1
6

eac

GMπ
       (rad/rev),                                         (45) 

 

for planetary orbital precession, which is identical to that derived from GRT. Moreover, in view 

of the fact that the perihelion advance by   per revolution, thus in this case the resultant 

equation for the elliptical orbit should be 

                                                                       
 
  



cos1

1 2

e

ea
r  .                                              (46) 

 

     Eq.(46) may be regarded as a generalization of the classical one     cos11 2
eear  

when the test-body evolving in the combined gravitational field Λγg   as well detailed in 

Refs.[3,4,5]. Also in Refs.[2] and [10], a very important formula  ‒for the angular deflection of 

light ray passing nearby a massive body‒ was derived from Eq.(44): 

 

                                                                          
rc

GMθ
2
0

4 .                                                        (47) 

 

     The formula (47) playing a central role in the gravitational lensing. It is judged imperative to 

note that before the advent of CGA as a post-Newtonian gravity theory, such an effect was taken 

as an important astrophysical consequence of GRT, however, it is also a direct consequence of 

the CGA-formalism. There is another natural consequence of the same CGA-formalism, namely, 

the gravitational time dilation. According to CGA, this gravitational phenomenon occurring in 

close proximity to a near-spherical massive body in orbital motion, such as the Earth. In the 

CGA-context, this phenomenon is called CGA-time dilation and defined by the expression 

 

                                                                   

1/2

2

0

1













 rc

GM

tį
įt

,                                                (48) 

                                                                  
 

where tį  is the elapsed time for an observer within the gravitational field; tį   is the elapsed time 

for an observer sufficiently distant from the massive object (and therefore outside of the 

gravitational field); r is the radial distance from the center of the gravitational source of mass M. 

The formula (48) may be easily deduced from Eq.(10) of Ref.[4]. Therefore, CGA-time dilation 

is a phenomenon whereby time runs slower in a strength combined gravitational field . Put 

simply, the closer you are to a large body like the Earth the slower time runs, thus time runs 

slower for someone on the surface of the earth compared to someone in orbit around the earth.  
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Illustrative example: Let P1 and P2 be two idealized identical simple (gravity) pendulum, that is 

each one is composed of the same point mass )( 21 mm   on the end of a massless cord of the 

same length )( 21 ll  suspended from a pivot, without friction. When given an initial push, it will 

swing back and forth at a constant amplitude. The first is supposed at rest on Earth's surface, then  
2

EE0 /RGMg   and the second is placed above the earth's surface, e.g., at certain altitude z, thus

 2EE / zRGMg  . So, the question to be addressed is: what is the value of each pendulum's 

period? The answer is:  we have for P1 and P2, respectively,
 

011 /2 glT   and glT /22 2  . 

However, since 21 ll   and 0gg   this implies 21 TT  , that is P1 swing back and forth more 

slower than P2.   

 

     In passing, as a natural consequence, the conceptual existence of CGA-time dilation implies 

the existence of CGA-gravitational redshift. Of course, this gravitational phenomenon may be 

easily deduced from classical mechanics and before ending this passage, it is best to mention 

another phenomenon usually called Lense-Thirring effect [14,15,16], which supposed to be a 

direct result of GRT: an orbiting test-body around a rotating central body will have its orbital 

plane dragged around the spinning body in the same sense as the rotation of the central body. 

Also this phenomenon is called 'dragging of inertial frame' or more simply 'frame dragging' as 

Einstein named it. Exactly, the same phenomenon exists in CGA-context and it is called 'CGA-

dragging effect'. It is a natural consequence of the gravitorotational acceleration field (GRAF) λ , 

which is derived from the dynamic gravitational field Λ  [17].  

 

    Finally, as the reader (who is too familiar with CGA-formalism) can remark the following 

evidence: the aforementioned gravitational phenomena are conventionally and generally 

attributed to GRT alone as a direct result of space-time curvature. However, as we have seen, the 

CGA is also able to investigate, predict and explain the same type of the gravitational 

phenomena and all that was done in the context of the usual Euclidean geometry and the 

Galilean relativity principle. This reflects a tangible reality that the propagation of gravitational 

field and the action of gravitational force both are independent of the topology of space-time. In 

this sense, CGA should be regarded not only as a refinement and generalization of Newton's 

gravity theory but also as a counterexample to GRT because according to CGA, it is the couple

 D,FΛ that is physically responsible for the above mentioned gravitational phenomena rather 

than to be due to the curved space-time.  

 

 

6. Conclusion 

 

    Based solely on the CGA-formalism, we have derived a general expression for the CGA-

effective (radial) potential energy and investigated the behavior and shape of the orbits of a test-

body during its orbital motion inside the vicinity of the principal gravitational source. As direct 

consequences, two expressions for the concepts of gravitational momentum and the dynamic 

gravitational force are derived and the classical Binet's orbital equation is generalized in the 

CGA-context, and its physico-mathematical expression is exactly identical to that already found  
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in the framework of general relativity theory (GRT). Also it is shown that the CGA is very 

capable of predicting and investigating the same gravitational phenomena that are previously  

attributed to GRT uniquely.  
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