Calculating Smarandache Function in Parallel

Sabin Tabirca Tatiana Tabirca
Department of Computer Science

UCC, Cork, Ireland

Email: {s.tabirca, t.tabirca, kprl}@cs.ucc.ie

Abstract— This article presents an efficient method to calculate
in parallel the values of the Smarandache function S(i), ¢ =
1,2,...,n. The value S(i) can be sequentially found with a

which is to have consecutive values computed by the same pro-
cessor. This makes the dynamic scheduling methods inapplicable.
The proposed solution is based on a Balanced Workload Block
Scheduling method. Experiments show that the method is efficient
and generates a good load balance.

I. INTRODUCTION

The Smarandache function [7] is a relatively new function
in Number Theory and yet there are already a number of
algorithms for its computation. It is the intention of this article
to develop an efficient algorithm to compute in parallel all the
values {S(i), ¢ = 1,2,...,n}. This is an important problem
often occurring in real computation for example in checking
conjectures on S.

To begin, the Smarandache function [7] S : N* — N is
defined as

S(n)

=min{k € N | n|k!} (1)

An important property of this function is given by the follow-
ing:

(Va,b € N*)(a,b) =1 = S(a-b) = max{S(a),S(h)}. (2)
Expanding on this, it is clear that
S - p) = max{S("),...,S@)}.)

Therefore, when trying to evaluate the value of the function
at n it is possible to use the prime decomposition of n to

reduce the computation. Equation (1) gives a simple formula
for S(p*):

k—Zd —:>S Zd -p.

There have been several studies to show the connection
between the function S and prime numbers. It has been proven
by Ford [2] that the values of S are almost always prime,
satisfying

“

lim [{i <n: S(i) prime}|
n n

=0. 5)

Several sequential methods to compute the Smarandache
function have emerged since its initial definition in 1980.
Ibstedt [3], [4] developed an algorithm based on Equations (3)

Proceedings of the ISPDC/HeteroPar’04
0-7695-2210-6/04 $20.00 © 2004 IEEE

and Kieran Reynolds

Laurence T. Yang
Department of Computer Science
St. Francis Xavier University
Antigonish, Canada
Email: lyang@stfx.ca

and (4) without any study of the complexity of this algorithm.
Later, Power et.al. [6] analyzed this algorithm and found that
the complexity is O(&). The U Basic implementation that
was used by Ibstedt has proved to be efficient and useful
especially for large values of m. Subsequently, Tabirca [9]
studied a simple algorithm based on Equation 1 by considering
the sequence z = k! mod n. This proves a rather inefficient
computation that is impractical for large values of n. It was
shown that the computation has a complexity of O(S(n)).
However, studies [10], [11] and [5] find that the average

complexity of this algorithm is O(logn)

static long Value (long p, long k) {

long 1, j, value=0;
long d1[] = new long [1000];
long d2[] = new long [1000];

di[0]=1;d2[0]=p;
for(int 1=0;d1[1]<=k;1++)
dil[1+1]=1+p*di[1];
d2 [1+1]=p*d2 [1] ;
}
for(l--,3j=1;3>=0;3--){
d=p/d1[jl;
p=p%d1(j];
value+=d*d2 [j];

}

return value;

Fig. 1. The procedure for S(p¥).

A. An Efficient Sequential Algorithm

Performing the computation of the Smarandache function
can be done sequentially by developing an algorithm based
on Equations (3) and (4). Clearly, if an efficient method to
calculate the function on a prime power exists, it is then
easy to extend this to the remaining integers. It was this that
prompted Ibstedt to develop an algorithm for the computation
of the Smarandache function. This algorithm will be briefly
examined in this section.

In Equation (4) (di,di—1,- dl) is the representation

of k in the generalized base 1,2 11, --,pl%ll so that
p— 14
(dj,dy_1,-..,dy) is the representation of S(p*) in the gen-

eralized base p,p?,...,p'. This gives a relationship between

CoMmpPUr

I'ER
SOCIETY

public static long S (final long n) f{
long d, valueMax=0, s=-1;

if (n==1) return 0;
long pl] = new long [1000];
long k[] = new long [1000];

long value[] = new long [1000];
for (d=2;d<n;d++)

if (n $ d == 0){
s++;pls]=d;
for(k[s]=0;n%d==0;k[s]++,n/=d) ;
value[s]=Value (pls], kls]);

}
for(j=0;j<=s;j++)
if (valueMax<value[j])
valueMax=value[j];
return valueMax;

Fig. 2. The procedure for S(p*).

p* and S(p*). With this it is possible to write a method to
calculate the Smarandache function on a prime power. Once
this is in place, it is then possible to calculate the function on
any integer.

Note that a prime decomposition algorithm is needed for
the computation of the Smarandache function which, for these
purposes, can be a simple trial division algorithm. Once
a prime decomposition of n = pi' - ... - p;” is available
max{S(p}"), ..., S(p}’)}. This

Equation (3) gives S(n)
is described in Figure 2.

II. COMPUTING IN PARALLEL

While performing the calculation of S(n) in parallel it is
possible, see Power et.al. [6], that is not the purpose of this
article. Instead, it is desired that the computation of {S(i),i =
1,2,...,n} be performed in parallel. Let us suppose that this
is done by the doall loop

do par i=1,n
calculate S (i)
end do

which is computed on a parallel machine with p processors
Py, P, ..., P,. The value S(i) is found sequentially by calling
the function S from Figure 2 and this is done with a workload
of w; = #'gi, 1 = 2,3,...,n. An important requirement of this
computation is to have consecutive iterations computed by the
same processor. This often occurs when it is needed to check
conjectures involving consecutive terms of S.

Computing the above doall loop is a classical scheduling
problem in parallel computation. Scheduling methods find a
mapping of the iterations onto the processors. This means
that the set of indices {1,2,...,n} is partitioned into p sets
{S;, 7 = 1,2,...,p}. Scheduling methods are classified
into two main categories depending on when the partition
is found. Static Scheduling Methods generate the partition

Proceedings of the ISPDC/HeteroPar’04
0-7695-2210-6/04 $20.00 © 2004 IEEE

during compile time while Dynamic Scheduling Methods find
it during run time. The main advantage of the latter is that they
can detect when a processor becomes idle and assign iterations
to it. Studies have shown that Dynamic Scheduling Methods
achieve a good load balance of the workloads. However, they
produce small scheduling overheads.

On the other hand Static Scheduling Methods do not give
any scheduling overheads but they usually give a poor imbal-
ance of the workloads. The simplest way to schedule statically
the iterations is to assign 2 consecutive iterations to each
processor In this case processor j receives the iterations
G=bm g U ; +2,- -+, X" This method, which is called
Umform Block Schedulzng grves good load balance when the
workloads {w1,ws, ..., w,} are similar. When the workloads
increase or decrease the method is clearly inefficient because
there is one processor that gets all the biggest n/p workloads.
Cyclic Scheduling corrects this inconvenience by distributing
the iterations in a cyclic fashion so that two consecutive big
workloads are not assigned to the same processor. The method
allocates to processor j the iterations {j, j+p, j+2-p,---, j+
["—;1} -p}. Certainly, cyclic scheduling offers an efficient load
balancing when the workloads decrease or increase.

Tabirca [13] proposed a recent static scheduling method
named Balanced Workload Block Scheduling (BWBS 1). This
is a block scheduling in which processor j receives the
consecutive iterations {l;,1; + 1,...,h;} so that its workload
is balanced. Hence, the scheduling is defined by the lower and
upper bounds {(I;, h;), j —1,2,...,p} so that

l1:1, hpzn, lj:hj_l-i-l, j=2,.,p

Suppose that there is an estimation or a formula for the
workloads {w1,wa, ..., w,}. Therefore, the workload for the
entire loop is given by w = Y7, w; and the average workload
per processor is given by

bﬁlb—‘

Clearly, good scheduling should give bounds (I;,h;) for
processor j such that

h; 1 n
Zwi: —-Zwi ::W,
p i=1

i=1;
To evaluate bounds for the computation, two functions are
needed. Firstly, by extending the inferior part function, define

fiw) =k & f(k) <z < f(k+1). (6)

Tabirca et al [13], show that if both f7; and the function f(h) =
Zzzr wy, exist or can be calculated then the upper bounds are
given by

Vi=1,2,..,p.

However, the method can still be applied when there are not
formulas for these two functions. In this case a pre-processing

CoMmpPUr
SOCIE

TE
TY

R

step is required to calculate the average workload W and the
upper bounds {h;, j =1,2,...,j} using

h+1

h@sz<W<sz

The pre-processing step however gives a scheduling overhead
of O(%).

Tabirca [12] proposed an improvement on this method
considering the partial sum that is closest to j - W

®)

h+1
]_h(:)zw,<] W<Zw’ ©)]
In this case the upper bounds are given by
hj=fo(j-W),j=12,. (10)

This Balanced Workload Block Scheduling (BWBS 2) method
has been proven to be marginally better than the initial one.

For the loop we study the workloads wi = 0, w;
o3 ogz’ 1 = 2,3,...,n increase so that the Unifrom scheduling
does not give an efficient solution. Certainly, the Dynamic
Scheduling or Cyclic methods can be applied to obtain a better
load balance. Unfortunately, they are not suitable because the
processors do not get consecutive iterations. Therefore, the
Balanced Workload Block Scheduling methods remain to glve
an efficient solution for our problem. Since the sum " = Tog
does not have a formula or a simple approximation, the pre-
processing step must be applied to achieve the scheduling
bounds.

P Py Ps3 Py
Uniform 225.25 611.45 | 971.45 1318.54
BWBS 1 787.81 780.78 | 777.61 785.18
BWBS 2 | 782.65 | 781.52 | 782.05 782.34
TABLE 1
EXECUTION TIMES ON PROCESSORS.
1400
1200
1000
= go0 —| B Unifarm
g BEWES 1
& &00 + OBWBS 2
400 -
200 4
il
P1 P2 P3 P4
(Processor Id)

Fig. 3. Execution Times on Processors.

Proceedings of the ISPDC/HeteroPar’04
0-7695-2210-6/04 $20.00 © 2004 IEEE

III. EXPERIMENTAL RESULTS

In this section some experimental results are outlined to
show how the problem is solved in parallel. The computation
has been performed on a 100 node Beowulf cluster. The
machine consists of 50 Dell Poweredge 1655MC servers each
of them with a dual Pentium III processor (1.26GHz, 512K
cache, 1 GB of RAM).

The Uniform and Balanced Workload Block Scheduling
methods are considered to schedule the loop iterations. To test
these approaches, we generate S(i)Vi < 100,000,000 and
check whether the equation S(¢) = S(i + 1) has solutions.
This is an old standing conjecture that has been checked by

Ibstedt [3] for all the numbers 7 < 1,000,000 . It has been
conjectured that the equation has no solutions.
p=1 p=2 p=4 p=8 | p=16 | p=32
Uniform | 2925.62 | 2088.53 | 121534 | 718.54 | 434.92 271.82
BWBS 1 | 2925.72 | 1543.87 | 787.81 | 412.18 | 237.61 | 148.50
BWBS 2 | 2925.68 | 1524.25 782.65 397.34 | 210.53 131.58
TABLE II
VARIATION OF EXECUTION TIMES.
3500
000
2500
2000 — Unifarm
—BABS 1
1500 EWES 2
1000
- —
D ______‘_‘_‘——_
p=1 p=2 =4 p=8 p=l6 p=32

Fig. 4. Variation of Execution Times.

The first test presents the workload distribution on proces-
sors. For that the loop is scheduled on 4 processors and the
computation time on each processor is measured. This gives
an estimation of workload balance of each method. Table 1
and Figure 3 show the variation of these execution times. It
can be seen that the Uniform Scheduling method generate a
huge imbalance where processor 4 is more than 6 times loaded
than processor 1. On the other hand the BWBS methods give
an efficient load balance with a marginal advantage for the
second one. The desired effect of BWBS balancing, which is
to get times on each processor as ‘nearly’ equal as possible is
clearly visible from the diagram.

The second test investigates the variation of the overall
execution times when the number of processors vary. The
above loop has been run using p = 1,2,4,8,16 processors.
The variation of the execution times is presented in Table
2. Examining Figure 4 shows, unsurprisingly, that the BWBS
bounds offer not only the best balance but also the quickest
computation.

CoMmpPUr
SOCIE

TE
TY

R

IV. FINAL CONCLUSION

This article has presented how the values of the Smaran-
dache function can be found in parallel. It has been required
that consecutive values have to be calculated by the same
processor. This has restricted the scheduling methods that
could have been used for the computation. A variation of
Balanced Workload Block Scheduling has been used to achieve
efficient computation. That has been possible only because the
number of operations to compute S(¢) is known.

Based on this method several conjectures from Smaran-
dache’s Open Problem list [8] have been verified for all
values up to 1,000,000,000 using the BWBS scheduling.
Unfortunately, no counterexample has been found to disprove
any of them so that we can say that they are true at least for
all the values under one billion. This type of computation can
also be used to generate in parallel the values of some other
Number Theory functions e.g. Erdos’ or Euler’s.

REFERENCES

[1] E. Bach and J. Shallit, Algorithmic Number Theory, MIT Press, Cam-
bridge, Massachusetts, USA, 1996.

[2] G. Ford, An Asymptotic Evaluation of the Smarandache Function,
Smarandache Notion Journal, 11, No.1-2-3, 2000, 45-61.

[3] H. Ibstedt, Surfing on the Ocean of Numbers - a few Smarandache
Notions and Similar Topics, Erhus University Press, New Mexico, USA,
1997.

[4] H. Ibstedt, Computational Aspects of Number Sequences, American
Research Press, Lupton, USA, 1999.

Proceedings of the ISPDC/HeteroPar’04
0-7695-2210-6/04 $20.00 © 2004 IEEE

[5]
[6]

[7

—

[8]
[9

—

[10]

(1]

[12]

[13]

F. Luca, The average Smarandache Function, Smarandache Notion
Journal, 12, No.1-2, 2001, 134-142.

D. Power, S. Tabirca and T. Tabirca, Java Concurent Program for the
Smarandache Function, Smarandache Notion Journal, 12, No.1-2, 2001,
121-132.

F. Smarandache, A Function in number theory, Analele Univ. Timisoara,
XVIII, 1980, 142-156.

F. Smarandache, Only Problems ... Not Solutions, Xiquan Publishing
House, Phoenix-Chicago, 1993.

S. Tabirca and T. Tabirca, Some Computational Remarks on the Smaran-
dache Function, Proceedings of the First International Conference on
the Smarandache Type Notions, 1997, Craiova, Romania.

S. Tabirca and T. Tabirca, Some upper bounds for Smarandache’s
function, Smarandache Notions Journal, 8, 1997, 205-211.

S. Tabirca and T. Tabirca, Two new functions in number theory and
some upper bounds for Smarandache’s function, Smarandache Notions
Journal, 9, No. 1-2, 1998, 82-91.

T. Tabirca and S. Tabirca, A New Equation for the Balanced Loop
Scheduling Based on the Smarandache Inferior Part Function to
Loop Scheduling, Proceedings of the 2nd International Conference on
Smarandache Types Notion, 2001, Romania.

T. Tabirca, L. Freeman, S. Tabirca and T.L.Yang, A Static Workload
Balance Scheduling Algorithm, Proceedings of the 2nd Workshop on
Parallel and Distributed Scientific and Engineering Computing with
Applications (PDSECA 2001), April 2001, San Francisco, USA.

CoMPUT
SOCIET

=

"R

-

