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Abstract

In this article we present the basic investigation of the law of selfvariations. We arrive at the
central conclusion that the interaction of material particles, the corpuscular structure of matter, and the
guantum phenomena can be justified by the law of Selfvariations. We predict a unified interaction
between material particles with a unified mechanism (Unified Selfvariations Interaction, USVI). Every
interaction is the result of three clearly distinct terms with clearly distinct consequences in the USVI. We
predict a wave equation, whose special cases are the Maxwell equations, the Schrodinger equation, and
the related wave equations. We determine a mathematical expression for the total of the conservable
physical quantities, and we calculate the curent density 4-vector. The corpuscular structure and wave
behaviour of matter and their relation emerge clearly, and we give a calculation method for the rest
masses of material particles. We prove the «internal symmetry» theorem which justifies the cosmological
data, without a presentation of the corresponding analytical calculations. From the study we present, the
method for the further investigation of the Selfvariations and their consequences also emerges.

Keywords: Particles and Fields, Quantum Physics.

1. Introduction

The law of Selfvariations describes quantitatively a slight increase of the rest masses of material
particles and of the electric charge of particles of matter. It is consistent with the principles of
conservation of energy, momentum, angular momentum and electric charge. It is also invariant under the
Lorentz-Einstein transformations.

With its formulation, the law of Selfvariations imposes further constraints on the physical laws
than those imposed by Special Relativity [1-4]. If by Lwe denote the set of equations that remain
invariant under the Lorentz-Einstein transformations, and by S the set of equations compatible with the
law of Selfvariations, itis S =L with Sc L.

The most immediate consequence of the law of Selfvariations is that the energy, the momentum,
the angular momentum, and the electric charge of material particles are distributed in the surrounding
spacetime. This energy distribution in the surrounding spacetime of the material particle is expressed by
the “generalized photon” [5]. Generally, a generalized photon has zero rest energy. But the study of
Selfvariations showed that the sum of the generalized photons emitted spontaneously by a material

particle due to the Selfvariations has rest energy E, 0. This also holds for the case where each of the
individual generalized photons has zero rest energy.



The material particle and the generalized photons with which it interacts, comprise a dynamic
system which we called “generalized particle”. We study this continuous interaction in the present article.
For the formulation of the equations the following notation is used:

W = the energy of the material particle

J = the momentum of the material particle

m, = the rest mass of the material particle

E, = the energy of the totality of the generalized photons interacting with the material particle

P, = the momentum of the totality of the generalized photons interacting with the material particle
E, = the rest energy of the totality of the generalized photons interacting with the material particle

With the above symbolism, the law of Selfvariations for the rest mass is given by equations
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In the study we present, it is proven that the interaction of material particles, the corpuscular
structure of matter, and the quantum phenomena can be justified as a consequence of the law of
selfvariations. It is easily proven that the cosmological data are predicted and justified by the internal
symmetry theorem. We have not included in the present article the analytical mathematical calculations
about the consequences of the internal symmetry theorem.

The TSV predicts a unified interaction of material particles (USVI) as given by equation (86).
The USVI predicts a common mechanism for all interactions. Every interaction is resolved into three
individual terms, clearly distinct from each other, as they appear in the right part of equation (86), and
with clearly distinct consequences in the USVI. Equation (86) gives the rate of change of energy and
momentum, as well as the orbits of material particles.

We prove the wave equation (160) of the TSV, special cases of which are the Maxwell equations,
the Schrédinger equation, and the related wave equations. We determine a single mathematical expression
for the conservable physical quantities, and calculate the 4-vector | of the current density. The energy

and momentum of a material particle are calculated by solving the wave equation (160) of the TSV.

From the study of the law of selfvariations, equation (128) emerges as central for the theoretical
prediction of the corpuscular structure of matter. The combination of equation (128) with the wave
equation (160) clearly showcases the corpuscular structure and the wave behaviour of matter, as well as
the relation between them. From this combination, a method for the calculation of the rest masses of
material particles emerges.

The TSV has two degrees of freedom, since there are two parameters A, 1z € C, (4, ) # (0,0)
in equation (146), which can have arbitrary values within the web of equations and theorems of the TSV.



The investigation of physical reality is reduced to the determination of the parameters A and x in every

application of the TSV. The only exception is the case of the «generalized photon», where the system of
differential equations of the TSV does not require the determination of parameters A and & for its
solution.

2. The law of Selfvariations in the macrocosm

In the macrocosm, the energy W and momentum J of the material particle, the energy E, and

the momentum P, of the totality of the generalized photons emitted simultaneously by the material
particle are given [5] by equations
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where U is the velocity of the material particle.
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For the Selfvariation of the rest mass —2 we accept the symmetric equations of (1), as expressed by
c
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As we will see in the next paragraphs, equations (3) stem from the law of Selfvariations, that is
from equations (1). Also, we note that the energy E_ and the momentum P, in equations (2) emerge
from the sum of the generalized photons emitted simultaneously by the material particle in all directions.

Equations (1) and (3) describe the interaction of the material particle with all of the generalized photons.
Combining equations (1) and (3) with equations (2) we obtain
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Symbolizing dr the displacement of the material particle during a time interval dt we get for the change
dm, of the rest mass m,

dmoz%dHVmo-dr

and with equations (4; a, b) we obtain
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and symbolizing with dS the four-dimensional arc length
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we obtain
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dm, = ~ E,m,dS. (5)

Similarly, starting from equations (4; c, d) we obtain equation
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From equations (5) and (6) we get
d (moc2 + Eo):O
and we finally get
m,c’ + E, = constant . (7)

The above equations, together with the corresponding ones for the electric charge, justify the totality of
the cosmological data [6-12].

In the law of Selfvariations, apart from the rest mass, the physical quantities of energy and
momentum are introduced. In the macroscopic consideration of the law [5] we have introduced in
equations (1) the velocity of the material particle. We have done the same for the generalized particle. In
the following study we will not use of notion of velocity, with few exceptions in order to derive
conclusions about the macroscopic consequences of the law.

3. The basic study of the internal structure of the generalized particle
Equations (1) describe the continuous interaction between the material particles and the
generalized photons. We study the basic characteristics of this interaction in this paragraph.

We consider a material particle with rest mass m, =0 and we denote E, the rest energy of the
whole of the generalized photons interacting with the particle. That is, we consider a generalized particle.
The rest mass m, and the rest energy E, are given by equations (8) and (9) respectively

according to special relativity
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where i is the imaginary unit, i’ =—1.

Using this notation, equations (1), (8) and (9) are written in the form of equations (13), (14) and
(15), respectively
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After differentiating equation (14) with respect to X,k =0,1,2,3 we obtain
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and with equation (13) we obtain
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and with equation (14) we obtain
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With this notation, equation (16) can be written in the form
JoAo + I Ay + A4, +I:4, =0, k=0,12,3. (18)
Also, from equation (17) we see that the physical quantities A4,;,K,1=0,1,2,3 have units of @ :
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We now need the 4x4 matrix T as given by equation
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With this notation, equation (18) can be written in the form
TJ =0. (20)

We now prove the following theorem:
“For m, =0, and for every k,i=0,1,2,3 equation (21) holds
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Indeed, by differentiating equation (13) with respect to x;, i =0,1,2,3, we get
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and using the identity

we get

and with equation (13) we have

and with equation (13) we also have
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and since m, # 0, we obtain equation (21).

We now prove the following theorem:
“For m, =0, and for every k,i,v=0,1,2,3, the following equation holds
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with respect to X,, v=0,1,2,3 we get
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which is equation (22).

In the following paragraphs the physical meaning of the quantities 4, K,i=0,1,2,3will
emerge.

4. The Lorentz-Einstein-Selfvariations Symmetry

In this paragraph we calculate the Lorentz-Einstein transformations of the physical quantities A,
, k,1=0,1,2,3. A result that emerges is that the elements of matrix T of equation (19) are not

independent of each other. Matrix T has internal symmetries that emerge from the Lorentz-Einstein
transformations. These symmetries have to do with the interchange of indices k and i in the physical
quantities 4., k,i=0,1,2,3.



We consider an inertial frame of reference O'(t', XY, Z') moving with velocity (u, 0,0) with

respect to another inertial frame of reference O(t,X,y,Z),with their origins O’ and O coinciding at

t'=t =0. We will calculate the Lorentz-Einstein [1-4] transformations for the physical quantities
Aqi» K,1=0,1,2,3. We begin with transformations (23) and (24)
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We then use the notation (10), (11), (12) and obtain the transformations (25) and (26)
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We now derive the transformation of the physical quantity A, . From equation (17) for k =i =0

we get for the inertial reference frame O'(t',x',y',z')
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and with transformations (25) and (26) we obtain
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Following the same procedure for k,i=0,1, 2,3 we obtain the following 16 equations (27) for
the Lorentz-Einstein transformations of the physical quantities A,; :
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Inspecting equations (27) we see that they are divided into five individual groups of
transformations, independent of each other. We rearrange the order of equations (27) to highlight these
groups, which we numbered from | to V in equations (28).

11
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Group | of equations (28) is self-consistent when equations (29) and (30) hold



Ao = (29)
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With equations (29) and (30) the transformations (28; I, 1) can be written in the form of equations (31)
and (32)
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Transformations (27) allow for a wide spectrum of relations between the physical quantities

A;, 1=0,1,2,3. The correlation of physical quantities 4. can vary all the way from their being non-
correlated to being equal, that is

Ao = Ay =y = A

according to the Lorentz-Einstein transformations.
Group Il of equations (28) has the following characteristic property: if we assume that
Ay ==y, then A, =—A4,,, and vice versa. Indeed, assuming that A,; =—A4,, from the third of

equations (28, I11') we get
' U
Aoy = 7[_/102 _Izﬂzlj

: u
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and comparing with the first of equations (28, 111') we see that

Ay =4y,

If we now consider that A,, = A,,, we similarly obtain A,, = 4,,, and vice versa. Indeed, from
the third of equations (28, 1) for A, =4, we get

U
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and comparing with the third of equations (28, 111') we obtain

Ay =g,

Similar conclusions are derived for group IV of equations (28). Following the same procedure it
can be proved that for A,, =—A,; itisalso A, =—4,, and vice versa. Also, for A,; = A, itis A4, =4,
and the other way around.

In group V of equations (28) we can have either A4,, =—A4,,, or 4,, = A,;, or the physical

quantities A4,, and A,, can be independent during the interchange of the indices 2 and 3. That is, they

behave like the physical quantities 4,, 1=0,1,2,3, at least according to the Lorentz-Einstein
transformations. Thus, we end up with the following four sets of equations (33), (34), (35) and (36)
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In every case, transformations (27) obtain the form
A =A,1=012,3
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Transformations (37) apply only at flat spacetime.

(33)

(34)

(35)

(36)

37)
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5. Physical quantities A, k,i =0,1,2,3 and the conservation principles of energy and
momentum

In the case of the spontaneous emission of generalized photons by the material particles due to the
Selfvariations, we have proven that the conservation of momentum, energy and electric charge holds [5]
(paragraphs 4.4 and 4.5 by direct calculation of the total energetic content of a finite part of spacetime, in
the same paragraphs through the continuity equation, and in paragraphs 4.7 and 4.8 through the energy-
momentum tensor). In this paragraph we correlate the conservation of energy and momentum of the
generalized particle with the physical quantities 4, k,i=0,1,2,3.

Firstly, we prove the following theorem:

“For m, # 0 the following propositions are equivalent:

A. The generalized particle conserves its momentum J, + P, along the axis x,, 1=0,1,2,3, i.e.
J; +P =c, =constant. (38)
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an h kYi /11« a ( )

forevery k=0,1,2,3.”

B.

Indeed, if equation (38) holds, then we differentiate with respectto x,, k=0,1,2,3 obtaining

oJ;, OoP
—+—=0
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R
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and with equation (17) we obtain
oP b
—=—=PRJ. -4,
axk h ki Akl
and with equation (21) we obtain
R _R_bpy
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which is equation (39).
Conversely, if equation (39) holds for every k =0,1,2,3, we obtain
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and with equation (17) we get
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—(J;+P)=0
OX,.
and since this equation holds for every k =0,1,2,3, we obtain equation (38).
. . . oP. oP,
From the previous theorem we conclude that equation (39) gives the rates of change a—'a— :
X, OX
k = 0,1, 2,3when the generalized particle conserves its momentum along the axis X,, i =0,1,2,3. When

the generalized particle conserves its momentum for every axis X, then equation (39) holds for every
k,i=0,12,3.

We now prove the following theorem:

“If the generalized particle conserves its momentum along the axes X, and X, with K #1, then:

b b b
A = A :E(‘Jkpi _‘]iPk):E(Ci‘]k _Ck‘Ji):E(CkP _C'Pk) (40)

k,i=0123, k=#i.”

Indeed, since the generalized photon conserves its momentum along the axes X, and X, ,
equations (41) hold:
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Combining equations (21) and (41) we obtain
0 0
—(c -J,)=—/(c, —J
8xk( ' ') 8xi( X k)
a0,
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and with equation (17) we get

%Pk‘]i‘*‘ﬂki =%F)i‘]k+2’lk
b
A = A :%(‘]kpi_‘]ipk)

which is equation (40). The remaining equalities in equation (40) are derived by considering equations
(41). Equation (40) holds for k =1, k,i=0,1,2,3, since equation (21), from which equation (41) results,
is an identity for k =i and gives no information in this case.

An immediate consequence of the preceding theorem is that if the generalized particle conserves
its momentum in every axis, then equation (40) holds for every k,i=0,1,2,3.

From equation (40) we obtain the following theorem:

TSV theorem for the symmetry of indices

16



“For m, = 0 and if the generalized particle conserves its momentum along the axes X, and X, with
k =1, the following equivalences hold:

A. ﬂ1k:ﬂki<:>“]k|:)i:"]ipk<:>ci‘]k:ck‘]i<:>Ckpi:CiPk (42)

B. Zik =_ﬂ1<i =

A ZE(‘JkPi_‘]iPk):i(ci‘]k_CkJi)ZE(CkPi_CiPk) (43)
2h 2h 2h

k,i=0123, k#i.”

The theorem is an immediate consequence of equation (40). Furthermore, if the generalized
particle conserves its momentum along every axis x;, 1=0,1,2,3, then the equalities (42) and (43) hold

for every k #1,k,1=0,1,2,3.

We now consider the four-vector C, as given by equation

O O
=]

C=J+P=| | (44)

2

o O

3

When the generalized particle conserves its momentum along every axis, then the four-vector C is
constant. Also, we denote M, the total rest mass of the generalized particle, as given by equation

C'C=c2+c?+c2+c2=-M2¢?, (45)

where CT is the adjoint of the column vector C.

For reasons that will become apparent later in our study, we give the following definitions: We
name the symmetry A, =4, k=i, K,i=0,1,2,3 internal symmetry, and the symmetry

A, =—Aq, K#=1, k,;1=0,1,2,3 external symmetry.
We now prove the following theorem:
First Theorem of the TSV (Internal Symmetry Theorem)
“If the generalized particle conserves its momentum in every axis, the following hold:
A. A=A, forevery k,i=0,1,2,3 <

the four-vectors J, P and Care parallel < P =®J (46)
where @ eC, ©® #0.
B. For ® =—-1 the following equation holds:
E, =+mc’ (47
C. For @ = —1 the following equations hold:
O = Kexp[—%(coxo+c1X1+02X2+03X3)} (48)
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M,c?
m,c* =+ - 0 - (49)

1+ Kexp —?‘Z(COXO +C, X, +C, X, +C;X;)

M,c’K exp —Z(COX0 +C,X; +C,X, +C;X,)
E, =+ — . (50)
1+Kexp[—h(coxo+clxl+czxz+c3X3)}

where K is a dimensionless constant physical quantity.
D. A, =4, forevery k,i=0,1,2,3 <

A; =0 forevery k,i=0,1,2,3. (51)”

Equivalence (46) results immediately from equivalence (42). For @ =0, from equation (46) we
have that P =0 which is impossible, since in this case the Selfvariations of the rest mass m; = 0, do not
exist, as seen from equation (13). Therefore, ® =0.

For @ =-1, from equation (46) we get P =—J, and from equations (14) and (15) we see that
EZ =mic*, which is equation (47).

From equation (46) we have P =®J. for every i =0,1,2,3 and in combination with equation

J, + P =c, we get for @ -1 equations (52) and (53)

3 =-5_i=0123 (52)
O+1
oc .
P=—2,i=0123.  (59)
O+1
Combining equations (14) and (52) we get
m2c® + c.+c2+c:+c?)=0
0 ((D +1)2 ( 0™ 2 Th3 )
and with equation (45) we obtain equation
2.2
m¢c? ~ M g (54)

(@ +l)2

Differentiating equation (54) with respect to X,, vV=0,1,2,3 and considering equation (13) we
obtain

2Mic? oD

20 mZc® + ——=
(®+1)" OX,

? v

and with equation (54) we have
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and with equation (53) for 1 =V we arrive at equation
o = —ECVCD, v=0,1,23. (55)
OX, h

By integration of equation (55) we obtain
O =K exp{—%(cox0 +C, X, +C,X, +c3x3)}

where K is the integration constant, which is equation (48).
Combining equations (54) and (48) we obtain

M,c?

m,c® =+ s
1+K exp{—h(coxo +¢, X, +C, X, +c3X3)}

which is equation (49). Combining equations (15), (53) and (45) we obtain
E_o'Mc

¢ (o+1)]
2
E -+ M,c D
d+1

and with equation (48) we get equation (50).
Equations (49) and (50) are equivalent with the equations of TSV which justify the cosmological
data. Indeed, after combining them we obtain equation
m,c’ + E, =+M,c?

which is equation (7). Furthermore, we observe from equations (4), which refer to the case of generalized
photons spontaneously emitted by the material particle, that the four-vectors J and P are parallel. Thus,
in the case of equations (4) the above fundamental theorem holds.

In order to prove equation (7) in paragraph 2 we used equations (3), which we can now prove.
Differentiating equation (50) with respectto X,, k=0,1,2,3 we arrive at equation
E
ﬁ = —EJKEO, k=0,1,2,3. (56)
OX, h
Considering equation (11), equation (56) is equivalent to equations (3). Of course, we now know

that equations (3) hold when the four-vectors J and P are parallel to each other, for the case of the
internal symmetry.
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We studied the case of a material particle with rest mass m, # 0. Therefore, from equation (54)
we see that M, # 0. Furthermore, as we already observed during the proof of equivalence (46), it is also
® =0, hence from equation (48) we obtain K =0 So from equations (49) and (50) we obtain
m, #0and E, #0 in the case of the symmetry 4, =4, k,i=0,1,2,3.

Combining equations (52) and (53) with equation (48) we get respectively equations (57) and
(58) for the case of the internal symmetry

Ci

) = -

1+Kexp[—h(coxo+clxl+czxz+c3xs)} (57)
1=0,12,3

b

¢, K exp —%(COXO+01X1+C2X2+C3X3) d
P=
' b . (58)

1+ Kexp —%(c0x0+clx1+c2x2+c3x3)
1=0,12,3

We now prove equivalence (51). For A4, =0 for every k,i=0,1,2,3 it obviously is A, = 4. In
order to prove the inverse of equivalence (51), we differentiate equation (57) with respect to
X, k=0,1,2,3 and get

c.c KEex —E(CX +C,X, +C,X, +C;X; )
%_ i~k h p h 070 1M 22 33

2
[1+ K exp [—g(coxo +C % +CyX, +C3XS)D

OX,

and with equation (57), as well as equation (58) for i =k we get

3 _bp,
oX, h

and with equation (17) we get A4, =0, which completes equivalence (51).

With the proof of equivalence (51) we can see that equation (43), initially proven for the
symmetry A, =—-4,,k=0,1,2,3 , is of general validity. That is, equation (59) generally holds:

b b b
A :E(‘]kpi _‘]iPk):%(Ci‘]k _Ck‘]i)zﬁ(ckpi _Cipk).

k=i, k,i=012,3

(59)

We begin the study of the external symmetry by proving the following theorem:
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“In the external symmetry, the 4-vector C of the total energy content of the generalized particle cannot
vanish:

C =0, (60)”

Indeed, for C =0 we obtain J =—P from equation (44). Therefore, the four-vectors J and P
are parallel. According to equivalence (46) the parallelism of the four-vectors J and P is equivalent to
the internal symmetry. Therefore, in the external symmetry itis C #0.

We now prove the following theorem:

Second Theorem of the TSV

“ If the generalized particle conserves its momentum along every axis, and the symmetry A4, =—4,;
holds for every k #1,k,i=0,1,2,3, then:

A Ay +C A, +C A =0 (61)

forevery i zv,v=k,k #1, k,i,v=0,1,2,3.

o4; b bc b bc

B S dRA A = ey 2
forevery k =i, k,i=0,1,2,3.

C. TJ=0 (63)
Joho + 1A +IA4, +I:4,=0,k=0,123.

D. TP=TC. (64)”

If the generalized particle conserves its momentum along every axis and the index symmetry
A, =—A,; holds for k =i, k,i=0,1,2,3, from equivalence (40) we obtain

zm=§%@gk—qmyk¢LkJ=QL23. (65)

Considering equation (65) we get
Cidw +CcAy +C A = %I:Ci (Ck‘]v _Cv‘]k)+ck (Cv‘Ji _Ci‘Jv)+Cv (Ci‘Jk —CJ; ):I =0.

Thus, we get equation (61).

Differentiating equation (65) with respect to X,,v=0,1,2,3 we obtain

O _bf & o
o, 2\ "ax, ox,

and with equation (17) we get
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Ok _ DI (b [P
o, —Zh[ci(hpvjk"‘ﬂwj Ck(hpvji"‘ﬂwﬂ

o4 blb
SR e e e
o4 b b b

aitl =% P (@ —ed)+ o (e —ad)

and with equation (65) we obtain

oA, b b
—X=——PA +—(CA, —C A
aXv h Vﬂkl + Zh( |ﬂ\/k k/,i\/l)
and with equation (61) in the form
G A\/k _Ckﬂ\/i = _Cvﬂki
we get
o4, b bc,
% Dpy -2,
oX, h 2h

which is equation (62). The second equality in equation (62) emerges from the substitution
P =c-J,,v=02123

according to equation (44).

Equation (63) is equation (18). Equation (64) results by combining equations (63) and (44)

TP=T(C-J)=TC-TJ =TC.

In the case when, for the external symmetry, besides equation A, =—A,

it is also A, =4, for
some indices k and i, withk =1i,k,i=0,1,2,3, we get for these indices k and i that it is A, =0.
Therefore, in equations (33)-(36), it either holds that A, =-A4,#0, or A, =A4,=0 for
k =i,k,1=0,1,2,3. Thus, equations (33)-(36) can be stated in the form of equations (66)-(69):

Ao == Z0V A4, =2,=0

Ay ==Agp #0
=—Ap; 20
Ao 03 (66)
j“21 = _112 #0
231 = _/113 #0
123 = _/132 #0
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A=Ay 20V Ay =4, =0

Ay =24 =0

Agg =43 =0 (67)
Apn=4,=0

Ay =413 =0

Ay ==y 20V Ay =45, =0

Ao ==y #0V Ay =2, =0

Ay ==y 20V Ay = 45, =0

Agg = Ap3 =0 (68)
Ay ==Ay #0v Ay =4,=0
o= Ay =0

Aop = =g # 0V Ay = Ay =0

Ao ==y #0V A4y =14y =0

Ay = Ay, =0
2302—203¢0v230:/103:0.(69)
121:21220

Ay =23 70V Ay = A3 =0
Agy ==y 20V Ay, =43 =0

In the following paragraphs, the physical content of the physical quantities
Aq K#1,K,1=0,1,2,3, as well as of the theorems we proved in this paragraph, emerge.

6. The Unified Selfvariations Interaction (USVI)

According to the law of selfvariations every material particle interacts both with the generalized
photons emitted by itself due to the selfvariations, and with the generalized photons originating from
other material particles. In the second case, an indirect interaction emerges between material particles
through the generalized photons. Generalized photons emitted by one material particle interact with
another material particle. Through this mechanism the TSV predicts a unified interaction between
material particles. The individual interactions only emerge from the different, for each particular case,
physical quantity Q which selfvariates, resulting in the emission of the corresponding generalized

photons.

In this paragraph we study the basic characteristics of the USVI. We suppose that for the
generalized particle the conservation of energy-momentum holds, hence the equations of the preceding
paragraph also hold.

1
For the rate of change of the four-vector — J we get
mO
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and with equations (13) and (17) we get

o (I J. b 1(b
_L_]=——2—Pkm0+m—[%PkJi+ﬂmj

axk mO mO h 0

and we finally obtain
i i :ﬁ, k,i=0,123. (70)
aXk rnO mO

According to equation (70), when A, = 0 for at least two indices k,i, k,i=0,1,2,3, the kinetic
state of the material particle is disturbed. According to equivalence (51) in the internal symmetry it is
A, =0 for every k,i=0,1,2,3. Therefore, in the internal symmetry the material particle maintains its

kinetic state. In an isotropic space we expect that the spontaneous emission of generalized photons by the
material particle cannot disturb its Kinetic state. Consequently, the internal symmetry concerns the
spontaneous emission of generalized photons by the material particle in an isotropic space.

In contrast, in the case of the external symmetry it can be A, =0 for some indices
k,i, k,i=0,12,3. Therefore, the external symmetry must be due to generalized photons with which the

material particle interacts, and which originate from other material particles. The distribution of
generalized photons depends on the position in space of the material particle relative to other material
particles. This leads to the destruction of the isotropy of space for the material particle. The external
symmetry factor will emerge in the study that follows.

The initial study of the Selfvariations [5] concerned the rest mass and the electric charge. The
study we have presented up to this point allows us to study the Selfvariations in their most general
expression.

We consider a physical quantity Q which we shall call selfvariating “charge Q ”, or simply

charge Q, unaffected by every change of reference frame, therefore Lorentz-Einstein invariant, and
obeys the law of Selfvariations, that is equation

oQ b
X _2pQ, k=0123. (71
ox, h Q (7D

In equation (71) the momentum BR,,k=0,12,3, i.e. the four-vector P, depends on the
selfvariating charge Q. Two material particles carrying a selfvariating charge of the same nature interact
with each other when generalized photons emitted by the charge Q, of one of them, interact with the
charge Q of the other. In this particular case, we denote Q the charge of the material particle we are
studying.

The rest mass m, is defined as a quantity of mass or energy divided by c¢?, which is invariant
according to the Lorentz-Einstein transformations. The 4-vector of the momentum J of the material
particle is related to the rest mass m, through equation (14). The charge Q contributes to the energy
content of the material particle and, therefore, also contributes to its rest mass. Furthermore, the charge Q
modifies the 4-vector of momentum J of the material particle and, therefore, contributes to the variation
of the rest mass m, of the material particle. Consequently, for the change of the four-vector J of the
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material particle due to the charge Q, the four-vector P of equation (71) enters into equation (17). The
rest mass m, is due to the energy content given to the material particle by the charge Q, and constitutes

part, or even the whole, depending on the situation, of the total rest mass of the material particle. The
consequences of this conclusion become evident when we calculate the rate of change of the four-vector

13

Q

Third Theorem of the TSV

1 L L
“The rate of change of the four-vector —J due to the Selfvariations of the charge Q is given by
equation

lzfij=&&,kJ:QLZ& (72)
x\Q) Q

For k #1 the physical quantities % are given by

A _za,, k#iki=0123, (73)
Q

where z is the function
Z=exp {—%(coxo +CX +C,X, + c3x3)} . (74)

For the constants a,; the following equations hold
Ciay +C@, +¢,a,; =0
Ja, +J,a,+J,8,=0 (75)
Pa, +Ra, +Ra; =0
forevery i zv,v=Kk,k =i, i,k,v=0,1,2,3.”
In order to prove the theorem, we take

Q

ﬂ[i) _ i
x\Q) Q°
which is equation (72).

Equations (17) and (71) hold for every k,i=0,1,2,3.. Therefore, equation (72) also holds for
every k,i=0,1,2,3.. For k=1, k,i=0,1,2,3 and v=0,1,2,3 equation (62) holds and, since Q =0,
we obtain

o(L)_ 3@ 1,
OX, Q% ox, Qox,

and with equations (71) and (17) we get

%_9 _bcV
L

QA

and with equation (71) we get
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0% _, 0Q bcv
ox, ﬂ“ax > Qi
O [ A __%&
x,\ Q) 2nQ

and integrating we obtain

b
=a, exp{——( CoXo +C,X, +C, X, +C3X3)]

where a,,,k #1,k,1=0,1,2,3 are the integration constants, and with (74) we get equation (73).

The relation a, =—a,, for k #1,k,i=0,1,2,3, as well as the first of equations (75), result from

the combination of equations (61) and (73). To prove the second and third of equations (75) we consider
equation (59).

In the following proofs we presuppose the relations a, =-a, and

A, =—Aq:, K=1,K,1=0,1,2,3. We will also use equation

2 _ B, k—0123, (76)

OX, 2hn

which results immediately from equation (74).

For k =1i,k,i=0,1,2,3 equation (73) does not hold. So we define the physical quantities ®, as
given by equation

®k=%,k=0,1,2,3. (77)

Furthermore, we define the 4 x4 diagonal matrix A given by

®, 0 0 0
0 @& 0 0

A= (78)
0 0 @, 0
00 0 @

3

The physical quantities ®, ,k =0,1,2,3 are calculated in the following paragraphs, where we will also
see their physical content.

We now define the three-vectors a and B, as given by equations (79) and (80) respectively

o, o iICAy,
o=|a,|=|a, |==|ic, (79)
(oA a iCﬂ.03
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ﬂl ﬂx 1 232

B=|5.|=|B, ) A |- (80)
ﬂs ﬂz 221
Vectors a and B contain all of the physical quantities A,; for k #1i,k,i=0,1,2,3s, ince
A, =—4A,; . Furthermore, from transformations (37), and given that the charge Q remains invariant under
Lorentz-Einstein transformations, it emerges that the vectors a and f are transformed like the intensities

of the electric field ¢ and of the magnetic field B, respectively.

Combining equations (79) and (80) with equation (73), the vectors a and p are written in the
form of equations (81) and (82), respectively

oy a, Oy
a=|a,|=|a,|=icz| ay (81)
a3 Q, Q3
b By U3,
B=|5,|= /By =Z|l oy |- (82)
Bs B, %%
We write equation (17) in the form

8, b -
o= Rt A ki=0123. @9

k
The rate of change of the momentum of the material particle equals the sum of the two terms in the right
part of equation (83). For k =0, and since x, =ict, equation (83) gives the rate of change of the particle
momentum with respect to time t, i.e. the physical quantity we call “force”. By using the concept of

force, as defined by Newton, we also have to use the concept of velocity. For this reason we symbolize U
the velocity of the material particle, as given by equation

ul ux
u=ju,|=u, | (84)
U, u,

Also, we define the 4-vector of the velocity U, as given by equation

Uo ic
u
u=| = |=| * (85)
u2 y
U, u,
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We now prove the following theorem:
Fourth Theorem of the TSV

“The rates of change with respect to time t(X, =ict) of the four-vectors J and P of the momentum of

the generalized particle carrying charge Q are given by equations

. T
W _BQ; Top-Lo/c® (86)
dx, Qdx, c C atuxp
|
dP__9Q 5 ioaust Q| ¢ L@
dx0 de0 c a+uxp

The matrix A is given in equation (78). By uxf we denote the outer product of vectors u and f.
We now prove the first of equations (86):

dlo)-als s gl als)

—| === = |[tU—| = [+U,—| = [+U;—| —

dt{ Q ot Q ox\ Q oy\ Q oz\ Q
and using the notation of equation (10) we get

|Cd[ j : a[Joj G[Joj a[Joj a(JOJ

=IC—| — |[+U —| — [+U,—| — |+ U;—| =

d Q) Q) T Q) T Q) TaxlQ

and with equation (72) we get

dx, Q Q Q Q
i(ﬁ]:ﬁ_l(u @+u @-FU %Oj
Q) Q cl'Q *Q ’Q
iKﬁJ:@+l(u oy, ey AWJ
Q) Q ¢ "Q *Q °Q
idi_\]_dQ loo (u ﬁ_{_u &+u ﬂo j
Qdx, Q°dx, Q cl Q Q Q
3, _ dQ |
dXO QdXO 200 ( l%1+u2%2+u3%3)
and with equations (77) and (79) we have
dJ, dQ

i [ i i
— = J, +QP, ——Q| —u +—U,, +—U,x
- a0, Lo Lues+ Tua+ Lua, |
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which is the first of equations (86) since
i i .
—EQq)OuO = _EQq)o'C =Qd, .

We prove the second of equations (86) and we can similarly prove the third and the fourth:

ilo)- (&) dls)eals)2l%)
—| 2 == 2 |+u = 2|, —] 2 U, —| =
dtlQ ) atlQ ox| Q oyl Q oz\ Q

and using the notation of equations (10) and (11) we obtain

icd(Jl] ica[Jlj o (Jlj o (Jl] 0 (Jl]
—| 2= = [+ —| = [+U,—| = [+U;,—| =
dx,\ Q) X\ Q o\ Q X\ Q %\ Q

and with equation (72) we get

E(ij:icﬂ+ulﬂ+u2@+u3ﬁ
dx, \ Q Q "Q "Q "Q

d (Jljz_ﬂﬁ+&_i&@+i&&
Q

1), 3, 0Q | WAy o Wy Ay it

Qdx, Q°dx, ¢ Q Q ¢ Q ¢ Q

w_d | iy
dx, Qdx, = ¢

Q) ¢cQ Q cQ c¢Q

iu iu
ﬂn +ﬂm __2/121 +_3213
c c
and with equations (77), (79) and (80), we obtain

d_dQ 5 ihp i, -
dx, Qdx, hm QP Qe CQ(u2ﬁ3 /)

which is the second of equations (86). Equation (87) results from the combination of equations (44) and
(86).

Using the symbol J for the momentum vector of the material particle

‘]1 ‘]x
I=|J, =9,
3| |3

and taking into account equations (10) and (11), the set of equations (86) can be written in the form
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aw _ dQ
dt  Qdt

d.u
dJ _ dQ o

—J+Q| D,u, +Q(a+u><[3)

dt  Qdt
Q q)3u3

W +Qc’®d,+Qu-a

Equations (88) give the rate of change of the energy W and momentum J of the material
particle with respect to time t. From equation (8) we can calculate the contribution of charge Q to the

rate of change of the rest mass m, of the material particle with respect to time t.

The rate of change of the four-vector J of the momentum of the material particle is given by the
sum of the three terms in the right part of equation (86). The USVI and its consequences for the material
particle depend on which of these terms is the strongest and which is the weakest. This can be studied on
the basis of the characteristics of each individual term. The third term on the right of equation (86) is
known as the Lorentz force, in the case of electromagnetic fields. We now prove the following theorem

about the vector pair (a, ).
Fifth Theorem of the TSV

“ For the vector pair (a,B) the following equations hold:

ichz

V-a= ——(Cloc01 +C,y, +C3a03)
2h

V.B=0

an:—a—B
ot

Collpy + Gy + Gy,

YA o
VxPB= _E Colp, +Coxp, + Gy, |+ c

Colys +Cot 3 + Gy

Differentiating equations (81) and (82) with respect to x,, k =0,1,2,3 and considering equation

(76), we obtain equations

oo, bc,
—_—
OX, 2h
B _ b
o  2n

From equations (90) and (91) we can easily derive equations (89). Indicatively we prove equation (89,b).

From equation (82) we obtain
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oz oz oz
VB=ay —+a;—+ay—
X, oX, OX,

and with equation (76) we get
bz
V-p= _E(Clasz +C0n3 + C3a21)

and with the first of equations (75) for (i,v,k)=(13,2) we get
V.p=0.

From equations (86) and (89) we conclude that the vector pair (a,B) expresses the intensity of
the USVI field according to the paradigm of the classical definition of the field potential. From equation
(17) it emerges that the physical quantities A,;,k,i1=0,1,2,3 have units (dimensions) of kg -5t Thus,
from equation (79) it emerges that, if Q plays the role of the rest mass, the intensity a has units of ms™.
If Q is the electric charge, the intensity @ has units of NCb™. Through equations (81) and (82) we can
determine the units of the constants ¢, k#1,k,i=0,1,2,3, which depend on the nature of the
selfvariating charge Q.

From equations (89 b,c) we conclude that the potential is always defined in the (a, B) - field of
the USVI. That is, the scalar potential

V=V(6,XY,2)=V (X, X, Xy, %)

and the vector potential A

Al A
A=A(LXY,2)=A(X X, %, %) =| A, |=| A
Al LA
are defined through the equations
B=VxA
Y _a_A:_VV _icoA .
ot 0%,

We can introduce in the above equations the gauge function f. That is, we can add to the scalar
potential V the term

of _ icof
ot X,

and to the vector potential A the term
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Vi
for an arbitrary function f
f=f(txy.z)="F(X X%, %)

without changing the intensity (a, [3) of the field. The proof of the above equations is known and trivial
[13-17] and we will not repeat it here. For the field potential of the USVI the following theorem holds:

Sixth Theorem of the TSV

“In the (@,p)-field of USVI the pair of scalar-vector potentials (V,A) is always defined
through equations

B=VxA
a:—VV—a—A:icVAO—IcaA' (92)
ot 0%,
The four-vector A of the potential
Fiv ]
Z\) c
A= =l A (93)
b lA
A
is given by equation
%%z+%,fori #k
b c, oX
A=1 (94)
—& fori=k
OX

1
where ¢, #0,k,1=0,1,2,3 and f, is the gauge function.”

Equations (92) are equivalent to equations (89) as we have already mentioned. The proof of
equation (94) can be performed through the first of equations (75)

Ga, +Ca, +tCa,; = 0
i=zv,v=k k=i, i,k,v=0,1,2,3

of the third theorem of the TSV. The mathematical calculations do not contribute anything useful to our
study, thus we omit them. You can verify that the potential of equation (94) gives equations (81) and (82)
through equations (92) taking also into account the first of equations (75).
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According to relation (60) it is ¢, =0 for at least one of the indices k=0,1,2,3. So, from
equation (94) the following four sets of the potentials follow:

c, =0

_afO
AO_@XO
AI:E%JF% (95)

b ¢, o0x
AZ:&ﬂJr@_fo

b ¢, X,
oo 22

b ¢, 0x
c,#0
Ab:@%Jr@

b ¢ X

of,

=— 96
A ox, (96)
p = 2zo, O

b ¢ X
NLLA

b c 0x
c,#0
p =22 | Oy

b c, 00X,

b c, ox
_afZ
Az_axz
AS:%%_;_@_B

b c, O0x
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_Mray O
b ¢, 0X,
=%ﬂ of (98)
b ¢, ox
a2
b ¢, 0x
_afS
A3_8x3

Indicatively, we calculate the components «; and f3; of the intensity (a,B) of the USVI field
from the potentials (95). From the second of equations (92) we obtain

o —ic A A
o 0%
and with equations (95) we get
oy mic| O [0 (22 an O
X\ 0%, ) O%\ b ¢, ox
o, =—ic 2l %o O
b ¢, o,
and with equation (76) we get
o, =iCzayy,

that is we get the intensity ¢, of the field, as given by equation (81).
From the first of equations (92) we have

oA, _OA

fi="t-*

OX, OX,

and with equations (95) we get

5 i(&a_i]i(&a_ij
1
X\ b ¢ ox) o\ b ¢ ox
p =2 O 2hay 02
' b ox, b oc
and with equation (76) we get
Co%; ., G,
= z z
b S S
and considering that o, = —ar,,, we get
z
B = —C—(Czoz03 +Cyy ). (99)

0
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From the first of equations (75) for (i,v,k)=(2,0,3) we obtain

C,8g; + Cy8y) + Cyy, =0

C8y3 + G385 = —Cyy,
and substituting into equation (99), we see that

b=,
that is, we get the intensity S, of the field, as given by equation (82).
The gauge functions f,,k=0,1,2,3 in equations (95)-(98) are not independent of each other.

For ¢, #0 and ¢, #0 for k #1i,k,i =0,1,2,3 equation (100) holds

2
2% cc20k=iki=0123.  (100)
Ckci
The proof of equation (100) is through the first of equations (75). The proof is lengthy and we
omit it. Indicatively, we will prove the third of equations (95) from the third of equations (96) for k =1
and i =0 in equation (100).
For ¢, =0 and c, #0 both equations (95) and equations (96) hold. From equation (100) for

fo="f+

1 2

k=1 and i =0 we get equation

2
4n°z oy
2

f=f,+ (101)

Ocl
From the third of equations (96) and equation (101) we get

_2Mhzay, 0 (f0+4h22 0{10]

2
b® c,C,

2o, O AN a4y 02
b ¢, &%, b* cc X,

and with equation (76) we obtain

_na, O, 20 cay

A =
b ¢ ox, Db cCc
_ 2 (Cor, —Coex )+%
bCOCl 0™~"12 27710 aXz
and since o, =—a,, , we get equation
2hz of
A = be.c (Coct, +C2a01)+gz : (102)

0
From the first of equations (75) for (i,v,k)=(0,1,2) we obtain
Cody, +Cp8g; +C8y =0
Codlyy +Cy8y; = —Ciay

Codyp +Cr8y =C8y,
and substituting into equation (102) we obtain equation
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22 gy oy

. (103
b ¢, 8x2()

A =
Equation (103) is the third of equations (95).

According to equation (100), if ¢, =0 for more than one of the constants ¢,k =0,1,2,3, the
sets of equations of potential resulting from equation (94) have in the end a gauge function. In the
application we presented assuming C, =0 and ¢, # 0 for a specific gauge function f, in equations (95),

the gauge function f; in equations (96) is given by equation (101).

7. The main diagonal of the T matrix

In this paragraph we study the elements of the main diagonal of the matrix T of equation (19),
that is, the elements of the matrix A of equation (78). Since z =0 we define the physical quantities
T.,k=0123

)
T =—%
g
and we write the physical quantities @, in the form
®, =12T,,k=0,12,3. (104)

We expand equation (18) for k =0,1,2,3 and get

Jodoo +J14gs + I A, + 345 =0
Jodio +diAy + oA, + 334, =0
Jodao +J1dp +J5 A0 + 5 = 0
Jodyo +diday +Jp A5 + I3 455 =0

Considering equations (73), (77), and (104), and that 4, =—A4,; forevery k #1,k,i=0,1,2,3, we get

J,2QT, + J,2Qa,, + J,2Qe, +J;2Qcy, =0

-J,2Qa,, +J,2QT, - J,2Qa,, + J,2Qac,; =0
-J,2Qa, +J,2Qa,, + J3,72QT, - J,2Qa,, =0
-J,2Qay; — J,72Qa, + J,72Qa,, + J,2QT, =0

and since zQ = 0, we get

Jo Ty +diog + J,0, + J3003 =0
—Jo@g + T, = 3,05 + 3,045, =0 ' (105)
—Jo Qg + 3,05 + 3,1, =305, =0

—J o0y — Jy05 + J,05, + 35T, =0
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Equations (105) comprise a 4x4homogeneous linear system of equations with the momenta
Jg: 954 J,,J5. as unknowns. Therefore, it always has the trivial solution

(35,3,,3,,,)=(0,0,0,0).
In this case, from equation (14) we get m, =0.
We study the case m, =0 and are, therefore, interested in the non-zero solutions
(35,9,,3,,3,)#(0,0,0,0)

of the system of equations (105). We prove that one case where the system of equations (105) has non-
zero solutions is when equation (106) holds:

T,=T,=T,=T,=0. (106)
In this case, equations (105) are written in the form of equations

0+ .0y, + 3,0y, +Jsa03 =0 (@)

o0y +0-Jy0, + 3300, =0 (b) . (107)
—Jo@g, + 3,05 +0— 505, =0 (C)
—JoQps —dya5 + 05, +0=0 (d)

By performing the necessary calculations we get the determinant D of the system of equations (107) in
the form

2
D= (amaaz X3+ a03a21) . (108)

Considering equation (73) and that zQ = 0, we get

Ionfag + oga + Aoy )

1
Qo Oy + Qpy Qg + Qs = —
01+732 0213 03™"21 ZQ(
and with equation (59) we arrive at

Oloy Oy + Aoy O + Oty =0 (109)

From equations (108) and (109) we obtain D =0. Therefore, the homogeneous linear system of
equations (107) has non-zero solutions.

In the case when equations (106) hold, we obtain from equation (77)
O, =D, =D, =0, =0

and from equation (78) we get A =0. Therefore, the second term on the right side of equations (86) and
(87) of the USVI vanishes when equations (106) hold.
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The elements of the main diagonal of matrix T and, equivalently, the physical quantities
T.,k=0,1,2,3, have a specific physical content. As we will see, they are related to the curvature of the
part of spacetime occupied by the generalized particle.

Applying the Lorentz-Einstein transformations for the physical quantities A,,k=0,1,2,3 we
derive equation (29), A,, = A,,. The reference frame O’(t', XY, z’) of paragraph 4 moves with respect

to the reference frame O(t,x, y,z) with constant velocity along the X -axis. If we assume that the

motion is along the y- or z-axis, the generalization of equation (29) follows; the Lorentz-Einstein
transformations lead to the following equation

Ao = Ay =4y = A3 =0.

We also arrive at this equation from the Lorentz-Einstein transformations of equations (105). The
function z and the charge Q are invariant, therefore from equation (73) we conclude that the physical
quantities ¢, and A,k #i,k,i=0,1,2,3 transform in the same manner according to Lorentz-Einstein.
Applying the transformations (26) and (37) on equations (105) we again arrive at

Ao =4y = Ay = A3 =0.

This is not a transformation equation of the physical quantities 4, ,k =0,1,2,3 between two

inertial reference frames. It is an equation relating the elements of the main diagonal of matrix T in the
same inertial frame of reference. Thus, taking into account equations (77) and (104), we obtain equation
(110) when the Lorentz-Einstein transformations hold

T,=T,=T,=T,. (110)

In equations (105) at least one of the momenta J,,k=0,12,3 is non-zero. Let it be J, #0,
then from equations (105 b,c,d) we get

1
Qo = J_(‘]lTl —J,0, + ‘]30‘13)
0
1
Aoy = J_(Jla21 +J,T, - J3a32)
0
1
Qo3 = J_(_‘]lalS +J,0, + ‘]3T3)

0

and substituting into equation (105 a) we get

I+ 3, (I T, = Jyoy + Jaas )+ 3, (dya, + 3,1, = Jyay, ) +
J, (—Jloz13 +J,0a,, + J3T3) =0

and after the calculations we get

JiT, + T, + 32T, + 2T, =0. (111)
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We arrive at the same equation no matter which of the momentum components J,,k=0,1,2,3 we
consider different from zero.

The Lorentz-Einstein transformations lead to equation (110)
T,=T,=T,=T,
so from equation (111) we obtain
Ty (35 +37+37 +3%)=0
and with equation (14) we get
—T,méc? =0
and since m, # 0 we have T, =0, and finally with equation (110) we get
T,=T,=T,=T,=0.
Thus, we arrive at the following two conclusions:
“When the Lorentz-Einstein transformations hold for the physical quantities A,k,i=0,1,2,3,
then the physical quantities T, ,k =0,1,2,3 vanish.
T,=T,=T,=T,=0, (112)”
“When
T, #0 (113)
for at least one of the physical quantities

T ke{0123},

the Lorentz-Einstein transformations do not hold for the physical quantities 4,,k,i=0,1,2,3.”

From the above we conclude that if relation (113) is valid, then the part of spacetime occupied by
the generalized particle cannot be flat, it is curved. Furthermore, from equation (78) we obtain A =0.
Therefore, when relation (113) holds, the second term on the right side of equations (86) and (87) is non-
zero. This term of the USVI is related to the curvature of spacetime.

In the present study the rest mass m, of the material particle is given by the equivalent equations
(8) and (14) of special relativity. This is why the Lorentz-Einstein transformations hold for the physical
quantities A.,k,1=0,1,2,3, as given in equations (37). Therefore, we expect equation (112) to hold,
which we also prove:

Combining equations (59) and (73) we get
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A :%(ciJk —-¢J;)=2Qq, k #i,k,i=0,1,2,3

and we finally get

2hz2Qq,

cJ =cd, — k=ik,i=0123. (114)

In equation (114) at least one of the physical quantities ¢,k =0,1,2,3 is not zero according to
relation (60). We prove equation (112) for c,#0, and the proof is similar for c =0,
with k €{0,1,2,3} . From equation (114) for k =0 and ¢, =0, we get

J =3JO—2}";QO‘Oi i=123.  (115)

Co Co

Differentiating equation (115) with respect to X,, and considering equations (17) and (73), (76),
and (71) we get

b c (b
%PO‘Ji + ZQaOi =C—(% PO‘]O +ZQTOJ—

0

2hay,

bc, b
-——12Q+—-Pz
be, ( 2h Q h °Q]

and with equation (115) we have

C 2ha, ( bc
Qay = 2T, V(ﬁ ZQJ
0 0

and since zQ =0 we get
cT,=0,i=123. (116)

We differentiate equation (115) with respect to X, i =1,2,3, and taking into account equations
(17) and (73), (76), and (71), we get
b c(b
—PJ. +2QT. =—| —=PJ,+2Qa, (-
h ivi Q i c (h ivo Q |OJ

i
0

2hay,

bc, b
——2Q+—-Pz
bc, ( 2h Q+h 'Q]

and with equation (115) we get

C. 2ho,. ( bc
zQT. =—"zQa,——2| ——'2
QT c, Qa, be, ( 2h Qj

and since zQ # 0, we obtain

C C
T =—a,+—a,
i CO a'IO CO i
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so we get
T, =0,i=123.

According to equation (44), the Lorentz-Einstein transformation of the physical quantities
..k =0,1,2,3 is given by equations (26). From the transformations given in (26) it is easily verified that

if in the inertial frame of reference O'(t',X',y’,Z’) itis ¢, =c, =c, =0, then in the frame of reference
O(t,x,y,2) itis (C,,C,,C,,C;)=(0,0,0,0). Therefore, in equation (116) at least one of the physical

quantities ¢, =1,2,3 is non-zero, thus T, =0.
Combining equations (17) and (44) we obtain

aJ. b .
=—1_=(c,-J.)J. k,i=0123. 117
& oX, h(k ) ()

In equation (117) the rest mass m, does not appear. By defining the physical quantities

A;,K,1=0,1,2,3 through equation (117), we bypass the special relativity equation (14). Therefore,
starting from equation (117) we can study the consequences of the Selfvariations for any relation between
the momenta J,,k=0,1,2,3 and the rest mass m,of the particle, which is not necessarily given by

equation (14) of special relativity. In these cases the Lorentz-Einstein transformations do not necessarily
hold and, therefore, the same will be true of equation (112).

8. The equation of the TSV regarding the corpuscular structure of matter

In the equations we have presented in the previous paragraphs, some physical quantities behave
as “real numbers”, and some as “complex numbers”. By dividing these physical quantities with others of
the same dimension, we can introduce complex numbers into the equations of the TSV. For instance, we
can state equation (14) in the form

2 2 2
[Lj J{ Jy j +££j +(iJ2+1=0
m,C m,C m,C m,C
J

— eC,k=012,3.
m,C

The introduction of complex numbers into the equations of the TSV is not necessary as long as
we keep in mind that some sums of squares of the TSV are equal to zero.

We give one more example related to the study in this paragraph. From the first of equations (75)
for (i,v,k) =(0,2,1) we obtain equation
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CoByy +Ci8g, +Coyy =0
and since a,, =—a,, , we get
CoBpy +Ci8g, —C8p, =0. (118)

From equations (11), (12) and (44) we obtain

c(,:%(vvms)

and if we suppose that W +E_ is a “real number”, C, is a “complex number”. Therefore, in equation

(118), the physical quantities C,C,,a,,a,,8,, cannot all be “real numbers”.

The physical quantities ¢, and a,, K#i, k,i =0,1,2,3 generally behave as “complex or
hypercomplex numbers”. For physical quantities a,;, K #1, k,i =0,1,2,3 there is a sum of squares that
equals zero. We determine this sum in this paragraph.

We consider the 4x4 matrices M and N , as given by equations (119) and (120):

0 «ay Ay U3
-ay 0 0y Q3

M=|-a, ay 0 -a, (119)

—Qyz — 03 A3 0
0 ay Q3 Ay
ap 0 U3 Qg

N=|-a, a 0 -4 (120

—Qy 0Oy e 0

Using matrix N , equations (75) are written in the form
NC=NJ=NP=0. (121)
From equations (121) we obtain
N?C =N?J =N?P =0. (122)
Also, performing the calculations and considering equation (109), we obtain equations

MN =NM =0

123
IMH N =0 (123)
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We now prove the following theorem:
Seventh Theorem of the TSV

“For the matrices M and N the following hold:
M2+ N?=-a’l (124)
a’=a +aj, +aj,+al, +as+aj (125)
where | isthe 4x4 unit matrix.

For o #0, matrix M has two eigenvalues 7, and 7, with corresponding eigenvectors v, and Vv, given
by equations

7, =la
2 2 2
0 Ay +ay, +ag
V. = 1 8y _ L Ag383 —8pp8y,
1= 2
a| ay a Ay 8y —Apzay,
893 A8y, — 8y @
2932 1%3 _ (126)
7,=-la
2 2 2
0 Ay T8y, +ag
V. = 1 Ay + L Qg3 — 8gp8y;
2= 2
a aOZ a A8y —8p3dy,
Ag3 A8, —8y, 35

For a#0, matrix N has the same eigenvalues 7, and 7, with matrix M, and the corresponding
eigenvectors n and n, are given by equations

7, =la
0 a§2 + a123 + a§1
n, = 1 s, _Lz 898, — g3t
a| &y, a" | Ay, — g8y
8y, 89183 ~ 883 . (127
7, =-la
0 Ay, +ay; +ay,
n, = l a3, +L2 Bp8y; — Age
al a; a" | Ay, — 5,8y
8y 89183 ~ g8

For the physical quantities a,;, K =1, k,i =0,1,2,3 equation (128) holds:
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a2:a§1+a§2+a§3+a§2+a123+a§1:0- (128) »

Matrices M and N are given by equations (119) and (120). The proof of equations (124), (125),
(126) and (127) is done through the proper mathematical calculations and the use of equation (109).

We now multiply equation (124) from the right with the column-matrices C, J and P and
obtain equations

M?*C +N*C =-a°’C
M?J +N?J =-a®]
M?P+ N’P =-a°P
and with equation (122) we get
M?*C =-a’C
M?2J =—-a%J . (129)
M?P =-a’P
2

From equations (129) we conclude that, for o 0, matrix M? obtains the eigenvalue 7 = —a”,

with the four-vectorsC,J and P being parallel to the corresponding eigenvector v of matrix M?.
Therefore, for o # 0, the four-vectors C, J and P are parallel to each other, which is impossible in the
external symmetry according to the internal symmetry theorem. Therefore, =0, in order for matrix

M ? to not have the eigenvector v . Thus, we obtain equation (128).

Equation (128) highlights the factors on which the rest masses m, and —g as well as the total
c

rest mass M, of the generalized particle, depend. For the determination of these factors we consider the
three-vectors C , J and P, as given by equations (130), (131), and (132), respectively

C1
C=|c, (130)
C3

(&
iy

J=|J, (131)

(]
w

R
P=|P|. (132
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Equations (75) for (i,v,k)=(1,2,3) express the orthogonality of vectorsC, J and P with
vector . We prove the orthogonality between vectors C and B, and one can similarly prove the
orthogonality of vectors J and P with vector § .

From the first of equations (75) for (i,v,k) =(1,2,3) we obtain

Cay, +Ca,; +Ca, = 0

and from equations (82) and (130), the orthogonality between the vectors C and f§ emerges.

From equations (81), (82) and (109) we conclude that the vectors @ and B are orthogonal.

Therefore, the vectors C, J , P and a belong to the same plane I1. Plane II is orthogonal to the
vectorf .

We now consider the directional angles », 6 and v with direction from the first vector to the
second, as given by equations

(C.a)

s§=(J,a). (133)

/4

AN

v=(P,a)

Considering that the vectors C , J , P and a belong to the same plane IT, and equations (44)
and (130), (131) and (132), we obtain equations

J+P=C (134)

sin(v—y) _ sin(y — o) _ sin(v—9)
131l Pl ICll

1

for |[J].[|P|,|C]|# 0, where [|la]| is defined as ||a] =(aTu)5 .

From the pairs of equations (44), (130), as well as (14), (131), and (15), (132), we obtain
equations

1
ICI= (=¢5 —Mjc?)?

1
191}= (=35 =mpc?)? |. (135)

2 1
By’
C2

Pll= Ry -

We now prove that for ¢, =0, the following equations hold
M,csiny =+c, cosy

m,csind =+J,c0s4 . (136)
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E,sinv =+cPR, cosv

We show the proof of the first of the above equations, since the proof of the other two is along
similar lines. From the first of equations (75) for (i,v,k)=(0,2,3), (0,1,3), (0,1,2), and ¢, =0, we
obtain equations

1
= C_ (C305, —Cy843)

0

1
a3 =—(Cg; —C3ay,)
Co

1
ay = —(Cay —Ciay,)
Co

and replacing in equation (128) we get

1 1 1
agl + agz + aés +C_2 (Cax, — Czaos)2 + C_2 (Cag — C3301)2 + C_2 (C,ay _Claoz)2 =0
0 0 0

2 2 2NA2 2.2 2.2 2. 2 2 2 2 2 2 2 _
(80, + g, +843)Cq + Cag, +Ciag + € Oy + Ca gy + Co Qg + €y Oy — 2C,C4 0y 03 — 2C,Ca0y Ay — 2C,C, O, =0

2 2 2 2 2 2 2 2 2 2 2 2
ag, (Cf +C5 +¢3 ) +ad, (Ch +¢f +C5 )+ a5 (Cf +CF +CF ) — 26,601,055 — 26,C40y g — 26,C, 0ty = 0

and with equation (45) we get

2 2.2 .2 2 2.2 2 2 2.2 .2
a01(_Mo -G )+aoz (_Mo -G )+a03(_M0 C—C; )_202030‘020‘03 — 20,0400, 0l — 2C,C, 01,01, =0

and we finally obtain
Mg € (83, +ad, +a%, ) +(Cuttoy +Colty +Cs05 ) =0- (137)
We now prove relation
(21, 821805 ) #(0,0,0) . (138)
From the first of equations (75) for (i,v,k) =(0,3,2), (0,1,3), (0,2,1) we obtain equations
Cydy, +C,85, —C,a, =0
Colys +Cy8y —C8gs =0
Cody, +Ca,, —Cay, =0

and supposing that
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(a01va02aa03):(010a0)

we get
Cya,, =0
Coays =0
Coa,, =0

and because ¢, # 0, it is also

(agz,a13,a21)=(0,0,0)

that is, a,, =0 forevery k =i, k,i=0,12,3, which is impossible in the external symmetry. Hence,
for ¢, #0, relation (138) holds.

Considering now the first of equations (133), we obtain

1
2

CyBy + €y, + gy = (Cf +C° +C] ); (a® +a’ +a’) cosy
and substituting this expression into (137) we get
Mg ¢ (a5, +ag, +ag )+ (¢l +¢? +¢} )(a% +a’ +a’ Jcos’ y =0
and since
8, + 8, +ag # 0
because of relation (138) we get
Mg ¢®+(cf +¢? +c})cos’ y =0
and with equation (45) we get
Mg ¢®~(M; ¢+ )cos’ y =0
Mj ¢* (1-cos® y)—cg cos’ y =0
MZc?sin® y =cZ cos® y
M, Cc siny ==c, cosy

which is the first of equations (136).

Because of the extremely large amount of information contained within equations (134) and
(136), we will confine ourselves to only one application. We will determine the case for which the total

rest mass M, of the generalized particle vanishes.
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In the case when vectors a and C are orthogonal, that is for y =% , we obtain from the first of
equations (136):
M, =0.

Then, from the second of equations (134) for y = % , We get

|[J||coso =—||P||cosv
| 3| cos® S =|| P||* cos®v

and with the second and third of equations (135) we obtain equation
E2
(35 +mic*)cos® & :(PO2 +—;’jcos2 V.
c

From the second and third of equations (136) we get equations
m?c* = (mozc2 + J:)cos2 )

EZ EZ
—% =| =2 +P? |cos’v
c e

and substituting into the previous equation we get

E2
2.2
mic” = C—g .
Thus, we get the following set of equations
a-C=0
M, =0 . (139)
E, =+m,c?

Equation (128), which we used to prove equations (136), is the basic equation of the TSV giving
us information about the corpuscular structure of matter. In order to fully comprehend this structure, we
also need the eighth theorem of the TSV. We present this theorem, along with its consequences, in the
following paragraph.
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9. The conserved physical quantities of the generalized particle and the wave equation of
the TSV

The generalized particle has a set of conserved physical quantities which we determine in this
paragraph. The determination is initially made through equation (89). The proof procedure we follow is
identical to the one followed to prove the conservation of electric charge from Maxwell’s equations.

Considering equations (89) we define the scalar quantity pand the vector quantity j, as given
by equations
ichz
p=cV-a= —Ug(clam +C,8y, +Cay;)

zbZ —Cp8y; —C, 8, +C3ay, (140)
2% —Cop, +C Ay — Gy,
—Co8y3 —C 83 +C,a,

j=o

where o # 0 is a constant. We now prove that for the physical quantities p and j equation (141) holds:

—+V-j=0. 141
ot . (14D)

From the first of equations (140) we obtain

p=ocV-a
P _59(v.a)
ot ot

% _y. (Gﬁ_a]
ot ot
and with the second of equations (140) and equation (89, d) we get

op

E:v-(aczvxp_j)

which is equation (141). According to equation (141), the physical quantity o is the density of a
conserved physical quantity ¢ with current density j .

We now consider the four-vector of the current density j of the conserved physical quantity q,
as given by equation

Jo ipC

j= b J : (142)
> Jy
j3 jz
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With the use of matrix M , as given by equation (119), equations (140) are written in the form

. oc’hz

MC. 143
7 (143)

For an appropriate constant o = o, in equations (140), the conserved physical quantity q is of the same
dimensions (units of measurement) as the selfvariating charge Q. Equivalently, for o =0, equation
(143) gives the current density of charge ¢ of same nature as the selfvariating charge Q. It is easy to
realize that if Q is the electric charge, then o = ¢,, where g, is the electric permeability of the vacuum.

. 1 . o
In the case where Q is the rest mass, then o = R where G is the gravitational constant.
T

The quantity ¢, as defined above, is a special case of a conserved physical quantity. We will now

determine the general mathematical expression for the conserved physical quantities of the generalized
particle. We prove the following theorem:

Eighth Theorem of the TSV

“For the field (&, ) of the pair of vectors

a'Ol
E=icY| a, (149)
a03
Ay
o=Ya;, (145)
a21
where W =W (X,, X, X,, X; ) is a function satisfying equation
o b
—=—(AJ, + uP ¥ 146
%, h( Kk TH k) (146)

k=0123 (4,1)#(0,0), A, xeC arefunctions of X,,X,X,,X,, the following equations hold:

V-o=0
om - (147)

V'(::—E

The generalized particle has a set of conserved physical quantities g with density o and current density
j
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p=0V-g

j:O'CZ(VX(D— 0 ) (148)

c’ot

where o # 0 are constants, for which conserved physical quantities the following continuity equation
holds:

op .
—+V-j=0. 149
2t J (149)

The four-vectors of the current density j are given by equation

o
)
o
a 2
j=-0C’M 6\2 :—a;b‘PM (AJ +uP). (150)
o,
o
0%,

The conserved physical quantities ¢ are given by equation
icq :IideV :j j, dv (151)
\ \Y

where V is the volume occupied by the generalized particle.”

For the proof of the theorem we first demonstrate the following auxiliary equations (152)-(157)

J-la, =0 (152)

P|a,|=0 (153)

JIx| a8y, [=-Jdy| &, (154)
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Px|ay, [=-R|a;, (155)

Px|a, |=| Ra,—-PRa, |. (157)

In order to prove equation (152) we get

a5
J- a; |= ‘]la32 + Jza13 + ‘]33'21
ay

and with the second of equations (75) for (i,v,k) =(1,3,2) , we have

a3,
J-la, |=0.
aZl

Similarly, from the third of equations (75) we obtain equation (153). We now get

Ay ‘Jzaos - J36102 ‘Jzaos + Jsazo
JIx| @y, |=| 80 — iy | =] Js8y + 18y
Qs ‘]13-02 - ‘]2301 JlaOZ + Jzaio

and with the second of equations (75) we obtain

Ay _‘]oasz
Ix|ay, [=|—Jdoy,
Qs _Joa21

which is equation (154). Similarly, by considering the third of equations (75) we derive equation (155).

Equations (156) and (157) are derived by taking into account equations (131) and (132).

Equations (147) are proven with the use of equations (152)-(157). We prove the first as an

example. From equation (145) we obtain
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A3,

V.o=VV¥-| a;
a21
and with equation (146) we get
b 8 b 8,
V-m:Eﬂ}PJ- a; +%y‘PP- a;
a,, a,,
and with equations (152) and (153) we obtain
V-o=0.

From equations (147) and (148), the continuity equation (149) results. The proof is similar to the one for
equation (141). The proof of equation (150) is done with the use of equations (152)-(157), and equation
(119). The physical quantities g are conserved, as indicated by the continuity equation (149). Therefore,

if the generalized particle occupies volume V , then equation (151) holds.

From equation (17) it emerges that the dimensions of the physical quantities A4,k,i=0,1,2,3
are

[A4]=kos™ k,i=0,1,23.

Thus, from equations (79) and (80), the dimensions of the physical quantities Qe,;,K,i =0,1,2 emerge.
Additionally, by combining equations (77) and (104), the dimensions of the physical quantities
T.,k=0,1,2,3 emerge. Thus, we obtain relations

[Qeyi|=kgs™ k =i,k,i=0,123

M (158)
[T]=kgs™ k=0,123

Using the first of equations (158) we can determine the units of measurement of the (2’;,0)) -field

for every selfvariating charge Q. When Q is the electric charge, we can verify that the field units are
(Vm,T). When Q is the rest mass, the field units are (ms‘z,s‘l). The dimensions of the field depend

solely on the units of measurement of the selfvariating charge Q.

From equation (150), and considering that A,z € C, we can, by using the first of equations
(158), determine the dimensions of the physical quantities . If we write the constant o in the form

O = Xo, We obtain relations

O = X0o,

[a]=x[Q]

(159)
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where X is a constant. From relations (159) we can determine the set of conserved physical quantities g
of the generalized particle by determining the corresponding constant X . We reiterate that for the electric
. I . 1 . 1
field o, =¢,, and for the gravitational field o, =——. In the case of the electric field, for x=—,

4G e
where e is the charge of the electron, ¢ is a dimensionless conserved physical quantity, that is q e C.

h . . .

For x=—, q is a conserved quantity of angular momentum. The eighth theorem of the TSV reveals the
e

conserved physical quantities of the generalized particle.

One of the most important corollaries of the eighth theorem of the TSV is the prediction that the
generalized particle has wave-like behaviour. We prove the following corollary:

“For function ¥ the following equation holds

oc’a, (VZ‘P + 62—\11} _ 0 0

8X§ X O
2 ) ) (160)
oo | v2p O |_ 9 O
ki Czatz axk axl

k=i, k,i=0123."

To prove the corollary, considering that X, =ict, we write equations (147) and (148) in the form
i

V-E=——],
ocC
V-o=0
VxE = icOm : (161)
0%,
Vxw= Ly i
oC COX,

We will also use the identity (162) which is valid for every vector a
VxVxa=V(V-a)-Via. (162)

From the third of equations (161) we obtain

and using the identity (162) we get
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v(v-g)—vzgz—;—a(wm)

0

and with the first and fourth of equations (161) we get

and we finally get
2 - o
vier S5 LA g | ey
2N
Working similarly from equation (161) we obtain

0’® 1

Vo + P =—EV><j. (164)
0

Combining equations (163) and (164) with equations (144) and (145), we get

o
a,| Vo CX |2 L[ DB L k=023,
OXg oc\ oX, OX

which is equation (160).

From equation (160) the following two cases result, as given by equation (165) and equations

(166)

2 2
vz\{f+a\f=v2\y—82q;=o (165)

OX, cot

2 2
vZ\P+a\f=v2\P—%=F¢o

0%, cot

o . (166)
= | DD i ki=0123
oC°F | Ox, OX

In the first case, equation (160) gives the classical wave equation (165). In the second case, i.e.
for F =0, the physical quantities ¢, k#1i, k,i=0,1,2,3 are expressed as a function of the rate of

change of the four-vector of the current density j. The physical quantities ¢, k=i, k,i=0,1,2,3

enter into a large number of equations of the TSV for the external symmetry. Therefore, through the
second of equations (166) we can derive a set of equations, for the function F =0, as well as for the rate
of change of the four-vector | . Equation (160) can be characterized as “the wave equation of the TSV”.

We end the paragraph with the proof of equations (167) for the four-vector j
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167
Mj=0 {167)
We first combine equations (128) and (129), and obtain
M*C=0
M2J=0. (168)
M?P =0

We now multiply equation (150) with the matrix N from the left and get

2
Nj:_O'C b

WNM (AJ + uP)

and with the first of equations (123) we obtain the first of equations (167). Multiplying equation (150)
with the matrix M from the left we also get

Mj =—"§:b W(AM2J + uM?P)

and with equations (168) we obtain the second of equations (167).

The eighth theorem completes the basic study of the law of Selfvariations. The major part of the
study concerns the external symmetry, which is clearly more complicated than the internal one. In the two
symmetries we used the same notation for the constant b of the law of Selfvariations, the total constant

rest mass M, of the generalized particle, as well as the constants ¢,, k=0,1,2,3. These constants do

not have the same physical content in the two symmetries. The constants that enter into the equations of
the TSV in the external symmetry are correlated with the theorems we presented, which determine the

values of the above constants. In the internal symmetry, the constants b, M, and c;, 1=0,1,2,3in

equations (54), (57) and (58) are not correlated with theorems that correspond to the ones of the external
symmetry. Therefore, they should be considered absolute constants.

In the study we presented, we combined equations (14) and (15) with the law of Selfvariations for
the rest mass m, = 0, as given in equation (13). We can equally well study the Selfvariations for the rest

E . .
mass —g # 0 and the symmetric equation
c

% _D3E k=0123
X h

instead of law (13). We will, of course, not present this second study, since it is clear that the same results
. E . . .
emerge and we just have a reversal of roles of the rest masses m, and —g This remark is made in order
c

to note the fact that the law of Selfvariations holds for

m, #0v E, #0.
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In the case where m, =0 and E; =0, the law of Selfvariations is not defined. Therefore, in the

o . _ E .
applications of the present study, every case in which it emerges that m, = —g =0 must be rejected. The
c
E, . . . .
study for my =—- =0 can be made starting from equations (117) or from their symmetric
c

oP b :
:—I—— C _P P,k,|20’11213'
/,lkl an h( k k) !

. . . L E
That is, not starting our investigation from the rest masses masses m, or —-. Of course, we
c

could not arrive at equations (117) without the study we presented, which constitutes the fundamental
investigation of the law of Selfvariations.

The law of Selfvariations is connected with all the individual areas of physics, and it is
impossible to investigate its consequences in one article. It is for this reason that we have chosen and
present four basic applications of the TSV.

10. The generalized photon

From equation (160) there result two states for the generalized particle, as expressed by
equations (165) and (166). We shall refer to the state of the generalized particle for which equation (165)
is valid, as the “generalized photon”. For the generalized particle the following corollary of the eighth
theorem of the TSV holds:

“For the generalized particle the following equivalences hold:

o*Y
VZlP —W = 0 (169)
if and only if for each k =1, k,1=0,1,2,3 itis
9 _ e (170)
OX,  OX
if and only if
2
VZ&_ ? éz — 0
Vio - 2 032 =
c-ot

In the external symmetry there exists at least one pair of indices (K, i), k =1, k,i e {0,1, 2, 3} , for

which ¢,; # 0. Therefore, when equation (170) holds, then equation (169) follows from equation (160),
and vice versa. Thus, equations (169) and (170) are equivalent. When equation (170) holds, then the right
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hand sides of equations (163) and (164) vanish, that is, equations (171) hold. The converse also holds,
thus equations (170) and (171) are equivalent. Therefore, equations (169), (170), and (171) are equivalent.

For the generalized photon equation (165) holds, which is equation (169). Therefore, equations
(170) and (171) also hold. According to equations (171), for the generalized photon the (é’;,co)—field is
propagating with velocity c in the form of a wave.

We now prove that, for the generalized photon, the four-vector j of the current density of the
conserved physical quantities q, varies according to the equations

vy, ~2d 0 k=023 172
Jk Czatz_ 1 B b Bt} ' ( )

We prove equation (172) for k =0, and we can similarly prove it for k =1,2,3.

Considering equation (142), we write equation (149) in the form

L -
Ny 0% 0%y X

Differentiating equation (173) with respect to X, we get

2+ i i i
X X\ % ) %\ 0%, ) 0% (0

2 - - - -
T, 0 (8], o), 0(d]_,
OX" 0% (0%, ) 0%, \ O, ) 0%\ O,

2. - - -
a_J20+i % +i % +i aJ_O =0
X %\ OX ) 0% (OX, ) O\ 0%
o] .

aT:O‘FVZJO:O

=0. (173)

and with equation (170) we get

which is equation (172) for k =0, since x =ict.

The way in which equations (171) emerge in the TSV is completely different from the way in
which the electromagnetic waves emerge in Maxwell’s electromagnetic theory. In Maxwell’s theory,
equations (171) emerge for j=0. In the TSV it is j =0 due to the Selfvariations. Equations (171)
emerge when equation (165) holds, that is, in the first of the two cases of equation (160). Furthermore,
according to the TSV, in the electromagnetic waves, the current density | varies according to equation
(172).
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The solutions of differential equations (169) and (172) are known. Therefore, the functions ¥
and j,, k=0,1,2,3 are also known for the generalized photon. By knowing function ¥ and the
current density j, the theorems of the TSV give a set of data and information about the generalized
photon. We reiterate that the four-vector j concerns a set of conserved physical quantities, and not just
the electric current density.

11. The generalized particle of the (a, B)-field

In this paragraph we present the study of the generalized particle of the field (a,B). From
equations (81), (82) and (144), (145) it follows that the (e, B)-field is W=z, that is

b
Y=z= exp{—ﬁ(cox0 +C,% +C,X, +csx3)}

according to equation (74). Thus, taking into account equation (76) we obtain

o’y o*Y
VA + P~ =v2\11——CZatz =(co+¢l +C5 +¢5 )W
and with equation (45) we get
2 2
vay 1 f =V - % =-Mc’¥Y.  (174)
cot

We first study the generalized photon of the(a,B)-fieId. Comparing equations (169) and (174)
we conclude that the generalized photon of the (a,B)-fieId has a vanishing total rest mass M :
M, =0. (175)
Therefore, from equations (139) we obtain equations
a-C=ca, +C,a,, +Ca,, =0
C1 021 27702 37703 (176)
E, =+m,C

The current density j of the (a,B)-fieId is given by equations (140). Combining these with the

first of equations (176), it is easy to see that for the generalized photon of the (a,B)-fieId the four-
vector j of the current density vanishes

j=0.@a77)

Equation (177) does not hold for the generalized photon of every (&,m) -field, where we generally have

Jj#0 .For W=z and with equation (176) we obtain equation
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ov_or_ bG,_ DGy _g123.
oX,  OX, 2h 2h

Comparing this relation with equation (146), and considering equation (44), we conclude that for the
(&, @)-field equation (178) holds:

z:y:—%. (178)

It is easy to verify that equation (177) holds exclusively for the generalized photon of the (@,m)-fields
for which 4 =z in equation (146). In the cases where 4 # u itisalso j#0.

Let us now suppose that the generalized photon is moving along the axis X, = X. In this case it is
¢, #0 andc, =c, =0. Taking also into account equations (175) and (45) we get
cZ+c2=0
and we finally get
¢, = tic,. (179)

According to equation (179), and since ¢, =C, =0 and X, =ict, we get from equation (74) equation

Y=z= exp[—ig—;(ct + x)} . (180)

We now study the generalized particle of field (a,B), i.e. the case where M, = 0 in equation

(174). In the (a,B)—fieId, the functions W=z and j,,k=0,1,2,3, are already known as given by

equation (140). Thus, we can easily study the consequences of equation (151) in the case when the
generalized particle occupies a constant volume V.

By combining the first of equations (140) for o = 0 with equation (151), we get

ioch(a-C) bc b

=————2exp| ——2X, ||ex CX +C,X, +C;X; ) [dV . (181

q o p( Y jj p{z( )} (181)
According to the continuity equation (149), the physical quantity q in equation (181) does not depend on

time, that is, it is independent of X, = ict. Furthermore, the volume V =V (t) of the generalized particle

changes with time. In the case where the generalized particle occupies a constant volume V , and given
that the physical quantity g does not depend on time, from equation (181) we obtain equations
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Iexp [—E(clx1 +C,X, + CSXB)}dV =0

J 2h

q=0 . (182)
(V = constant)

Equation (180) holds for the generalized photon of field (u,ﬂ). We want to prove the

corresponding equation for the generalized particle. Thus, we consider the case where the total
momentum of the generalized particle is along the axis X, = X. In this case, itis ¢, #0,c, =c, =0, and
from equation (45) we get

cZ+¢ =—M/c® #0. (183)

Let now the generalized particle occupy the constant volume V defined by relations (184) in a
system of reference O(t, X, X,, X; )

a<x <p
0<x,<L,
0<x, <L, . (184)

a<p
L,,L, >0,L,, L, constants

For a and g the following relation holds

da 48, ¢ asy)
dt dt
where U the velocity with which volume V is moving in the chosen reference frame.

Combining the first of equations (182) with relations (185), and taking into account that ¢, =c, =0, we

get
exp (_bcl_ﬂj —exp (_bcl_a] =0
2h 2h

exp ( bcle _1
2 . (186)

L=p-a>0

and we finally arrive at

Equation (186) holds only when constant b is an imaginary number, when we get
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C = n4—”h,n =11,42,43,...
L]
bel : (187)
L=pF-a>0
Combining equations (183) and (187) we obtain

2.2 2 2]-671'2h2

M c“=-c.—n ,n=123,
° R

" 188)
bel

Therefore, when the generalized particle of the (a,B)—fieId occupies a constant volume, its total rest

mass M, is quantized.

Solving equation (188) with respect to ¢, we obtain

anzin(, 1 b
G =% 2 222
Lb] n° 167z°h

1
2
J n=+142,43,...  (189)

Combining equations (173), (187), (189), and considering that ¢, =c, =0, %, =ict and b=ib|, we
obtain equation (190) for the confined (e, B)-field

Y =exp

2nrin 1 2|
_— 1+ =
L n? 167°7’

1
2
J ctEx||,n=%1,42,43,.... (190)

Equations (173)-(178) hold generally for the field (a,B). Equations (179) and (180) hold for the
generalized photon of the field (a,B) in one dimension. Equations (181)-(190) hold for the confined
within a stable part of space field (a,p).

12. The plane I1

In paragraph 8 we defined as I1 the plane normal to the vector P . Taking into account equations
(82), the plane IT is defined if and only if the constant vector T of equation (191) is not zero.

T, [o 2% 0
T=|17, |=|a; |#|0]. (191)
T, oy 0

In this paragraph we will study the plane IT for the case where equations (192) hold
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(192)
T3 Ay

2 2 2
an+oas+o, #0

As we have already observed regarding the physical quantities in the equations of the TSV, there are sums
of squares that are equal to zero. Therefore, equations (191) and (192) are not equivalent.

We now consider a constant vector n as defined by

nl a'01
nN={n, |=|a,|. (193)
n3 a03

From equation (128) and the second relation of equations (192), it emerges that relations (194) hold for
the vector n

n, a,, 0

n=n, |=|4a

? ” (194)

n, Ay, 0
al +al+al#0
From equations (81), (82), and (109) we get
Olyy Oy + Uy Qlyy + gty =0
and with equations (191) and (193) we get
T-n=0. (195)

From this equation we conclude that vector n, being vertical to vector T, belongs to the plane IT.

We consider a constant vector p as given by

H Ay — g3 0
R=| fy |=MXT=| 8y —8y 0y |#| 0. (196)
Hy Ay A3 — A Ay 0

Vector p lies on plane IT as vertical to vector T, and is additionally vertical to vector n. Consequently,

the vector pair (u, n) constitutes an orthogonal vector base on plane I1.

It is easily provable that for vectors p,n, T, the following equations hold:
Il ==l

I, (197)
[} =il = Fi|]
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In order to prove equations (197) one must take into account equations (109) and (128). The symbol |

for every vector a of the TSV has been defined when we first use it in equations (134).
Combining the pairs of equations (144), (194) and (145), (191), we get
=ic¥
s=Ictn  1gg)
o=Y1
Consequently, the plane IT is defined on every point of spacetime to which field (é,m) extends and

relations (192) hold. Additionally, the orientation of plane IT in space is defined by the field (é,m).
From equations (75) for (i,v,x)=(1,2,3) we get equations

Cag, +C,a,;+Ca, = 0
‘]la32 + ‘]2 A, +‘J33-21 =0
I:)1"‘132 + Pz a,t P3a21 =0

and with equations (130), (131), (132), and (191) we get

t-C=0
1-J=0. (199)
t-P=0

From equations (199) we conclude that the vectors C,J , and P, as vertical to vector T, belong to the
plane IT.

Expanding the first of equations (167) we get equation
Ay J1+ay3 J, 13, ;=0
and with equations (142) and (191) we obtain
Tt-j=0. (200)
From equation (200) we conclude that the vector j, as vertical to vector T, lies on plane IT.

From equations (146) and (131, (132) we get
b
V\P=E(/1J+yP)‘P. (201)
Vectors J and P belong to the plane I1. Consequently, vector VWV, as a linear combination of vectors

J and P, also belongs to the plane IT.

We, thus, come to the conclusion that that the vectors J,P,C, j, and V¥ belong to the plane
IT . These vectors vary according to the theorems of the TSV remaining constantly on plane IT.

We now prove that, when plane TT is defined, the 4-vector | has a rigidly defined internal
structure. Expanding the second of equations (167) we get four equations. The first of these is equation

Qo )y + g )y + g3 )3 =0
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which, together with equations (142) and (193), is written in the form
n-j=0. (202)

Vector j belongs to plane IT and, according to equation (202), is normal to the vector n. Consequently,
vector j is parallel to vector p. Therefore, vector j is written in the form

. B
J=—n, (203)
M

where B is a function of X, X, X,, X; with dimensions of the 4-vector j . The remaining three equations
from the expansion of the second of equations (167) are equations

—ay Jo —auly+a;), =0
—8y, jo +ay —8y j3 =0
—As Jo— Qs+, ), =0
and with equations (191), (193), and (203) they are written in the form of equation

Joh= Brx -
[
and with equation (196) we get
B )

and since itis n-t =0, we get

and because itis n =0 , we get

gl
P
and with the second of equations (197) we get
Jo==iB
B ==ij,

and with equation (203) we get

j =i, ﬁ (204)

From equation (204), and taking into account that j, =ipoC, we get
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j=+pct . (205)
]

From equations (142) and (204), (205) we get the 4-vector j in the form

i 1
i=pe, 1 |=do| _in|. (208)
M M

According to equation (206), the 4-vector | has an extremely complicated structure. This is due
to the internal structure of vector p as given by equation (196), as well as due to the internal structure of
the density o as given by the first of equations (150). This structure could not be determined by the
physical theories of the last century. Equation (205) is completely different from equation

j=pu,
which is used by last century’s theories.

We prove the following corollary:

“The following equations hold in the plane I
=gty =Fperty
[ [

o , |

+—np-Vj,=0
o " 7
: Ol 1 2
Vj, =+i—2 - —oCc’Fn.  (207)”
JO 8X0 ”H” oC n ( )

oC’Fr = iLuijO
[

0*Y
X5

F=V¥+

The first of equations (207) is equation (204). The second emerges from the combination of the
continuity equation (173) with equation (204). The third and fourth emerge from the combination of the
wave equation (160) with equation (204). The last of equations (207) is the first of equations (166).

For the generalized photon, it holds that F = 0, according to equation (165). So, taking into
account equations (172), we get the following equations for the generalized photon on the plane I1

66



j= i, - = F po
M [

g , i

+—n-Vj,=0
% ul” "

; Oy
V], =l —— . (208)
e

2
0 ‘f 0
OXg
0 Jo
ox

VY +

V2, + =0

For the generalized photon, the fourth and fifth of equations (208) can be solved and they give the ¥
function and the density j, =ipC, respectively. Then, from the first equation we get the current density

] . Also, the second of equations (208) emerges from the third.
The generalized photon is a special case, for F =0, of a generalized particle. For F =0, the
system of differential equations (207) is not solvable in the simple way that the system (208) is.

Additionally, the second, third, and fourth of equations (207) are not independent. Combined in pairs they
give the third.

Expanding the first of equations (167) we get four equations. As we have proven, the first of them
is equivalent to equation (200), that is, with the fact that vector j belongs to plane IT. The remaining
three are written in the form

JoT=nxj. (209)

Taking into account the first of equations (207), it is easily proven that equation (209) is equivalent to the
second of equations (197). Analogous conclusions can be drawn from the second of equations (167), from
which equation (202) as well as equation (210) emerge

Jon=1xj. (210)
Regarding the study of the corpuscular structure of the generalized particle in the planeIT, we

expand the first of equations (75) for (i,v,k)=(0,3,2),(0,1,3),(0,2,1) and we obtain equations

Cods, + G805 +C3a,, = 0
Codyz +C38y G35 = 0
Cody +C8y, + G0, = 0

and since itis a, =—a, forevery k=i, k,i=0,1,2,3 we get

Cody, + G805 —C3ay, = 0
Coa13 + C38.01 - cla03 =0. (211)

Cody + Gy, —Cay = 0
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From equations (130), (191), (193), and (211) we get
c,T=nxC. (212)
From equation (212) we get relation (213) on the plane II

0
C=#|0]. (213)
0

Indeed, if we assume that C =0 from equation (212) we get ¢, =0 and with equation (130) we get
(C5:€1,C,,¢;)=(0,0,0,0), which is impossible due to relation (60).

Because of equation (213), two cases emerge from equation (212) for the corpuscular structure of
the generalized particle on the plane IT. In the case where the vectors n and C are parallel, from

equation (212) we get ¢, =0 and from equation (44) we get
MZc? +cZ+c2+c2 =0
and we finally get
1
Mgc==i(c+c; +c5) 2
(Clin)

for the total rest mass M, of the generalized particle.

(214)

In the case where the vectors n and C are not parallel, from equation (212) we get ¢, # 0, and,
therefore, equations (134), (136), and (139) hold.

We now study the behaviour of the vectors J and P on the plane I1. Because of the first of
equations (134), it suffices to study the behaviour of vector J. We define the 4x4 matrix H as given
by

T,00 0
0TO00O 1
H = =—A. (215)
00T,0 zQ
000 T,
Equation
H :iA
2Q

emerges from the combination of equations (78) and (104).
Using matrix H , equations (105) are written in the form
MJ =—-HJ. (216)
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The right part of equation (216) is generally not zero (see equation (117) and the concluding remarks of
paragraph 7). Taking now into account equations (131) and (193), the first of equations (105) is written in
the form

n-J=-T,J,. (217)

Taking into account equations (131), (191), and (193), the remaining three equations (105) are
written in the form

Tl‘Jl
Jn=txJ+|T,J, | . (218)
TS‘]S
Using matrix N as given by equation (120), the second of equations (75) is written in the form
NJ =0. (219)

This equation is equivalent to the four different equations we get from the second of equations (75). The
first of these is equivalent to the second of equations (199), and expresses the fact that the vector J
belongs to the plane IT. The remaining three are written in the form

Jot=nxJ. (220)

The vector J belongs to the plane TT and, therefore, is written in the form

=)t (0 9)

and with equation (217) we get

I=(md)s

ST — . (220)
[ ]

From the equations (220) and (221) we get
n

J,T :nx{(u-J)LZ—TOJO—Z}

Jor=(p-J)—+

and with equation (196) we get

Jor= (u'J)[nx(nx‘r)]

and since n-t =0 we get

Ja=—+_"1
[l
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and since T = 0 we get

(nJ)_ i
[T
and with the second of equations (197) we get
u_-J 1J,
W Tl
and substituting in equation (221) we get
J=+, Ip, _TyJy m (222)
Tl Inf Jn]

o iw . L
Taking into account that J, = —, equation (222) is written as
c

Wi . n iT, n )
J=—| = (223)
[ lia] o o]

From equations (11) and (222), (223) we get the 4-vector J in the form
i 1
J=—l, n iIT, n [=J,]_ Ip, T, n |. (224)

Tl Do) [ Tl

The corresponding mathematical expressions for the 4-vector P emerge from the combination of
equations (222), (223), and (224) with equation (44). From equation (224) we conclude that J, and T,

are the only variable physical quantities in the 4-vectors J and P.

According to the study we presented, the corpuscular structure of the generalized particle is
determined by the 4-vectors C, J, P and their relation. According to equation (207), the wave
behaviour of the generalized particle is determined by the 4-vector j. The “connecting element” between
the corpuscular structure and the wave behaviour of the generalized particle are equations (146) and
(150).

The plane IT is defined when relations (192) hold. Nevertheless, it should be considered the rule
in the TSV, while the cases where the plane IT is not defined should be considered as special. These
cases can be examined using the theorems of the TSV. For this reason, as well as for reasons of economy
of the present article, we will not refer to these special cases.

13. Degrees of freedom of the TSV. The Schrodinger equation
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One of the most important conclusions of the eighth theorem is that it gives the degrees of
freedom of the equations of the TSV. In equation (146) the parameters A, i € C, (A, 1) # (0,0) can have

arbitrary values or can be arbitrary functions of X, X, X,, X;. Therefore, the investigation of the TSV
takes place through the parameters A and z of equation (146).

The TSV consists of a closed set of equations. Consequently, every specific choice of the
parameters A, i € C, (A, ) # (0,0) completely determines the totality of the physical quantities that

. . . E
enter into the equations of the TSV. These include the rest masses M,, m; and —f , as well as the 4-
c

vectors | of the conservable physical quantities of the generalized particle.

If we set (A, 1,b)=(1,0,i) in equation (146), we get equations

v =Ly

. (225)
¥ iy
X, h

o . iw . . :
Taking into account that X, =ict and J, = —, we recognize in equations (225) the Schrodinger
c

operators [18-23]. Using the macroscopic mathematical expressions of the momentum J and energy W
of the material particle, we get the Schrodinger equation. The Schrodinger equation is a special case of
the wave equation of the TSV.

If we set (2,, U, b) = (1, a, i) in equation (146), where « the fine structure constant, and take
into account equation (44), we get equations

V¥ =—((1-a)J+aC)¥

. . (226)
oV i
—==((1-a)J,+ac,)¥

X, (t-a)3y+aco)

The fine structure constant in the TSV can have the following three forms

2

e
a =
4me,Ch
a=—29 o)
4re,Ch
2
a= Q
4re,Ch

in the electromagnetic interaction. We denote € the constant value we measure in the lab for the electric
charge of the electron [5] (paragraph 4.9). By Q we denote the electron’s selfvariating charge.
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The combination of equation (226) with each of equations (227), as well as the Schrodinger
equation (225), give the exact same results for the hydrogen atom. For the TSV, the investigation of
physical reality is put on the following terms: “In the application of the TSV, and in every case except of
the generalized photon, the determination of the parameters A and ¢, is sought. This determination can

be either theoretical or based on experimental data.” The determination of the parameter b of the law of
Selfvariations is made from the boundary conditions of the differential equations of the TSV, in the way
we did in the application of paragraph 11. Of course, in the solution of that particular problem we cannot
rule out the determination of the parameter b by other methods, theoretical or experimental.

In concluding this paragraph, it would be an omission not to refer to the work of Dirac. It is based
on the investigation of equation (14) of Special Relativity [24, 25]. The development of the TSV showed
that the Dirac equation is a special case of a wave equation when equation (112) holds. Its applicability
concerns only flat spacetime. If spacetime is not flat in the hydrogen atom, the Dirac equation is only
approximate. In every case, therefore for the hydrogen atom as well, the determination of the parameters
A and w will give the exact wave equation.

14. Conclusions

In the study we present, it is proven that the interaction of material particles, the corpuscular
structure of matter, and the quantum phenomena can be justified as a consequence of the law of
Selfvariations. It is easily proven that the cosmological data are predicted and justified by the internal
symmetry theorem. We have not included in the present article the analytical mathematical calculations
about the consequences of the internal symmetry theorem.

The TSV predicts a unified interaction of material particles (USVI) as given by equation (86).
The USVI predicts a common mechanism for all interactions. Every interaction is resolved into three
individual terms, clearly distinct from each other, as they appear in the right part of equation (86), and
with clearly distinct consequences in the USVI. Equation (86) gives the rate of change of energy and
momentum, as well as the orbits of material particles.

We prove the wave equation (160) of the TSV, special cases of which are the Maxwell equations,
the Schrédinger equation, and the related wave equations. We determine a single mathematical expression
for the conservable physical quantities, and calculate the 4-vector | of the current density. The energy

and momentum of a material particle are calculated by solving the wave equation (160) of the TSV.
From the study of the law of Selfvariations, equation (128) emerges as central for the theoretical

prediction of the corpuscular structure of matter. The combination of equation (128) with the wave

equation (160) clearly showcases the corpuscular structure and the wave behaviour of matter, as well as

the relation between them. From this combination, a method for the calculation of the rest masses of
material particles emerges.

The TSV has two degrees of freedom, since there are two parameters A, iz € C, (4, 1) # (0,0)

in equation (146), which can have arbitrary values within the web of equations and theorems of the TSV.
The investigation of physical reality is reduced to the determination of the parameters A and x in every

application of the TSV. The only exception is the case of the «generalized photony, where the system of
differential equations of the TSV does not require the determination of parameters A and x for its

solution.
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