Smarandache–Boolean–Near–Rings and Algorithms

N. Kannappa¹ and P. Tamilvani²

¹Department of Mathematics, T.B.M.L. College, Porayar-609307
Tamil Nadu. e-mail id : sivaguru91@yahoo.com

²Department of Mathematics, Poompuhar College (Autonomous)
Melaiyur-609107, Tamil Nadu. e-mail id: sivaguru91@yahoo.com

Received 16 September 2014; accepted 2 October 2014

Abstract. In this paper we introduced Smarandache-2-algebraic structure of Boolean-near-ring namely Smarandache-Boolean-near-ring. A Smarandache-2-algebraic structure on a set N means a weak algebraic structure A_0 on N such that there exists a proper subset M of N, which is embedded with a stronger algebraic structure A_1, stronger algebraic structure means satisfying more axioms, by proper subset one understands a subset different from the empty set, form the unit element if any, from the whole set. We define Smarandache-Boolean-near-ring and obtain some of its algorithms through Boolean-ring with left-ideals, direct summand, Boolean-l-algebra, Brouwerian algebra, Compatibility, maximal set and Polynomial Identities.

Keywords: Boolean-ring, Boolean-near-ring, Smarandache-Boolean-near-ring, left-ideal, direct summand, Boolean-l-algebra, Brouwerian algebra, Compatibility, maximal set and Polynomial Identities

AMS Mathematics Subject Classification (2010): 46C20, 15A09

1. Introduction

In order that New notions are introduced in algebra to better study the congruence in number theory by Smarandache [4]. By <proper subset> of a set A we consider a set P included in A, and different from A, different form the empty set, and from the unit element in A – if they rank the algebraic structures using an order relationship: They say that the algebraic structures S_1<< S_2 if: both are defined on the same set; all S_1 laws are also S_2 laws; all axioms of an S_1 law are accomplished by the corresponding S_2 law; S_2 law accomplish strictly more axioms that S_1 laws, or S_2 has more laws than S_1.

For example: Semi group <<Monoid<< group << ring<< field, or Semi group<< commutative semi group, ring<< unitary , ring etc. They define a General special structure to be a structure SM on a set A, different form a structure SN, such that a proper subset of A is an structure, where SM<< SN <<

2. Preliminaries

Definition 2.1. A left near-ring A is a system with two binary operations, addition and multiplication, such that

(i) the elements of A form a group $(A, +)$ under addition,
(ii) the elements of \(A \) form a multiplicative semi-group,

(iii) \(x(y + z) = xy + xz \), for all \(x, y, z \in A \)

In particular, if \(A \) contains a multiplicative semi-group \(S \) whose elements generate \((A,+) \) and satisfy

(iv) \((x+y)s = xs + ys\), for all \(x, y \in A \) and \(s \in S \), then we say that \(A \) is a distributively generated near-ring.

Definition 2.2. A near-ring \((B,+,\cdot)\) is Boolean-Near-Ring if there exists a Boolean-ring \((A,+,\Lambda,1)\) with identity such that \(\cdot \) is defined in terms of \(+ \), \(\Lambda \) and 1, and for any \(b \in B \), \(b.b = b \).

Definition 2.3. A near-ring \((B,+,\cdot)\) is said to be idempotent if \(x^2 = x \), for all \(x \in B \). If \((B,+,\cdot)\) is an idempotent ring, then for all \(a, b \in B \), \(a + a = 0 \) and \(a.b = b.a \).

Definition 2.4. A Boolean-near-ring \((B,+,\cdot)\) is said to be Smarandache-Boolean-near-ring whose proper subset \(A \) is a Boolean-ring with respect to same induced operation of \(B \).

Definition 2.5. (Alternative definition for S-Boolean-near-ring) If there exists a non-empty set \(A \) which is a Boolean-ring such that it superset \(B \) of \(A \) is a Boolean-near-ring with respect to the same induced operation, then \(B \) is called Smarandache-Boolean-near-ring. It can also written as S-Boolean-near-ring.

3. Algorithms

Left – Ideal: Clay and Lawver [2] have introduced the left-ideals of \((B,+,\cdot)\) in \(P(x) \) are the subgroups of the groups \((P(x),+)\), where \(P(x) = \{b \in B / b \land x = b\} = B_x \) is a maximal sub-\(z \)-ring. It also contained in an ideal. Let \(A = I_0 \). Now to construct a set \(B \) as follows.

\(B \) contains a unique minimal ideal \(I_0 \) contained in all other non-zero ideals. According to Pilz [4, Theorem (1.60 (d))], \(B \) is Boolean-near-ring. Now by definition, \(B \) is a Smarandache-Boolean-near-ring.

Algorithm 3.1.

Step 1: Consider a Boolean-ring \(A \)
Step 2: Let \(A = I_0 \), be an ideal
Step 3: Let I_i, i = 0,1,2,3,…… be supersets of \(I_0 \)
Step 4: Let \(B = \bigcup I_0 \)
Step 5: Choose the sets \(I_j \) from \(I_i \)’s subject to \(a, b \) and \(c \in B \) such that

\[(a + b).c + a.c + b.c = x \land c \in I_j \text{ and } x \in B \text{ we have } P(x) \subseteq I \]

Step 6: Verify that \(\bigcap I_j = I_0 \neq \{0\} \)
Step 7: If step (6) is true, then we write \(B \) is a Smarandache-boolean-near-ring.

Direct Summand

Clay and Lawver [2] has introduced the concept of direct summand. Let \(A \) be an ideal of \(B \), then \(A \) is a direct summand if and only if \(A = P(x) \). Now to construct a set \(B \) as
follows. B contains a unique minimal direct summand M_0 contained in all other non-zero direct summands. According to Pilz [4, Theorem (1.60 (d))], B is Boolean-near-ring. Now by definition, B is a Smarandache-boolean-near-ring.

Algorithm 3.2.
Step 1: Consider a Boolean-ring A
Step 2: Let $A = M_0$, be a direct summand.
Step 3: Let $M_i, i = 0,1,2,3,\ldots$ be supersets of M_0.
Step 4: Let $B = \bigcup M_i$.
Step 5: Choose the sets M_j from M_i’s subject to for all $x \in B$ such that M_0 is a direct summand we have $M_0 = P(x)$ and $B = P(x) + P(x^1)$, where $P(x)$ and $P(x^1)$ are ideals of B and $x, x^1 \in B$.
Step 6: Verify that $\bigcap M_j = M_0 \neq \{0\}$.
Step 7: If step (6) is true, then we write B is a Smarandache-boolean-near-ring.

Boolean-l-Algebra

Rao has introduced the notions of Boolean-l-algebra and lattice ordered groups. In [8] he proved A is a Boolean-ring if and only if A is a Boolean-l-algebra such that $x \leq a$ implies $x \bigwedge (a-x) = 0$. He has established that the class of Boolean-l-algebra is a subclass of DRI semigroups also. Let $A = I_0$. Now to construct a set B as follows.
B contains a unique minimal Boolean-l-algebra I_0 contained in all other non-zero Boolean-l-algebras. According to G. Pilz [4, Theorem (1.60 (d))], B is Boolean-near-ring. Now by definition, B is a Smarandache-boolean-near-ring.

Algorithm 3.3.
Step 1: Consider a Boolean-ring A
Step 2: Let $A = I_0$, be a Boolean-l-algebra
Step 3: Let $I_i, i = 0,1,2,3,\ldots$ be supersets of I_0.
Step 4: Let $B = \bigcup I_i$.
Step 5: Choose the sets I_j from I_i’s subject to for all $i_{j1}, i_{j2} \in I_j$ such that $i_{j1} \leq i_{j2}$ implies $i_{j1} \bigwedge (i_{j2} - i_{j1}) = 0$.
Step 6: Verify that $\bigcap I_j = I_0 \neq \{0\}$.
Step 7: If step (6) is true, then we write B is a Smarandache-boolean-near-ring.

Brouwerian Algebra

Rao has established that the class of Brouwerian algebras. Brouwerian algebras being a subclass of Boolean-l-algebras. If $(B; -)$ is a Boolean-ring then $(B; \cdot)$ is a Boolean-l-algebra if and only if B is a Brouwerian such that that $x \leq a$ then $a = x \bigvee (a-x)$.

Let A be a Boolean – ring. Let $A = M_0$. Now to construct a set B as follows.
B contains a unique minimal Brouwerian algebra contained in all other non-zero Brouwerian algebras.
According to Pilz [4, Theorem (1.60 (d))], B is Boolean-near-ring. Now by definition, B is a Smarandache-boolean-near-ring.
Algorithm 3.4.
Step 1: Consider a Boolean-ring \(A \)
Step 2: Let \(A = M_0 \)
Step 3: Let \(M_0, i = 0,1,2,3,\ldots \) be the supersets of \(M_0 \).
Step 4: Let \(B = \bigcup M_i \)
Step 5: Choose the sets \(M_j \) from \(M_i \)'s subject to for all \(x \) and \(a \in B \) such that \(x \leq a \) then \(a = x \cup (a-x) \).
Step 6: Verify that \(\bigcap M_j = M_0 \neq \{0\} \)
Step 7: If step (6) is true, then we write \(B \) is a Smarandache-boolean-near-ring.

Compatibility: A subset \(A \) of Boolean-near-ring \(B \) is said to be compatibility \(a \sim b \) if \(ab^2 = a^2b \). Let \(A = I_0 \). Now to construct a set \(B \) as follows. \(B \) contains a unique minimal compatibility \(I_0 \) contained in all other non-zero compatibilities. According to Pilz [4, Theorem (1.60 (d))], \(B \) is Boolean-near-ring. Now by definition, \(B \) is a Smarandache-boolean-near-ring.

Algorithm 3.5.
Step 1: Consider a Boolean-ring \(A \)
Step 2: Let \(A = I_0 \), be a compatibility
Step 3: Let \(I_0, i = 0,1,2,3,\ldots \) be the supersets of \(I_0 \).
Step 4: Let \(B = \bigcup I_i \)
Step 5: Choose the sets \(I_j \) from \(I_i \)'s subject to for all \(a, b \in A \) such that \(ab^2 = a^2b \in I_j \)
Step 6: Verify that \(\bigcap I_j = I_0 \neq \{0\} \)
Step 7: If step (6) is true, then we write \(B \) is a Smarandache-boolean-near-ring.

Maximal Set: Let \(B \) be a Boolean-near-ring and let \(A = \ldots, a, b, c, \ldots \) be a set of pairwise compatible elements of an associate ring \(R \). Let \(A \) be maximal in the sense that each element of \(A \) is compatible with every other element of \(A \) and no other such elements may be found in \(R \). Then \(A \) is called maximal compatible set or a maximal set. Let \(A = I_0 \). Now to construct a set \(B \) as follows. \(B \) contains a unique minimal maximal set \(I_0 \) contained in all other non-zero maximal sets. According to Pilz [4, Theorem (1.60 (d))], \(B \) is Boolean-near-ring. Now by definition, \(B \) is a Smarandache-boolean-near-ring.

Algorithm 3.6.
Step 1: Consider a Boolean-ring \(A \)
Step 2: Let \(A = I_0 \), be a maximal set
Step 3: Let \(I_i, i = 0,1,2,3,\ldots \) be the supersets of \(I \)
Step 4: Let \(B = \bigcup I_i \)
Step 5: Choose the sets \(I_j \) from \(I_i \)'s subject to for all \(a, b \in I_j \) such that \(a \vee b = a + b - 2ab = (a \cup b) - (a \cap b) \) and \(a \wedge b = a^0b = ab^0 = a \cap b \in I_j \), for all \(a, b \in I_j \)
Step 6: Verify that \(\bigcap I_j = I_0 \neq \{0\} \)
Smarandache–Boolean–Near–Rings and Algorithms

Step 7: If step (6) is true, then we write B is a Smarandache-boolean-near-ring.

Polynomial Identity: Given two numbers $m > n \geq 1$, a ring B is said to be (m,n)-Boolean if \(x^m = x^n \), for all x in B. Let $A = I_0$. Now to construct a set B as follows. B contains a unique minimal Polynomial identity I_0 contained in all other non-zero Polynomial identities. According to G. Pilz [4, Theorem (1.60 (d))], B is Boolean-near-ring. Now by definition, B is a Smarandache-boolean-near-ring.

Algorithm 3.7.

Step 1: Consider a Boolean-ring A
Step 2: Let $A = I_0$
Step 3: Let $I_i, i = 0,1,2,3,\ldots$ be the supersets of I_0
Step 4: Let $B = \bigcup I_i$
Step 5: Choose the sets I_j from I_i's subject to for all $m, n \in B$ and for all $x \in B$ such that $x^m = x^n \in I_j$
Step 6: Verify that $\bigcap I_j = I_0 \neq \{0\}$
Step 7: If step (6) is true, then we write B is a Smarandache-boolean-near-ring.

Polynomial Identity: Let m and n be two positive integers such that \(x^{2^m+2^n} = x, \) for all x in B. Let $A = M_0$. Now to construct a set B as follows. B contains a unique minimal Polynomial identity M_0 contained in all other non-zero Polynomial identities. According to Pilz [4, Theorem (1.60 (d))], B is Boolean-near-ring. Now by definition, B is a Smarandache-boolean-near-ring.

Algorithm 3.8.

Step 1: Consider a Boolean-ring A
Step 2: Let $A = M_0$
Step 3: Let $M_i, i = 0,1,2,3,\ldots$ be the supersets of M_0
Step 4: Let $B = \bigcup M_i$
Step 5: Choose the sets M_j from M_i's subject to for all two positive integers m and $n \in B$ and for all $x \in M_j$ such that $x^m = x^n$ and $x^{2^m+2^n} = x, \in M_j$
Step 6: Verify that $\bigcap M_j = M_0 \neq \{0\}$
Step 7: If step (6) is true, then we write B is a Smarandache-boolean-near-ring.

Polynomial Identity: Let m and q be two fixed positive integers and \(x^{2^{m+q}+2^{2^n}} = x, \) for all x in B. Then B is known as a Smarandache-boolean-near-ring.

Let $A = P_0$. Now to construct a set B as follows. B contains a unique minimal Polynomial identity P_0 contained in all other non-zero Polynomial identities. According to Pilz [4, Theorem (1.60 (d))], B is Boolean-near-ring. Now by definition, B is a Smarandache-boolean-near-ring.
Algorithm 3.9.
Step 1: Consider a Boolean-ring A
Step 2: Let A = P₀
Step 3: Let Pᵢ, i = 0, 1, 2, 3, …… be the supersets of P₀.
Step 4: Let B = \bigcup Pᵢ
Step 5: Choose the sets Pⱼ from Pᵢ’s subject to for all two positive integers m and q such that \(x^{m+q} = x \), \(x \) ∈ Pⱼ and for all \(x \) ∈ Pⱼ
Step 6: Verify that \(\bigcap P = P₀ \neq \{0\} \)
Step 7: If step (6) is true, then we write B is a Smarandache-boolean-near-ring.

Polynomial Identity: Let \(m \) and \(n \) be two positive integers such that \(x^{2m+n} + 2^n = x \), for all \(x \) in B. Let A = M₀.

Now to construct a set B as follows. B contains a unique minimal Polynomial identity \(M₀ \) contained in all other non-zero Polynomial identities. According to Pilz [4, Theorem (1.60 (d))], B is Boolean-near-ring. Now by definition, B is a Smarandache-boolean-near-ring.

Algorithm 3.10.
Step 1: Consider a Boolean-ring A
Step 2: Let A = M₀
Step 3: Let Mᵢ, i = 0, 1, 2, 3, …… be the supersets of M₀
Step 4: Let B = \bigcup Mᵢ
Step 5: Choose the sets Mⱼ from Mᵢ’s subject to for all two positive integers m and n ∈ B and for all \(x \) ∈ Mⱼ such that \(x^m = x^n \) and \(x^{2m+n} = x \), \(x \) ∈ Mⱼ
Step 6: Verify that \(\bigcap Mⱼ = M₀ \neq \{0\} \)
Step 7: If step (6) is true, then we write B is a Smarandache-boolean-near-ring.

Polynomial Identity: Let \(m \) and \(n \) be two positive integers such that \(x^{2m+n} + 2^n = x \), for all \(x \) in B. Let A = M₀. Now to construct a set B as follows. B contains a unique minimal Polynomial identity \(M₀ \) contained in all other non-zero Polynomial identities. According to G. Pilz [4, Theorem (1.60 (d))], B is Boolean-near-ring. Now by definition, B is a Smarandache-boolean-near-ring.

Algorithm 3.11.
Step 1: Consider a Boolean-ring A
Step 2: Let A = M₀
Step 3: Let Mᵢ, i = 0, 1, 2, 3, …… be the supersets of M₀
Step 4: Let B = \bigcup Mᵢ
Step 5: Choose the sets M_j from M_i's subject to for all two positive integers m and $n \in B$ and for all $x \in M_j$ such that $x^m = x^n$ and $x^{2^{m+n+2^n}} = x$, $\in M_j$.

Step 6: Verify that $\bigcap M_j = M_0 \neq \{0\}$.

Step 7: If step (6) is true, then we write B is a Smarandache-boolean-near-ring.

Polynomial Identity: Let m and n be two positive integers such that $x^{2^{m+n}+2^n} = x$, for all $x \in B$. Let $A = M_0$. Now to construct a set B as follows. B contains a unique minimal Polynomial identity M_0 contained in all other non-zero Polynomial identities. According to Pilz [4, Theorem (1.60 (d))], B is Boolean-near-ring. Now by definition, B is a Smarandache-boolean-near-ring.

Algorithm 3.12.

1. Consider a Boolean-ring A.
2. Let $A = M_0$.
3. Let M_i, $i = 0, 1, 2, 3, \ldots$ be the supersets of M_0.
4. Let $B = \bigcup M_i$.
5. Choose the sets M_j from M_i's subject to for all two positive integers m and $n \in B$ and for all $x \in M_j$ such that $x^m = x^n$ and $x^{2^{m+n}+2^n} = x$, $\in M_j$.
6. Verify that $\bigcap M_j = M_0 \neq \{0\}$.
7. If step (6) is true, then we write B is a Smarandache-boolean-near-ring.

Polynomial Identity: Let B be a Boolean-near-ring and let m, q and r be fixed positive integers with $r < m+1$ such that $x^{2^{m+q}+2^r} = x$, for all x in B and $x^{2^r} = x$, then B is Smarandache-Boolean-near-ring. Let $A = M_0$. Now to construct a set B as follows. B contains a unique minimal Polynomial identity M_0 contained in all other non-zero Polynomial identities. According to Pilz [4, Theorem (1.60 (d))], B is Boolean-near-ring. Now by definition, B is a Smarandache-boolean-near-ring.

Algorithm 3.13.

1. Consider a Boolean-ring A.
2. Let $A = M_0$.
3. Let M_i, $i = 0, 1, 2, 3, \ldots$ be the supersets of M_0.
4. Let $B = \bigcup M_i$.
5. Choose the sets M_j from M_i's subject to for all two positive integers m, q and r be three fixed positive integers with $r < m+1$ and for all $x \in M_j$ such that $x^{2^{(m+q)+2^r}} = x$, and $x^{2^r} = x$, $\in M_j$.
6. Verify that $\bigcap M_j = M_0 \neq \{0\}$.
Step 7: If step (6) is true, then we write B is a Smarandache-Boolean-near-ring.

REFERENCES

8. www.gallup.unm.edu/~Smarandache/algebra.htm.