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Abstract 

In this article we present the basic investigation of the law of selfvariations. We arrive at the 

central conclusion that the interaction of material particles, the corpuscular structure of matter, and the 

quantum phenomena can be justified by the law of Selfvariations. We predict a unified interaction 

between material particles with a unified mechanism (Unified Selfvariations Interaction, USVI). Every 

interaction is the result of three clearly distinct terms with clearly distinct consequences in the USVI. We 

predict a wave equation, whose special cases are the Maxwell equations, the Schrödinger equation, and 

the related wave equations. We determine a mathematical expression for the total of the conservable 

physical quantities, and we calculate the curent density 4-vector. The corpuscular structure and wave 

behaviour of matter and their relation emerge clearly, and we give a calculation method for the rest 

masses of material particles. We prove the «internal symmetry» theorem which justifies the cosmological 

data, without a presentation of the corresponding analytical calculations. From the study we present, the 

method for the further investigation of the Selfvariations and their consequences also emerges. 

 

Keywords: Particles and Fields, Quantum Physics. 

 

1. Introduction 

The law of Selfvariations describes quantitatively a slight increase of the rest masses of material 

particles and of the electric charge of particles of matter. It is consistent with the principles of 

conservation of energy, momentum, angular momentum and electric charge. It is also invariant under the 

Lorentz-Einstein transformations. 

With its formulation, the law of Selfvariations imposes further constraints on the physical laws 

than those imposed by Special Relativity [1-4]. If by L we denote the set of equations that remain 

invariant under the Lorentz-Einstein transformations, and by S the set of equations compatible with the 

law of Selfvariations, it is S L  with S L . 

The most immediate consequence of the law of Selfvariations is that the energy, the momentum, 

the angular momentum, and the electric charge of material particles are distributed in the surrounding 

spacetime. This energy distribution in the surrounding spacetime of the material particle is expressed by 

the “generalized photon” [5]. Generally, a generalized photon has zero rest energy. But the study of 

Selfvariations showed that the sum of the generalized photons emitted spontaneously by a material 

particle due to the Selfvariations has rest energy 
0 0E  . This also holds for the case where each of the 

individual generalized photons has zero rest energy. 
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The material particle and the generalized photons with which it interacts, comprise a dynamic 

system which we called “generalized particle”. We study this continuous interaction in the present article. 

For the formulation of the equations the following notation is used:  

W   the energy of the material particle 

J  the momentum of the material particle 

0m   the rest mass of the material particle 

sE   the energy of the totality of the generalized photons interacting with the material particle 

s P  the momentum of the totality of the generalized photons interacting with the material particle  

0E   the rest energy of the totality of the generalized photons interacting with the material particle  

With the above symbolism, the law of Selfvariations for the rest mass is given by equations 
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In the study we present, it is proven that the interaction of material particles, the corpuscular 

structure of matter, and the quantum phenomena can be justified as a consequence of the law of 

selfvariations. It is easily proven that the cosmological data are predicted and justified by the internal 

symmetry theorem. We have not included in the present article the analytical mathematical calculations 

about the consequences of the internal symmetry theorem. 

The TSV predicts a unified interaction of material particles (USVI) as given by equation (86). 

The USVI predicts a common mechanism for all interactions. Every interaction is resolved into three 

individual terms, clearly distinct from each other, as they appear in the right part of equation (86), and 

with clearly distinct consequences in the USVI. Equation (86) gives the rate of change of energy and 

momentum, as well as the orbits of material particles. 

We prove the wave equation (160) of the TSV, special cases of which are the Maxwell equations, 

the Schrödinger equation, and the related wave equations. We determine a single mathematical expression 

for the conservable physical quantities, and calculate the 4-vector j  of the current density. The energy 

and momentum of a material particle are calculated by solving the wave equation (160) of the TSV. 

From the study of the law of selfvariations, equation (128) emerges as central for the theoretical 

prediction of the corpuscular structure of matter. The combination of equation (128) with the wave 

equation (160) clearly showcases the corpuscular structure and the wave behaviour of matter, as well as 

the relation between them. From this combination, a method for the calculation of the rest masses of 

material particles emerges. 

The TSV has two degrees of freedom, since there are two parameters ,  , ( , ) (0,0)    

in equation (146), which can have arbitrary values within the web of equations and theorems of the TSV. 
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The investigation of physical reality is reduced to the determination of the parameters   and   in every 

application of the TSV. The only exception is the case of the «generalized photon», where the system of 

differential equations of the TSV does not require the determination of parameters   and   for its 

solution. 

 

2. The law of Selfvariations in the macrocosm 

In the macrocosm, the energy W  and momentum J  of the material particle, the energy 
sE  and 

the momentum 
sP  of the totality of the generalized photons emitted simultaneously by the material 

particle are given [5] by equations  
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where u  is the velocity of the material particle.  

For the Selfvariation of the rest mass 0

2

E

c
 we accept the symmetric equations of (1), as expressed by 

equations 
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E b
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. (3) 

As we will see in the next paragraphs, equations (3) stem from the law of Selfvariations, that is 

from equations (1). Also, we note that the energy 
sE  and the momentum 

sP  in equations (2) emerge 

from the sum of the generalized photons emitted simultaneously by the material particle in all directions. 

Equations (1) and (3) describe the interaction of the material particle with all of the generalized photons. 

Combining equations (1) and (3) with equations (2) we obtain 
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Symbolizing dr the displacement of the material particle during a time interval dt  we get for the change 

0dm  of the rest mass 
0m   

0
0 0

m
dm dt m d

t


  


r  

and with equations (4; a, b) we obtain 
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and symbolizing with dS  the four-dimensional arc length  

2

2
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we obtain  
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0 0 0

b
dm E m dS

c
  . (5) 

Similarly, starting from equations (4; c, d) we obtain equation 

0 0 0

cb
dE E m dS . (6) 

From equations (5) and (6) we get 

 2

0 0 0d m c E   

and we finally get  

2

0 0 constantm c E  . (7) 

The above equations, together with the corresponding ones for the electric charge, justify the totality of 

the cosmological data [6-12].   

In the law of Selfvariations, apart from the rest mass, the physical quantities of energy and 

momentum are introduced. In the macroscopic consideration of the law [5] we have introduced in 

equations (1) the velocity of the material particle. We have done the same for the generalized particle. In 

the following study we will not use of notion of velocity, with few exceptions in order to derive 

conclusions about the macroscopic consequences of the law. 

 

3. The basic study of the internal structure of the generalized particle 

Equations (1) describe the continuous interaction between the material particles and the 

generalized photons. We study the basic characteristics of this interaction in this paragraph. 

We consider a material particle with rest mass 
0 0m   and we denote 

0E  the rest energy of the 

whole of the generalized photons interacting with the particle. That is, we consider a generalized particle.  

The rest mass 
0m  and the rest energy 

0E  are given by equations (8) and (9) respectively 

according to special relativity 
2 4 2 2 2

0m c W c  J  (8) 

2 2 2 2

0 s sE E c  P . (9) 
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where i  is the imaginary unit, 
2 1i   . 

 

Using this notation, equations (1), (8) and (9) are written in the form of equations (13), (14) and 

(15), respectively 

0
0 , 0,1,2,3k
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2 2 2 2 2 2

0 1 2 3 0 0J J J J m c      (14) 

2
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c
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After differentiating equation (14) with respect to , 0,1,2,3kx k   we obtain 

20 3 01 2
0 1 2 3 0 0

k k k k k

J J mJ J
J J J J m c

x x x x x

   
    

    
 

and with equation (13) we obtain 

2 20 31 2
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and with equation (14) we obtain  

 2 2 2 20 31 2
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and we finally arrive at  

0 1
0 0 1 1

32
2 2 3 3 0, 0,1,2,3
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J Jb b
J P J J P J
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. (16) 

We now symbolize 

, , 0,1,2,3i
k i ki

k

J b
P J k i

x



  


. (17) 

With this notation, equation (16) can be written in the form  

0 0 1 1 2 2 3 3 0, 0,1,2,3k k k kJ J J J k        . (18) 

Also, from equation (17) we see that the physical quantities , ,i 0,1,2,3ki k   have units of 
kgr

s
. 

We now need the 4 4  matrix T  as given by equation  
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With this notation, equation (18) can be written in the form  

0TJ  . (20) 

We now prove the following theorem: 

 

“ For 
0 0m  , and for every , i 0,1,2,3k   equation (21) holds  
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Indeed, by differentiating equation (13) with respect to , 0,1,2,3ix i  , we get  
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and with equation (13) we also have 
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and since 
0 0m  , we obtain equation (21). 

 

We now prove the following theorem:  

“For 
0 0m  , and for every , , 0,1,2,3k i v  , the following equation holds 
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Indeed, by differentiating equation (17) 
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with respect to , 0,1,2,3vx v   we get 

 ki i
k i

v v k v

J b
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and with identity 
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and with equation (21) we get 

ki vi i i
v k
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and with equation (17) we get 
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and we finally have 
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which is equation (22). 

 

In the following paragraphs the physical meaning of the quantities , , 0,1,2,3ki k i  will 

emerge. 

 

 

4. The Lorentz-Einstein-Selfvariations Symmetry 
 

In this paragraph we calculate the Lorentz-Einstein transformations of the physical quantities 
ki  

, , 0,1,2,3k i  . A result that emerges is that the elements of matrix T  of equation (19) are not 

independent of each other. Matrix T   has internal symmetries that emerge from the Lorentz-Einstein 

transformations. These symmetries have to do with the interchange of indices k  and i  in the physical 

quantities , , 0,1,2,3ki k i  . 
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We consider an inertial frame of reference  , x , y ,zO t      moving with velocity  ,0,0u  with 

respect to another inertial frame of reference  , x, y, zO t , with their origins O  and O  coinciding at 

0t t   . We will calculate the Lorentz-Einstein [1-4] transformations for the physical quantities 

, , 0,1,2,3ki k i  . We begin with transformations (23) and (24) 
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 We then use the notation (10), (11), (12) and obtain the transformations (25) and (26) 
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We now derive the transformation of the physical quantity 
00 . From equation (17) for 0k i   

we get for the inertial reference frame  , x , y ,zO t      

0
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and we finally obtain equation 
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. 

 

Following the same procedure for , i 0,1,2,3k   we obtain the following 16 equations (27) for 

the Lorentz-Einstein transformations of the physical quantities 
ki  : 
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Inspecting equations (27) we see that they are divided into five individual groups of 

transformations, independent of each other. We rearrange the order of equations (27) to highlight these 

groups, which we numbered from I to V in equations (28). 
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Group I  of equations (28) is self-consistent when equations (29) and (30) hold 
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00 11   (29) 

10 01    (30) 

With equations (29) and (30) the transformations (28; I, II) can be written in the form of equations (31) 

and (32) 
'

00 00

'

11 11

'

22 22

'

33 33

 

 

 

 









 (31) 

 
'

01 01   (32) 

Transformations (27) allow for a wide spectrum of relations between the physical quantities 

, 0,1,2,3.ii i   The correlation of physical quantities 
ii  can vary all the way from their being non-

correlated to being equal, that is 

00 11 22 33       

according to the Lorentz-Einstein transformations. 

Group III  of equations (28) has the following characteristic property: if we assume that 

20 02   , then 
21 12   , and vice versa. Indeed, assuming that 

20 02   , from the third of 

equations  28, III  we get 

02 02 21

02 02 21

u
i
c

u
i
c

   

   

     
 

    
 

 

and comparing with the first of equations  28, III  we see that  

21 12   . 

 

If we now consider that 
20 02,   we similarly obtain 

21 12  , and vice versa. Indeed, from 

the third of equations  28, III  for 
20 02  , we get  

02 20 21

u
i
c

   
    
 

 

and comparing with the third of equations  28, III  we obtain  

21 12  . 

Similar conclusions are derived for group IV of equations (28). Following the same procedure it 

can be proved that for 
30 03    it is also 

31 13   , and vice versa. Also, for 
30 03   it is 

31 13  , 

and the other way around.  

In group V of equations (28) we can have either 
32 23,    or 

32 23,   or the physical 

quantities 
32  and 

23  can be independent during the interchange of the indices 2 and 3. That is, they 

behave like the physical quantities , 0,1,2,3ii i  , at least according to the Lorentz-Einstein 

transformations. Thus, we end up with the following four sets of equations (33), (34), (35) and (36) 
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In every case, transformations (27) obtain the form  
'
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c c
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c c
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c c
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Transformations (37) apply only at flat spacetime. 
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5. Physical quantities 
ki

λ , k,i = 0,1,2,3  and the conservation principles of energy and 

momentum 

  

In the case of the spontaneous emission of generalized photons by the material particles due to the 

Selfvariations, we have proven that the conservation of momentum, energy and electric charge holds [5] 

(paragraphs 4.4 and 4.5 by direct calculation of the total energetic content of a finite part of spacetime, in 

the same paragraphs through the continuity equation, and in paragraphs 4.7 and 4.8 through the energy-

momentum tensor). In this paragraph we correlate the conservation of energy and momentum of the 

generalized particle with the physical quantities , k,i 0,1,2,3ki  . 

Firstly, we prove the following theorem: 

“ For 
0 0m   the following propositions are equivalent: 

A. The generalized particle conserves its momentum 
i iJ P  along the axis , 0,1,2,3ix i  , i.e. 

 constanti i iJ P c   . (38) 

 

B. i k
k i ki

k i

P Pb
P J

x x


 
   

 
 (39) 

for every 0,1,2,3k  . ” 

Indeed, if equation (38) holds, then we differentiate with respect to , 0,1,2,3kx k   obtaining  

0i i

k k

i i

k k

J P

x x

P J

x x

 
 

 

 
 

 

 

and with equation (17) we obtain  

i
k i ki

k

P b
P J

x



  


 

and with equation (21) we obtain  

k i
k i ki

i k

P P b
P J

x x


 
   

 
, 

which is equation (39). 

Conversely, if equation (39) holds for every 0,1,2,3k  , we obtain 

i
k i ki

k

P b
P J

x



  


 

and with equation (17) we get  

i i

k k

P J

x x
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  0i iJ P
x


 


 

and since this equation holds for every 0,1,2,3k  , we obtain equation (38). 

From the previous theorem we conclude that equation (39) gives the rates of change ,i k

k i

P P

x x

 

 
, 

k 0,1,2,3 when the generalized particle conserves its momentum along the axis , 0,1,2,3ix i  . When 

the generalized particle conserves its momentum for every axis 
ix  then equation (39) holds for every 

, 0,1,2,3k i  . 

We now prove the following theorem:  

“If the generalized particle conserves its momentum along the axes 
ix  and 

kx  with k i , then: 

     
2 2 2

ki ik k i i k i k k i k i i k

b b b
J P J P c J c J c P c P         (40) 

, 0,1,2,3,k i k i  .” 

Indeed, since the generalized photon conserves its momentum along the axes 
ix  and 

kx , 

equations (41) hold: 

i i i

k k k

P c J

P c J

 

 
. (41) 

Combining equations (21) and (41) we obtain 

   i i k k

k i

i k

k i

c J c J
x x

J J

x x

 
  

 

 


 

 

and with equation (17) we get 

 

k i ki i k ik

ki ik k i i k

b b
P J PJ

b
J P J P

 

 

  

  

 

which is equation (40). The remaining equalities in equation (40) are derived by considering equations 

(41). Equation (40) holds for , , i 0,1,2,3k i k  , since equation (21), from which equation (41) results, 

is an identity for k i  and gives no information in this case.  

An immediate consequence of the preceding theorem is that if the generalized particle conserves 

its momentum in every axis, then equation (40) holds for every , i 0,1,2,3k  . 

From equation (40) we obtain the following theorem: 

TSV theorem for the symmetry of indices 
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“For 
0 0m   and if the generalized particle conserves its momentum along the axes 

ix and 
kx  with 

k i , the following equivalences hold: 

A. 
ik ki k i i k i k k i k i i kJ P J P c J c J c P c P          (42) 

 

B. 
ik ki     

     
2 2 2

ki k i i k i k k i k i i k

b b b
J P J P c J c J c P c P                     (43) 

, 0,1,2,3,k i k i  . ” 

The theorem is an immediate consequence of equation (40). Furthermore, if the generalized 

particle conserves its momentum along every axis , 0,1,2,3ix i  , then the equalities (42) and (43) hold 

for every , , 0,1,2,3k i k i  . 

We now consider the four-vector ,C  as given by equation 

                  

0

1

2

3

.

c

c
C J P

c

c

 
 
   
 
 
 

                                  (44) 

When the generalized particle conserves its momentum along every axis, then the four-vector C  is 

constant. Also, we denote 
0M  the total rest mass of the generalized particle, as given by equation 

2 2 2 2 2 2

0 1 2 3 0 c ,TC C c c c c M                          (45) 

where 
TC  is the adjoint of the column vector C . 

For reasons that will become apparent later in our study, we give the following definitions: We 

name the symmetry , , , 0,1,2,3ik ki k i k i     internal symmetry, and the symmetry 

, , , 0,1,2,3ik ki k i k i      external symmetry.  

We now prove the following theorem: 

First Theorem of the TSV (Internal Symmetry Theorem)  

“If the generalized particle conserves its momentum in every axis, the following hold:  

A. 
ik ki   for every , 0,1,2,3k i    

the four-vectors J , P  and C are parallel   P J                              (46) 

where , 0   . 

B. For 1  the following equation holds: 

                                  
2

0 0E m c                                     (47) 

C. For 1  the following equations hold: 

 0 0 1 1 2 2 3 3exp
b

K c X c X c X c X
 

      
 

             (48) 
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2
2 0

0

0 0 1 1 2 2 3 31 exp

M c
m c

b
K c X c X c X c X

 
 

     
 

 (49) 

 

 

 

2

0 0 0 1 1 2 2 3 3

0

0 0 1 1 2 2 3 3

exp

1 exp

b
M c K c X c X c X c X

E
b

K c X c X c X c X

 
    
 

 
 

     
 

             (50) 

where K  is a dimensionless constant physical quantity. 

D.                            
ik ki   for every , i 0,1,2,3k    

0ki   for every , i 0,1,2,3k  .                               (51)” 

Equivalence (46) results immediately from equivalence (42). For 0 , from equation (46) we 

have that 0P   which is impossible, since in this case the Selfvariations of the rest mass 
0 0m  , do not 

exist, as seen from equation (13). Therefore, 0 . 

For 1 , from equation (46) we get P J  , and from equations (14) and (15) we see that 
2 2 4

0 0E m c , which is equation (47). 

From equation (46) we have 
i iP J  for every 0,1,2,3i   and in combination with equation 

i i iJ P c   we get for 1  equations (52) and (53) 

, 0,1,2,3
1

i
i

c
J i 


 (52) 

, 0,1,2,3
1

i
i

c
P i


 


. (53) 

Combining equations (14) and (52) we get 

 
 2 2 2 2 2 2

0 0 1 2 32

1
0

1
m c c c c c    

 
  

and with equation (45) we obtain equation 

 

2 2
2 2 0
0 2

0
1

M c
m c  


. (54) 

Differentiating equation (54) with respect to , 0,1,2,3vx v   and considering equation (13) we 

obtain  

 

2 2
2 2 0
0 3

22
0

1
v

v

M cb
Pm c

x


 


 

and with equation (54) we have  
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2 2 2 2

0 0

2 3
0

1 1

1

v

v

v

v

M c M cb
P

x

b
P

x


 

   


   



 

and with equation (53) for i v  we arrive at equation 

, 0,1,2,3v

v

b
c v

x


   


. (55) 

By integration of equation (55) we obtain 

 0 0 1 1 2 2 3 3exp
b

K c X c X c X c X
 

      
 

 

where K  is the integration constant, which is equation (48). 

Combining equations (54) and (48) we obtain 

 

2
2 0

0

0 0 1 1 2 2 3 31 exp

M c
m c

b
K c X c X c X c X

 
 

     
 

 

which is equation (49). Combining equations (15), (53) and (45) we obtain  

 

2 2 2 2

0 0

22

2

0
0

0
1

1

E M c

c

M c
E


 

 


 

 

 

and with equation (48) we get equation (50). 

Equations (49) and (50) are equivalent with the equations of TSV which justify the cosmological 

data. Indeed, after combining them we obtain equation 

2 2

0 0 0m c E M c    

which is equation (7). Furthermore, we observe from equations (4), which refer to the case of generalized 

photons spontaneously emitted by the material particle, that the four-vectors J  and P  are parallel. Thus, 

in the case of equations (4) the above fundamental theorem holds.  

In order to prove equation (7) in paragraph 2 we used equations (3), which we can now prove. 

Differentiating equation (50) with respect to , 0,1,2,3kx k   we arrive at equation  

0
0 , 0,1,2,3k

k

E b
J E k

x


  


. (56) 

Considering equation (11), equation (56) is equivalent to equations (3). Of course, we now know 

that equations (3) hold when the four-vectors J  and P  are parallel to each other, for the case of the 

internal symmetry.  
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We studied the case of a material particle with rest mass 
0 0m  . Therefore, from equation (54) 

we see that 
0 0M  . Furthermore, as we already observed during the proof of equivalence (46), it is also 

0 , hence from equation (48) we obtain 0K   So from equations (49) and (50) we obtain 

0 0m  and 
0 0E   in the case of the symmetry , ,i 0,1,2,3ik ki k   .  

Combining equations (52) and (53) with equation (48) we get respectively equations (57) and 

(58) for the case of the internal symmetry 

 0 0 1 1 2 2 3 31 exp

0,1,2,3

i
i

c
J

b
K c X c X c X c X

i


 

     
 



 (57) 

 

 

0 0 1 1 2 2 3 3

0 0 1 1 2 2 3 3

exp

1 exp

0,1,2,3

i

i

b
c K c X c X c X c X d

P
b

K c X c X c X c X

i

 
    
 
 

     
 



. (58) 

We now prove equivalence (51). For 0ki   for every , i 0,1,2,3k   it obviously is 
ik ki  . In 

order to prove the inverse of equivalence (51), we differentiate equation (57) with respect to 

, 0,1,2,3kx k   and get 

 

 

0 0 1 1 2 2 3 3

2

0 0 1 1 2 2 3 3

exp

1 exp

i k

i

k

b b
c c K c x c x c x c x

J

x b
K c x c x c x c x

 
      

   
      

  

 

and with equation (57), as well as equation (58) for i k  we get 

i
k i

k

J b
P J

x





 

and with equation (17) we get 0ki  , which completes equivalence (51). 

With the proof of equivalence (51) we can see that equation (43), initially proven for the 

symmetry , 0,1,2,3ik ki k    , is of general validity. That is, equation (59) generally holds: 

     
2 2 2

, , 0,1,2,3

ki k i i k i k k i k i i k

b b b
J P J P c J c J c P c P

k i k i

      

 

. (59) 

We begin the study of the external symmetry by proving the following theorem: 



 21 

“In the external symmetry, the 4-vector C  of the total energy content of the generalized particle cannot 

vanish: 

0C  .                      (60)” 

Indeed, for 0C   we obtain J P   from equation (44). Therefore, the four-vectors J  and P   

are parallel. According to equivalence (46) the parallelism of the four-vectors J   and P is equivalent to 

the internal symmetry. Therefore, in the external symmetry it is 0C  . 

We now prove the following theorem: 

Second Theorem of the TSV 

“ If the generalized particle conserves its momentum along every axis, and the symmetry 
ik ki    

holds for every k i, , 0,1,2,3k i  , then:  

A. 0i vk k iv v kic c c                       (61) 

for every , , , , , 0,1,2,3i v v k k i k i v    . 

B. 
2 2

ki v v
v ki ki v ki ki

v

bc bcb b
P J

x


   


    


                 (62) 

for every , , 0,1,2,3k i k i  . 

C.  0TJ                                    (63) 

0 0 1 1 2 2 3 3 0,k 0,1,2,3k k k kJ J J J        . 

D.  TP TC .                      (64)” 

If the generalized particle conserves its momentum along every axis and the index symmetry 

ik ki    holds for , , 0,1,2,3k i k i  , from equivalence (40) we obtain       

      , k i, k,i 0,1,2,3
2

ki i k k i

b
c J c J     .                    (65) 

Considering equation (65) we get 

      0
2

i vk k iv v ki i k v v k k v i i v v i k k i

b
c c c c c J c J c c J c J c c J c J             . 

Thus, we get equation (61).  

Differentiating equation (65) with respect to , 0,1,2,3vx v   we obtain 

2

ki k i
i k

v v v

J Jb
c c

x x x

    
  

   
 

and with equation (17) we get 
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2

2

2 2

ki
i v k vk k v i vi

v

ki
v i k k i i vk k vi

v

ki
v i k k i i vk k vi

v

b b b
c P J c P J

x

b b
P c J c J c c

x

b b b
P c J c J c c

x


 


 


 

     
       

     

  
      


   



 

and with equation (65) we obtain 

 
2

ki
v ki i vk k vi

v

b b
P c c

x


  


  


 

and with equation (61) in the form 

i vk k vi v kic c c      

we get 

2

ki v
v ki ki

v

bcb
P

x


 


 


 

which is equation (62). The second equality in equation (62) emerges from the substitution  

, 0,1,2,3v v vP c J v    

according to equation (44). 

Equation (63) is equation (18). Equation (64) results by combining equations (63) and (44) 

  .TP T C J TC TJ TC      

In the case when, for the external symmetry, besides equation 
ik ki    it is also 

ik ki   for 

some indices k  and i , with , , 0,1,2,3k i k i  , we get for these indices k  and i  that it is 0.ik   

Therefore, in equations (33)-(36), it either holds that 0,ik ki     or 0ik ki    for 

, , 0,1,2,3.k i k i   Thus, equations (33)-(36) can be stated in the form of equations (66)-(69): 

10 01 10 01

20 02

30 03

21 12

31 13

23 32

0 0

0

0

0

0

0

   

 

 

 

 

 

     

  

  

  

  

  

 (66) 
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10 01 10 01

20 02

30 03

21 12

31 13

32 23 32 23

0 0

0

0

0

0

0 0

   

 

 

 

 

   

     

 

 

 

 

     

 (67) 

 

10 01 10 01

20 02 20 02

30 03

21 12 21 12

31 13

32 23 32 23

0 0

0 0

0

0 0

0

0 0

   

   

 

   

 

   

     

     

 

     

 

     

 (68) 

 

10 01 10 01

20 02

30 03 30 03

21 12

31 13 31 13

32 23 32 23

0 0

0

0 0

0

0 0

0 0

   

 

   

 

   

   

     

 

     

 

     

     

. (69) 

In the following paragraphs, the physical content of the physical quantities 

, , , 0,1,2,3ki k i k i   , as well as of the theorems we proved in this paragraph, emerge. 

 

6. The Unified Selfvariations Interaction (USVI) 

According to the law of selfvariations every material particle interacts both with the generalized 

photons emitted by itself due to the selfvariations, and with the generalized photons originating from 

other material particles. In the second case, an indirect interaction emerges between material particles 

through the generalized photons. Generalized photons emitted by one material particle interact with 

another material particle. Through this mechanism the TSV predicts a unified interaction between 

material particles. The individual interactions only emerge from the different, for each particular case, 

physical quantity Q  which selfvariates, resulting in the emission of the corresponding generalized 

photons. 

In this paragraph we study the basic characteristics of the USVI. We suppose that for the 

generalized particle the conservation of energy-momentum holds, hence the equations of the preceding 

paragraph also hold. 

For the rate of change of the four-vector 

0

1
J

m
 we get  
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0

2

0 0 0

1i i i

k k k

J J m J

x m m x m x

   
   

   
 

and with equations (13) and (17) we get 

02

0 0 0

1i i
k k i ki

k

J J b b
P m P J

x m m m


   
      

   
 

and we finally obtain  

0 0

, , 0,1,2,3i ki

k

J
k i

x m m

 
  

  
. (70) 

According to equation (70), when 0ki   for at least two indices , , , 0,1,2,3,k i k i   the kinetic 

state of the material particle is disturbed. According to equivalence (51) in the internal symmetry it is 

0ki   for every , 0,1,2,3.k i   Therefore, in the internal symmetry the material particle maintains its 

kinetic state. In an isotropic space we expect that the spontaneous emission of generalized photons by the 

material particle cannot disturb its kinetic state. Consequently, the internal symmetry concerns the 

spontaneous emission of generalized photons by the material particle in an isotropic space. 

In contrast, in the case of the external symmetry it can be 0ki   for some indices 

, , , 0,1,2,3k i k i  . Therefore, the external symmetry must be due to generalized photons with which the 

material particle interacts, and which originate from other material particles. The distribution of 

generalized photons depends on the position in space of the material particle relative to other material 

particles. This leads to the destruction of the isotropy of space for the material particle. The external 

symmetry factor will emerge in the study that follows. 

The initial study of the Selfvariations [5] concerned the rest mass and the electric charge. The 

study we have presented up to this point allows us to study the Selfvariations in their most general 

expression. 

We consider a physical quantity Q  which we shall call selfvariating “charge Q  ”, or simply 

charge Q , unaffected by every change of reference frame, therefore Lorentz-Einstein invariant, and 

obeys the law of Selfvariations, that is equation 

, 0,1,2,3k

k

Q b
P Q k

x


 


. (71) 

In equation (71) the momentum ,k 0,1,2,3kP  , i.e. the four-vector P , depends on the 

selfvariating charge .Q  Two material particles carrying a selfvariating charge of the same nature interact 

with each other when generalized photons emitted by the charge 
1Q  of one of them, interact with the 

charge Q  of the other. In this particular case, we denote Q  the charge of the material particle we are 

studying. 

The rest mass 
0m  is defined as a quantity of mass or energy divided by 

2c , which is invariant 

according to the Lorentz-Einstein transformations. The 4-vector of the momentum J  of the material 

particle is related to the rest mass 
0m  through equation (14). The charge Q  contributes to the energy 

content of the material particle and, therefore, also contributes to its rest mass. Furthermore, the charge Q  

modifies the 4-vector of momentum J  of the material particle and, therefore, contributes to the variation 

of the rest mass 
0m  of the material particle. Consequently, for the change of the four-vector J  of the 
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material particle due to the charge ,Q  the four-vector P  of equation (71) enters into equation (17). The 

rest mass 
0m  is due to the energy content given to the material particle by the charge Q , and constitutes 

part, or even the whole, depending on the situation, of the total rest mass of the material particle. The 

consequences of this conclusion become evident when we calculate the rate of change of the four-vector 

1
.J

Q
 

 

Third Theorem of the TSV 

“The rate of change of the four-vector 
1

J
Q

 due to the Selfvariations of the charge Q  is given by 

equation  

, , 0,1,2,3i ki

k

J
k i

x Q Q

 
  

  
.      (72) 

For k i  the physical quantities ki

Q


 are given by  

, k i,k,i 0,1,2,3ki
kiza

Q


   ,      (73) 

where z is the function 

 0 0 1 1 2 2 3 3exp
2

b
z c x c x c x c x

 
     

 
.   (74) 

For the constants 
kia  the following equations hold 

0

0

0

i vk k iv v ki

i vk k iv v ki

i vk k iv v ki

c a c a c a

J a J a J a

Pa P a P a

  

  

  

                      (75) 

for every , , , , , 0,1,2,3i v v k k i i k     . ” 

In order to prove the theorem, we take 

2

1i i i

k k k

J J JQ

x Q Q x Q x

   
   

   
 

and with equations (71) and (17) we get  

i ki

k

J

x Q Q

 
 

  
, 

which is equation (72).  

Equations (17) and (71) hold for every , i 0,1,2,3.k  . Therefore, equation (72) also holds for 

every , 0,1,2,3.k i  . For , , 0,1,2,3k i k i   and 0,1,2,3v   equation (62) holds and, since 0Q  , 

we obtain  

2

ki v
v ki ki

v

bcb
Q PQ Q

x


 


 


 

and with equation (71) we get  
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2

2

ki v
ki ki

v v

ki v ki

v

bcQ
Q Q

x x

bc

x Q Q


 

 

 
 

 

 
  

  

 

and integrating we obtain  

 0 0 1 1 2 2 3 3exp
2

ki
ki

b
a c x c x c x c x

Q

  
     

 
, 

where , , , 0,1,2,3kia k i k i   are the integration constants, and with (74) we get equation (73). 

The relation 
ik kia a   for , , 0,1,2,3k i k i  , as well as the first of equations (75), result from 

the combination of equations (61) and (73). To prove the second and third of equations (75) we consider 

equation (59).  

In the following proofs we presuppose the relations 
ik kia a   and 

, , , 0,1,2,3ik ki k i k i     . We will also use equation 

, 0,1,2,3
2

k

k

bcz
z k

x


  


, (76) 

which results immediately from equation (74).  

For , , 0,1,2,3k i k i   equation (73) does not hold. So we define the physical quantities 
k  as 

given by equation 

, 0,1,2,3kk
k k

Q


    . (77) 

Furthermore, we define the 4 4  diagonal matrix   given by 

 

0

1

2

3

0 0 0

0 0 0

0 0 0

0 0 0

 
 


  
 
 

 

. (78) 

The physical quantities , 0,1,2,3k k   are calculated in the following paragraphs, where we will also 

see their physical content. 

We now define the three-vectors α  and β , as given by equations (79) and (80) respectively 

011

2 02

3 03

1
x

y

z

ic

ic
Q

ic

 

  

 

    
    

      
        

α   (79) 
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321

2 13

3 21

1
x

y

z

Q

 

  

 

    
    

      
        

β .  (80) 

Vectors α  and β  contain all of the physical quantities 
ki  for , , 0,1,2,3k i k i  s, ince 

ik ki   . Furthermore, from transformations (37), and given that the charge Q  remains invariant under 

Lorentz-Einstein transformations, it emerges that the vectors α  and β  are transformed like the intensities 

of the electric field ε  and of the magnetic field Β , respectively. 

Combining equations (79) and (80) with equation (73), the vectors α  and β  are written in the 

form of equations (81) and (82), respectively 

011

2 02

3 03

x

y

z

icz

 

  

 

    
    

      
        

α      (81) 

321

2 13

3 21

x

y

z

z

 

  

 

    
    

      
        

β .      (82) 

We write equation (17) in the form  

, k,i 0,1,2,3i
k i ki

k

J b
P J

x



  


.      (83) 

The rate of change of the momentum of the material particle equals the sum of the two terms in the right 

part of equation (83). For 0k  , and since 
0x ict , equation (83) gives the rate of change of the particle 

momentum with respect to time ,t  i.e. the physical quantity we call “force”. By using the concept of 

force, as defined by Newton, we also have to use the concept of velocity. For this reason we symbolize u  

the velocity of the material particle, as given by equation 

1

2

3

x

y

z

uu

u u

u u

  
  

    
     

u . (84) 

Also, we define the 4-vector of the velocity u , as given by equation 

0

1

2

3

x

y

z

icu

uu
u

uu

u u

  
  
   
  
  
    

. (85) 
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We now prove the following theorem: 

 

Fourth Theorem of the TSV  

 

“The rates of change with respect to time  0t x ict  of the four-vectors J  and P  of the momentum of 

the generalized particle carrying charge Q  are given by equations 

0 0

i
dJ dQ i i

J Q u Q c
dx Qdx c c

 
    

 
  

u α

α u β

 (86) 

0 0

i
dP dQ i i

J Q u Q c
dx Qdx c c

 
     

 
  

u α

α u β

. (87) ” 

The matrix   is given in equation (78). By u β  we denote the outer product of vectors u  and .β   

We now prove the first of equations (86): 

0 0 0 0 0
1 2 3

J J J J Jd
u u u

dt Q t Q x Q y Q z Q

            
            
            

 

and using the notation of equation (10) we get  

0 0 0 0 0
1 2 3

0 0 1 2 3

J J J J Jicd
ic u u u

dx Q x Q x Q x Q x Q

            
            

            
 

and with equation (72) we get 

0 00 10 20 30
1 2 3

0

Jicd
ic u u u

dx Q Q Q Q Q

    
    

 
 

0 00 10 20 30
1 2 3

0

Jd i
u u u

dx Q Q c Q Q Q

      
      

   
 

0 00 01 02 03
1 2 3

0

Jd i
u u u

dx Q Q c Q Q Q

      
      

   
 

0 0 00 01 02 03
1 2 32

0 0

1 dJ J dQ i
u u u

Q dx Q dx Q c Q Q Q

    
     

 
 

 0
0 00 1 01 2 02 3 03

0 0

dJ dQ i
J u u u

dx Qdx c
         

and with equations (77) and (79) we have  

0
0 0 1 1 2 2 3 3

0 0

dJ dQ i i i i
J Q Q u u u

dx Qdx c c c c
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which is the first of equations (86) since  

0 0 0 0

i i
Q u Q ic Q

c c
       . 

We prove the second of equations (86) and we can similarly prove the third and the fourth: 

1 2 3
x x x x xJ J J J Jd

u u u
dt Q t Q x Q y Q z Q

            
            
            

 

and using the notation of equations (10) and (11) we obtain  

1 1 1 1 1
1 2 3

0 0 1 2 3

J J J J Jicd ic
u u u

dx Q x Q x Q x Q x Q

            
            
            

 

and with equation (72) we get  

01 311 11 21
1 2 3

0

Jicd
ic u u u

dx Q Q Q Q Q

   
    

 
 

01 3 131 1 11 2 21

0

iuJ iu iud

dx Q c Q Q c Q c Q

   
     

 
 

01 3 131 1 1 11 2 21

2

0 0

1 iudJ J iu iudQ

Q dx Q dx c Q Q c Q c Q

  
       

31 1 2
1 11 01 21 13

0 0

iudJ iu iudQ
J

dx Qdx c c c
         

and with equations (77), (79) and (80), we obtain  

 1
1 1 1 2 3 3 2

0 0

dJ dQ i i i
J Q Q Q u u

dx Qdx c c c
         

which is the second of equations (86). Equation (87) results from the combination of equations (44) and 

(86). 

Using the symbol J  for the momentum vector of the material particle  

1

2

3

x

y

z

JJ

J J

J J

  
  

    
     

J  

and taking into account equations (10) and (11), the set of equations (86) can be written in the form  
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2

0

1 1

2 2

3 3

dW dQ
W Qc Q

dt Qdt

u
d dQ

Q u Q
dt Qdt

u

    

 
 

     
 
  

u α

J
J α u β

. (88) 

Equations (88) give the rate of change of the energy W  and momentum J  of the material 

particle with respect to time .t  From equation (8) we can calculate the contribution of charge Q  to the 

rate of change of the rest mass 
0m  of the material particle with respect to time .t   

The rate of change of the four-vector J  of the momentum of the material particle is given by the 

sum of the three terms in the right part of equation (86). The USVI and its consequences for the material 

particle depend on which of these terms is the strongest and which is the weakest. This can be studied on 

the basis of the characteristics of each individual term. The third term on the right of equation (86) is 

known as the Lorentz force, in the case of electromagnetic fields. We now prove the following theorem 

about the vector pair  , .α β   

Fifth Theorem of the TSV 

“ For the vector pair  ,α β  the following equations hold:  

                           1 01 2 02 3 03
2

icbz
c c c      α   (a) 

0 β      (b) 

t


  



β
α       (c) (89) 

0 01 2 21 3 31

0 02 2 12 3 32 2

0 03 2 13 3 23

2

c c c
bz

c c c
c t

c c c

  

  

  

  
 

     
  
   

α
β . (d) ” 

Differentiating equations (81) and (82) with respect to , 0,1,2,3kx k   and considering equation 

(76), we obtain equations  

2

k

k

bc

x


 



α
α   (90) 

2

k

k

bc

x


 



β
β  . (91) 

From equations (90) and (91) we can easily derive equations (89). Indicatively we prove equation (89,b). 

From equation (82) we obtain  



 31 

32 13 21

1 2 3

z z z

x x x
  

  
   

  
β  

and with equation (76) we get  

 1 32 2 13 3 21
2

bz
c c c      β  

and with the first of equations (75) for    , , 1,3,2i v k   we get  

0 β . 

From equations (86) and (89) we conclude that the vector pair  ,α β  expresses the intensity of 

the USVI field according to the paradigm of the classical definition of the field potential. From equation 

(17) it emerges that the physical quantities , ,i 0,1,2,3ki k   have units (dimensions) of 
1kg s . Thus, 

from equation (79) it emerges that, if Q  plays the role of the rest mass, the intensity α  has units of 
2ms . 

If Q  is the electric charge, the intensity α  has units of 
1NCb
. Through equations (81) and (82) we can 

determine the units of the constants , , ,i 0,1,2,3ki k i k   , which depend on the nature of the 

selfvariating charge Q . 

From equations (89 b,c) we conclude that the potential is always defined in the  ,α β - field of 

the USVI. That is, the scalar potential  

   0 1 2 3, , , , , ,V V t x y z V x x x x   

and the vector potential A   

   
1

0 1 2 3 2

3

, , , , , ,

x

y

z

AA

t x y z x x x x A A

A A

  
  

      
     

A A A  

are defined through the equations 

0

ic
V V

t x

 

 
     

 

β Α

Α Α
α

. 

We can introduce in the above equations the gauge function .f  That is, we can add to the scalar 

potential V  the term  

0

f ic f

t x

 
  
 

 

and to the vector potential A  the term 
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f  

for an arbitrary function f   

   0 1 2 3, , , , , ,f f t x y z f x x x x   

without changing the intensity  ,α β  of the field. The proof of the above equations is known and trivial 

[13-17] and we will not repeat it here. For the field potential of the USVI the following theorem holds: 

 

Sixth Theorem of the TSV 

“In the  ,α β -field of USVI the pair of scalar-vector potentials  ,V A  is always defined 

through equations  

0

0

ic
V ic A

t x

 

 
     

 

β Α

Α Α
α

. (92) 

The four-vector A  of the potential 

0

1

2

3

x

y

z

iV
A

c
A

AA
A

A
A

A

 
   
   
    
   
   
    

 (93) 

is given by equation  

2
, for

, for

ki k

k i

i

k

i

f
z i k

b c x
A

f
i k

x

 
  

 
 



 (94) 

where 0, , 0,1,2,3kc k i   and 
kf  is the gauge function.” 

Equations (92) are equivalent to equations (89) as we have already mentioned. The proof of 

equation (94) can be performed through the first of equations (75)  

0

, , , , , 0,1,2,3

i vk k iv v kic a c a c a

i v v k k i i k 

  

   
 

of the third theorem of the TSV. The mathematical calculations do not contribute anything useful to our 

study, thus we omit them. You can verify that the potential of equation (94) gives equations (81) and (82) 

through equations (92) taking also into account the first of equations (75).  
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According to relation (60) it is 0kc   for at least one of the indices 0,1,2,3k  . So, from 

equation (94) the following four sets of the potentials follow:  

0

0
0

0

01 0
1

0 1

02 0
2

0 2

03 0
3

0 3

0

2

2

2

c

f
A

x

fz
A

b c x

fz
A

b c x

fz
A

b c x














 




 




 



 (95) 

 

1

10 1
0

1 0

1
1

1

12 1
2

1 2

13 1
3

1 3

0

2

2

2

c

fz
A

b c x

f
A

x

fz
A

b c x

fz
A

b c x










 








 




 



 (96) 

 

2

20 2
0

2 0

21 2
1

2 1

2
2

2

23 2
3

2 3

0

2

2

2

c

fz
A

b c x

fz
A

b c x

f
A

x

fz
A

b c x










 




 








 



 (97) 
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3

30 3
0

3 0

31 3
1

3 1

32 3
2

3 2

3
3

3

0

2

2

2

c

fz
A

b c x

fz
A

b c x

fz
A

b c x

f
A

x










 




 




 







. (98) 

Indicatively, we calculate the components 
1  and 

1  of the intensity  ,α β  of the USVI field 

from the potentials (95). From the second of equations (92) we obtain 

0 1
1

1 0

A A
ic

x x


  
  

  
 

and with equations (95) we get  

0 01 0
1

1 0 0 0 1

2f fz
ic

x x x b c x




      
      

       

 

01
1

0 0

2 z
ic

b c x





 


 

and with equation (76) we get 

1 01icz   

that is we get the intensity 
1 of the field, as given by equation (81). 

From the first of equations (92) we have  

3 2
1

2 3

A A

x x


 
 
 

 

and with equations (95) we get 

 

 

 

 

03 02
1

0 2 0 2

2 2z z

b c x b c x

 


 
 

 
 

and with equation (76) we get 

2 03 3 02
1

0 0

c c
z z

c c

 
     

and considering that 
02 20   , we get  

 1 2 03 3 20

0

z
c c

c
     . (99) 

03 0 02 0
1

2 0 3 3 0 2

2 2f fz z

x b c x x b c x
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From the first of equations (75) for    , , 2,0,3i v k   we obtain 

2 03 3 20 0 32

2 03 3 20 0 32

0c a c a c a

c a c a c a

  

  
 

and substituting into equation (99), we see that 

1 32z   

that is, we get the intensity 
1  of the field, as given by equation (82). 

The gauge functions ,k 0,1,2,3kf   in equations (95)-(98) are not independent of each other. 

For 0kc   and 0ic   for , , 0,1,2,3k i k i   equation (100) holds 

2

2

4
, 0, , , 0,1,2,3ki

k i k i

k i

z
f f c c k i k i

b c c


     . (100) 

The proof of equation (100) is through the first of equations (75). The proof is lengthy and we 

omit it. Indicatively, we will prove the third of equations (95) from the third of equations (96) for 1k   

and 0i   in equation (100). 

For 
0 0c   and 

1 0c   both equations (95) and equations (96) hold. From equation (100) for 

1k   and 0i   we get equation 
2

10
1 0 2

0 1

4 z
f f

b c c


   (101) 

From the third of equations (96) and equation (101) we get 
2

1012
2 0 2

1 2 0 1

2

0 1012
2 2

1 2 0 1 2

2 4

2 4

z z
A f

b c x b c c

fz z
A

b c x b c c x





 
   

  

 
  

 

 

and with equation (76) we obtain 

0 2 1012
2

1 2 0 1

2 2f cz z
A

b c x b c c

 
  


 

  0
2 0 12 2 10

0 1 2

2 fz
A c c

bc c x
 


  


 

and since 
10 01   , we get equation 

  0
2 0 12 2 01

0 1 2

2 fz
A c c

bc c x
 


  


. (102) 

From the first of equations (75) for    , , 0,1,2i v k   we obtain 

0 12 2 01 1 20

0 12 2 01 1 20

0 12 2 01 1 02

0c a c a c a

c a c a c a

c a c a c a

  

  

 

 

and substituting into equation (102) we obtain equation 
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02 0
2

0 2

2 fz
A

b c x

 
 


. (103) 

Equation (103) is the third of equations (95). 

According to equation (100), if 0kc   for more than one of the constants , 0,1,2,3kc k  , the 

sets of equations of potential resulting from equation (94) have in the end a gauge function. In the 

application we presented assuming 
0 0c   and 

1 0c   for a specific gauge function 
0f  in equations (95), 

the gauge function 
1f  in equations (96) is given by equation (101).  

 

7. The main diagonal of the T  matrix 

In this paragraph we study the elements of the main diagonal of the matrix T  of equation (19), 

that is, the elements of the matrix   of equation (78). Since 0z   we define the physical quantities 

, 0,1,2,3kT k    

k
kT

z


  

and we write the physical quantities 
k  in the form  

, 0,1,2,3k kzT k   .  (104) 

We expand equation (18) for 0,1,2,3k   and get 

0 00 1 01 2 02 3 03

0 10 1 11 2 12 3 13

0 20 1 21 2 22 3 23

0 30 1 31 2 32 3 33

0

0

0

0

J J J J

J J J J

J J J J

J J J J

   

   

   

   

   

   

   

   

. 

Considering equations (73), (77), and (104), and that 
ik ki    for every , , 0,1,2,3k i k i  , we get 

0 0 1 01 2 02 3 03

0 01 1 1 2 21 3 13

0 02 1 21 2 2 3 32

0 03 1 13 2 32 3 3

0

0

0

0

J zQT J zQ J zQ J zQ

J zQ J zQT J zQ J zQ

J zQ J zQ J zQT J zQ

J zQ J zQ J zQ J zQT

  

  

  

  

   

    

    

    

 

and since 0zQ  , we get 

0 0 1 01 2 02 3 03

0 01 1 1 2 21 3 13

0 02 1 21 2 2 3 32

0 03 1 13 2 32 3 3

0

0

0

0

J T J J J

J J T J J

J J J T J

J J J J T

  

  

  

  

   

    

    

    

. (105) 
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Equations (105) comprise a 4 4 homogeneous linear system of equations with the momenta 

0 1 2 3, , ,J J J J . as unknowns. Therefore, it always has the trivial solution 

   0 1 2 3, , , 0,0,0,0J J J J  . 

In this case, from equation (14) we get 
0 0m  . 

We study the case 
0 0m   and are, therefore, interested in the non-zero solutions  

   0 1 2 3, , , 0,0,0,0J J J J   

of the system of equations (105). We prove that one case where the system of equations (105) has non- 

zero solutions is when equation (106) holds: 

0 1 2 3 0T T T T    . (106) 

In this case, equations (105) are written in the form of equations 

1 01 2 02 3 03

0 01 2 21 3 13

0 02 1 21 3 32

0 03 1 13 2 32

0 0 ( )

0 0 ( )

0 0 ( )

0 0 ( )

J J J a

J J J b

J J J c

J J J d

  

  

  

  

   

    

    

    

. (107) 

By performing the necessary calculations we get the determinant D  of the system of equations (107) in 

the form  

 
2

01 32 02 13 03 21D         . (108) 

Considering equation (73) and that 0zQ  , we get 

 01 32 02 13 03 21 01 32 02 13 03 21

1

zQ
                 

and with equation (59) we arrive at  

01 32 02 13 03 21 0        . (109) 

From equations (108) and (109) we obtain 0.D   Therefore, the homogeneous linear system of 

equations (107) has non-zero solutions. 

In the case when equations (106) hold, we obtain from equation (77)  

0 1 2 3 0      

and from equation (78) we get 0  . Therefore, the second term on the right side of equations (86) and 

(87) of the USVI vanishes when equations (106) hold. 
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The elements of the main diagonal of matrix T  and, equivalently, the physical quantities 

, 0,1,2,3kT k  , have a specific physical content. As we will see, they are related to the curvature of the 

part of spacetime occupied by the generalized particle. 

Applying the Lorentz-Einstein transformations for the physical quantities ,k 0,1,2,3ki   we 

derive equation (29), 
00 11  . The reference frame  , , ,t x y z      of paragraph 4 moves with respect 

to the reference frame  , , ,t x y z  with constant velocity along the x -axis. If we assume that the 

motion is along the y - or z -axis, the generalization of equation (29) follows; the Lorentz-Einstein 

transformations lead to the following equation 

00 11 22 33 0       . 

We also arrive at this equation from the Lorentz-Einstein transformations of equations (105). The 

function z  and the charge Q  are invariant, therefore from equation (73) we conclude that the physical 

quantities 
ki  and , , , 0,1,2,3ki k i k i    transform in the same manner according to Lorentz-Einstein. 

Applying the transformations (26) and (37) on equations (105) we again arrive at 

00 11 22 33 0       . 

This is not a transformation equation of the physical quantities , 0,1,2,3kk k   between two 

inertial reference frames. It is an equation relating the elements of the main diagonal of matrix T  in the 

same inertial frame of reference. Thus, taking into account equations (77) and (104), we obtain equation 

(110) when the Lorentz-Einstein transformations hold 

0 1 2 3T T T T   . (110) 

In equations (105) at least one of the momenta ,k 0,1,2,3kJ   is non-zero. Let it be 
0 0J  , 

then from equations (105 b,c,d) we get 

 

 

 

01 1 1 2 21 3 13

0

02 1 21 2 2 3 32

0

03 1 13 2 32 3 3

0

1

1

1

J T J J
J

J J T J
J

J J J T
J

  

  

  

  

  

   

 

and substituting into equation (105 a) we get 

   

 

2

0 0 1 1 1 2 21 3 13 2 1 21 2 2 3 32

3 1 13 2 32 3 3 0

J T J J T J J J J J T J

J J J J T

   

 

      

   
 

and after the calculations we get 

2 2 2 2

0 0 1 1 2 2 3 3 0J T J T J T J T    .  (111) 
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We arrive at the same equation no matter which of the momentum components , 0,1,2,3kJ k   we 

consider different from zero.  

The Lorentz-Einstein transformations lead to equation (110) 

0 1 2 3T T T T    

so from equation (111) we obtain  

 2 2 2 2

0 0 1 2 3 0J J J J      

and with equation (14) we get  

2 2

0 0 0T m c   

and since 
0 0m   we have 

0 0T  , and finally with equation (110) we get 

0 1 2 3 0T T T T    .  

Thus, we arrive at the following two conclusions: 

“When the Lorentz-Einstein transformations hold for the physical quantities ,k, 0,1,2,3ki i  , 

then the physical quantities ,k 0,1,2,3kT   vanish. 

0 1 2 3 0T T T T    , (112) ” 

“When  

0kT    (113) 

for at least one of the physical quantities  

 , k 0,1,2,3kT  , 

the Lorentz-Einstein transformations do not hold for the physical quantities ,k, 0,1,2,3ki i  .” 

From the above we conclude that if relation (113) is valid, then the part of spacetime occupied by 

the generalized particle cannot be flat, it is curved. Furthermore, from equation (78) we obtain 0  . 

Therefore, when relation (113) holds, the second term on the right side of equations (86) and (87) is non-

zero. This term of the USVI is related to the curvature of spacetime.  

In the present study the rest mass 
0m  of the material particle is given by the equivalent equations 

(8) and (14) of special relativity. This is why the Lorentz-Einstein transformations hold for the physical 

quantities ,k, 0,1,2,3ki i  , as given in equations (37). Therefore, we expect equation (112) to hold, 

which we also prove: 

Combining equations (59) and (73) we get  
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  , , , 0,1,2,3
2

ki i k k i ki

b
c J c J zQ k i k i       

and we finally get 

2
, , , 0,1,2,3ki

k i i k

zQ
c J c J k i k i

b


    . (114) 

In equation (114) at least one of the physical quantities ,k 0,1,2,3kc   is not zero according to 

relation (60). We prove equation (112) for 
0 0c  , and the proof is similar for 0kc  , 

with  k 0,1,2,3 . From equation (114) for 0k   and 
0 0c  , we get 

0
0

0 0

2
, 1,2,3i i

i

c zQ
J J i

c bc


   . (115) 

Differentiating equation (115) with respect to 
0x , and considering equations (17) and (73), (76), 

and (71) we get  

0 0
0 0 0 0 0 0

0 0

2

2

i i
i i

c bcb b b
P J zQ P J zQT zQ P zQ

c bc




  
        

   
 

and with equation (115) we have  

0 0
0 0

0 0

2

2

i i
i

c bc
zQ zQT zQ

c bc




 
   

 
 

and since 0zQ   we get 

0 0, 1,2,3icT i  . (116) 

We differentiate equation (115) with respect to 
ix , 1 2 3i  , , , and taking into account equations 

(17) and (73), (76), and (71), we get 

0
0 0

0 0

2

2

i i i
i i i i i i

c bcb b b
PJ zQT PJ zQa zQ PzQ

c bc

   
        

   
 

and with equation (115) we get  

0
0

0 0

2

2

i i i
i i

c bc
zQT zQa zQ

c bc

  
   

 
 

and since zQ  0, we obtain  

0 0

0 0

i i
i i i

c c
T a a

c c
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0 0

0 0

i i
i i i

c c
T a a

c c
    

so we get  

iT  0, 1,2,3i  . 

According to equation (44), the Lorentz-Einstein transformation of the physical quantities 

, 0,1,2,3kc k   is given by equations (26). From the transformations given in (26) it is easily verified that 

if in the inertial frame of reference  , , ,t x y z      it is 
' ' '

1 2 3 0c c c   , then in the frame of reference 

 , , ,t x y z  it is    0 1 2 3, , , 0,0,0,0c c c c  . Therefore, in equation (116) at least one of the physical 

quantities , 1,2,3ic i   is non-zero, thus 
0 0T  . 

Combining equations (17) and (44) we obtain  

  , , 0,1,2,3i
ki k k i

k

J b
c J J k i

x



   


. (117) 

In equation (117) the rest mass 
0m  does not appear. By defining the physical quantities 

, , 0,1,2,3ki k i   through equation (117), we bypass the special relativity equation (14). Therefore, 

starting from equation (117) we can study the consequences of the Selfvariations for any relation between 

the momenta , 0,1,2,3kJ k   and the rest mass 
0m of the particle, which is not necessarily given by 

equation (14) of special relativity. In these cases the Lorentz-Einstein transformations do not necessarily 

hold and, therefore, the same will be true of equation (112). 

 

8. The equation of the TSV regarding the corpuscular structure of matter  

In the equations we have presented in the previous paragraphs, some physical quantities behave 

as “real numbers”, and some as “complex numbers”. By dividing these physical quantities with others of 

the same dimension, we can introduce complex numbers into the equations of the TSV. For instance, we 

can state equation (14) in the form 

2 2 2

20 31 2

0 0 0 0

1 0
J JJ J

m c m c m c m c

       
           

       
 

0

, 0,1,2,3kJ
k

m c
  . 

The introduction of complex numbers into the equations of the TSV is not necessary as long as 

we keep in mind that some sums of squares of the TSV are equal to zero. 

We give one more example related to the study in this paragraph. From the first of equations (75) 

for ( , , ) (0,2,1)i v k   we obtain equation  
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0 21 1 02 2 10 0c a c a c a    

and since 
10 01a a  , we get 

0 21 1 02 2 01 0c a c a c a   . (118) 

From equations (11), (12) and (44) we obtain 

 0 s

i
c W E

c
   

and if we suppose that 
sW E  is a “real number”, 

0c  is a “complex number”. Therefore, in equation 

(118), the physical quantities 
1 2 21 02 01, , , ,c c a a a  cannot all be “real numbers”. 

The physical quantities 
kc  and 

kia , k i , ,k i 0,1,2,3  generally behave as “complex or 

hypercomplex numbers”. For physical quantities 
kia , k i , ,k i 0,1,2,3  there is a sum of squares that 

equals zero. We determine this sum in this paragraph. 

We consider the 4 4  matrices M  and N , as given by equations (119) and (120): 

01 02 03

01 21 13

02 21 32

03 13 32

0

0

0

0

M

  

  

  

  

 
 
 
 
   
 
  
 
 

 (119) 

32 13 21

32 03 02

13 03 01

21 02 01

0

0

0

0

N

  

  

  

  

 
 
 
 
   
 
  
 
 

. (120) 

Using matrix N , equations (75) are written in the form  

0NC NJ NP   . (121) 

From equations (121) we obtain  

2 2 2 0N C N J N P   . (122) 

Also, performing the calculations and considering equation (109), we obtain equations  

0

| | | | 0

MN NM

M N

 

 
.   (123) 
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We now prove the following theorem:  

Seventh Theorem of the TSV  

“For the matrices M  and N  the following hold: 

2 2 2M N a I       (124) 

2 2 2 2 2 2 2

01 02 03 32 13 21a a a a a a a        (125) 

where I  is the 4 4  unit matrix.  

For 0  , matrix M  has two eigenvalues 
1  and 

2  with corresponding eigenvectors 
1v  and 

2v  given 

by equations 

1

2 2 2

01 02 03

01 03 13 02 21

1 2

02 01 21 03 32

03 02 32 01 13

2

2 2 2

01 02 03

01 03 13 02 21

2 2

02 01 21 03 32

03 02 32 01 13

0

1

0

1

ia

a a a

a a a a ai
v

aa a a a a a

a a a a a

ia

a a a

a a a a ai
v

aa a a a a a

a a a a a







   
  

   
   
       

 

   
 

  
  
     









. (126) 

For 0  , matrix N  has the same eigenvalues 
1  and 

2  with matrix M , and the corresponding 

eigenvectors 
1n and 

2n  are given by equations 

1

2 2 2

32 13 21

32 02 21 03 13

1 2

13 03 32 01 21

21 01 13 02 32

2

2 2 2

32 13 21

32 02 21 03 13

2 2

13 03 32 01 21

21 01 13 02 32

0

1

0

1

ia

a a a

a a a a ai
n

aa a a a a a

a a a a a

ia

a a a

a a a a ai
n

aa a a a a a

a a a a a







   
  

   
   
       

 

   
 

  
  
     









. (127) 

For the physical quantities 
kia , k i , ,k i 0,1,2,3  equation (128) holds:  
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2 2 2 2 2 2 2

01 02 03 32 13 21 0a a a a a a a       . (128) ” 

 

Matrices M  and N  are given by equations (119) and (120). The proof of equations (124), (125), 

(126) and (127) is done through the proper mathematical calculations and the use of equation (109). 

We now multiply equation (124) from the right with the column-matrices C , J  and P and 

obtain equations 

2 2 2M C N C a C    

2 2 2M J N J a J    

2 2 2M P N P a P    

and with equation (122) we get  

2 2M C a C   

2 2M J a J  . (129) 

2 2M P a P   

From equations (129) we conclude that, for 0  , matrix 
2M  obtains the eigenvalue 

2   , 

with the four-vectors C , J and P being parallel to the corresponding eigenvector v  of matrix 
2M . 

Therefore, for 0  , the four-vectors C , J and P are parallel to each other, which is impossible in the 

external symmetry according to the internal symmetry theorem. Therefore, 0  , in order for matrix 
2M  to not have the eigenvector v . Thus, we obtain equation (128). 

Equation (128) highlights the factors on which the rest masses 
0m  and 0

2c


, as well as the total 

rest mass 
0M  of the generalized particle, depend. For the determination of these factors we consider the 

three-vectors C  , J  and P , as given by equations (130), (131), and (132), respectively 

1

2

3

c

c

c

 
 

  
 
 

C  (130) 

1

2

3

J

J

J

 
 

  
 
 

J  (131) 

1

2

3

P

P

P

 
 

  
 
 

P . (132) 
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Equations (75) for ( , , ) (1,2,3)i v k   express the orthogonality of vectorsC , J  and P  with 

vector β . We prove the orthogonality between vectors C  and β , and one can similarly prove the 

orthogonality of vectors J  and P  with vector β . 

From the first of equations (75) for ( , , ) (1,2,3)i v k   we obtain 

1 32 2 13 3 21 0c a c a c a    

and from equations (82) and (130), the orthogonality between the vectors C  and β  emerges. 

From equations (81), (82) and (109) we conclude that the vectors α   and β  are orthogonal. 

Therefore, the vectors C , J  , P   and α   belong to the same plane  . Plane   is orthogonal to the 

vector β .  

We now consider the directional angles  ,   and   with direction from the first vector to the 

second, as given by equations  

 

 

 

,

,

,



















C α

J α

P α

. (133) 

Considering that the vectors C  , J  , P  and α   belong to the same plane  , and equations (44) 

and (130),  (131) and (132), we obtain equations 

      J P C                                                            (134) 

sin( ) sin( ) sin( )

|| || || || || ||

       
 

J P C
, 

for , , 0,J P C  where || ||α  is defined as  
1

2Tα α α  . 

From the pairs of equations (44), (130), as well as (14), (131), and (15), (132), we obtain 

equations  

1

2 2 2 2
0 0

1

2 2 2 2
0 0

12
2 0 2

0 2

|| || ( )

|| || ( ) |

( )

C

J

P

c M c

J m c

E
P

c

  

  

  

. (135) 

We now prove that for 
0 0c  , the following equations hold 

0 0sin cosM c c    

              
0 0sin cosm c J   . (136) 



 46 

0 0sin coscP     

We show the proof of the first of the above equations, since the proof of the other two is along 

similar lines. From the first of equations (75) for ( , , ) (0,2,3)i v k  , (0,1,3) , (0,1,2) , and 
0 0c  , we 

obtain equations  

32 3 02 2 03

0

1
( )a c c a

c
   

13 1 03 3 01

0

1
( )a c c a

c
   

21 2 01 1 02

0

1
( )a c c a

c
   

and replacing in equation (128) we get  

2 2 2 2 2 2

01 02 03 3 02 2 03 1 03 3 01 2 01 1 022 2 2

0 0 0

1 1 1
( ) ( ) ( ) 0a a a c c a c c a c c a

c c c
                             

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

01 02 03 0 3 02 2 03 1 03 3 01 2 01 1 02 2 3 02 03 1 3 01 03 1 2 01 02( ) 2 2 2 0a a a c c c a c c c c c c c c c c                     

 

     2 2 2 2 2 2 2 2 2 2 2 2

01 0 2 3 02 0 1 3 03 0 1 2 2 3 02 03 1 3 01 03 1 2 01 022 2 2 0a c c c a c c c a c c c c c c c c c                  

and with equation (45) we get  

     2 2 2 2 2 2 2 2 2 2 2 2

01 0 1 02 0 2 03 0 3 2 3 02 03 1 3 01 03 1 2 01 02c c c 2 2 2 0a M c a M c a M c c c c c c c                

 

and we finally obtain 

   
22 2 2 2 2

0 01 02 03 1 01 2 02 3 03c 0M a a a c c c        . (137) 

We now prove relation  

   01 02 03, , 0,0,0a a a  . (138) 

From the first of equations (75) for ( , , ) (0,3,2)i v k  , (0,1,3) , (0,2,1)  we obtain equations  

0 32 2 03 3 02 0c a c a c a    

0 13 3 01 1 03 0c a c a c a    

      
0 21 1 02 2 01 0c a c a c a    

and supposing that  
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   01 02 03, , 0,0,0a a a   

we get 

0 32 0c a   

0 13 0c a   

0 21 0c a   

and because 
0 0c  , it is also  

   32 13 21, , 0,0,0a a a   

that is, 0kia   for every , , 0,1,2,3k i k i  , which is impossible in the external symmetry. Hence, 

for 
0 0c  , relation (138) holds. 

Considering now the first of equations (133), we obtain  

   
1

2

2 01 02 03

1

2 2 2 2 2 22
1 01 2 02 3 03 1 3 cosc a c a c a c c c a a a         

and substituting this expression into (137) we get  

    
2 01 02 03

2 2 2 2 2 2 2 2 2 2 2 2

0 01 02 03 1 3c cos 0M a a a c c c a a a          

and since 

2 2 2

01 02 03 0a a a    

because of relation (138) we get 

 
2

2 2 2 2 2 2

0 1 3c cos 0M c c c      

and with equation (45) we get  

 

 

2 2 2 2 2 2

0 0 0

2 2 2 2 2

0 0

2 2 2 2 2

0 0

0 0

c c cos 0

c 1 cos cos 0

c sin cos

c sin cos

M M c

M c

M c

M c



 

 

 

  

  



 

 

which is the first of equations (136).  

 Because of the extremely large amount of information contained within equations (134) and 

(136), we will confine ourselves to only one application. We will determine the case for which the total 

rest mass 
0M  of the generalized particle vanishes.  
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In the case when vectors α   and C   are orthogonal, that is for 
2


  , we obtain from the first of 

equations (136):  

0 0M  . 

Then, from the second of equations (134) for 
2


  , we get 

2 2 2 2

|| || cos || || cos

|| || cos || || cos

 

 

 



J P

J P
 

and with the second and third of equations (135) we obtain equation 

 
2

2 2 2 2 2 20
0 0 0 2

cos cos
E

J m c P
c

 
 

   
 

. 

From the second and third of equations (136) we get equations 

 
0 0 0

0

2 2 2 2 2 2

2 2
2 20 0

2 2

cos

cos

m c m c J

E E
P

c c





 

 
  
 

 

and substituting into the previous equation we get 

0

2
2 2 0

2

E
m c

c


. 

Thus, we get the following set of equations  

0

2

0 0

0

0

C

M

E m c

 



 

α

. (139) 

 Equation (128), which we used to prove equations (136), is the basic equation of the TSV giving 

us information about the corpuscular structure of matter. In order to fully comprehend this structure, we 

also need the eighth theorem of the TSV. We present this theorem, along with its consequences, in the 

following paragraph. 
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9. The conserved physical quantities of the generalized particle and the wave equation of 

the TSV 

 The generalized particle has a set of conserved physical quantities which we determine in this 

paragraph. The determination is initially made through equation (89). The proof procedure we follow is 

identical to the one followed to prove the conservation of electric charge from Maxwell’s equations. 

 Considering equations (89) we define the scalar quantity  and the vector quantity j , as given 

by equations 

 1 01 2 02 3 03

0 01 2 21 3 132

0 02 1 21 3 32

0 03 1 13 2 32

2

2

icbz
c a c a c a

c a c a c a
c bz

c a c a c a

c a c a c a

  



     

   
 

    
    

α

j

 (140) 

where 0   is a constant. We now prove that for the physical quantities   and j  equation (141) holds: 

0
t


 


j .                                           (141) 

From the first of equations (140) we obtain  

 
t t

t t

 







 

 
 

 

  
   

  

α

α

α

 

and with the second of equations (140) and equation (89, d) we get 

 2c
t

t







   




 



β j

j

 

which is equation (141). According to equation (141), the physical quantity   is the density of a 

conserved physical quantity q  with current density j . 

 We now consider the four-vector of the current density j  of the conserved physical quantity q , 

as given by equation 

0

1

2

3

x

y

z

i cj

jj
j

jj

j j

  
  
   
  
     

   

.                                        (142) 
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With the use of matrix M , as given by equation (119), equations (140) are written in the form  

2

2

c bz
j MC


 . (143) 

For an appropriate constant 
0   in equations (140), the conserved physical quantity q is of the same 

dimensions (units of measurement) as the selfvariating charge Q . Equivalently, for 
0   equation 

(143) gives the current density of charge q  of same nature as the selfvariating charge Q . It is easy to 

realize that if Q  is the electric charge, then 
0  , where 

0  is the electric permeability of the vacuum. 

In the case where Q  is the rest mass, then 
1

4 G



 , where G  is the gravitational constant. 

The quantity q , as defined above, is a special case of a conserved physical quantity. We will now 

determine the general mathematical expression for the conserved physical quantities of the generalized 

particle. We prove the following theorem: 

 

Eighth Theorem of the TSV 

“For the field  ,ξ ω  of the pair of vectors  

01

02

03

a

ic a

a

 
 

  
 
 

ξ
                           (144) 

32

13

21

a

a

a

 
 

  
 
 

ω                           (145) 

where  0 1 2 3, , ,x x x x   is a function satisfying equation 

 k k

k

b
J P

x
 


  


   (146) 

 0,1,2,3, ( , ) 0,0 , ,k        are functions of 
0 1 2 3, , ,x x x x , the following equations hold: 

0

t

 


  



ω

ω
ξ

.                              (147) 

The generalized particle has a set of conserved physical quantities q  with density   and current density 

j   
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2

2
c

c t

 



 

 
   

 

ξ

ξ
j ω

                                       (148) 

where 0   are constants, for which conserved physical quantities the following continuity equation 

holds: 

0
t


 


j .                                                                    (149) 

The four-vectors of the current density j   are given by equation 

 

0

2
12

2

3

x

x c b
j c M M J P

x

x


  

 
 
 
 
 


      
 
 
 

 
 
 

.  (150) 

The conserved physical quantities q  are given by equation 

0

V V

icq ic dV j dV                                                       (151) 

where V  is the volume occupied by the generalized particle.” 

 For the proof of the theorem we first demonstrate the following auxiliary equations (152)-(157) 

32

13

21

0

a

a

a

 
 
  
 
 

J    (152) 

32

13

21

0

a

a

a

 
 
  
 
 

P    (153) 

01 32

02 0 13

03 21

a a

a J a

a a

   
   

     
   
   

J   (154) 
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01 32

02 0 13

03 21

a a

a P a

a a

   
   

     
   
   

P   (155) 

32 2 21 3 13

13 3 32 1 21

21 1 13 2 32

a J a J a

a J a J a

a J a J a

   
   

     
      

J  (156) 

32 2 21 3 13

13 3 32 1 21

21 1 13 2 32

a P a P a

a P a Pa

a Pa P a

   
   

     
      

P . (157) 

In order to prove equation (152) we get  

32

13 1 32 2 13 3 21

21

a

a J a J a J a

a

 
 
    
 
 

J  

and with the second of equations (75) for ( , , ) (1,3,2)i v k  , we have  

32

13

21

0

a

a

a

 
 
  
 
 

J . 

Similarly, from the third of equations (75) we obtain equation (153). We now get  

01 2 03 3 02 2 03 3 20

02 3 01 1 03 3 01 1 30

03 1 02 2 01 1 02 2 10

a J a J a J a J a

a J a J a J a J a

a J a J a J a J a

      
     

         
           

J  

and with the second of equations (75) we obtain  

01 0 32

02 0 13

03 0 21

a J a

a J a

a J a

   
   

     
      

J  

which is equation (154). Similarly, by considering the third of equations (75) we derive equation (155). 

Equations (156) and (157) are derived by taking into account equations (131) and (132). 

Equations (147) are proven with the use of equations (152)-(157). We prove the first as an 

example. From equation (145) we obtain 
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32

13

21

a

a

a

 
 

     
 
 

ω  

and with equation (146) we get 

32 32

13 13

21 21

a a
b b

a a

a a

 

   
   

          
   
   

ω J P  

and with equations (152) and (153) we obtain  

0 ω . 

From equations (147) and (148), the continuity equation (149) results. The proof is similar to the one for 

equation (141). The proof of equation (150) is done with the use of equations (152)-(157), and equation 

(119). The physical quantities q  are conserved, as indicated by the continuity equation (149). Therefore, 

if the generalized particle occupies volume V , then equation (151) holds.  

From equation (17) it emerges that the dimensions of the physical quantities , , 0,1,2,3ki k i   

are  

  1, , 0,1,2,3ki kgs k i   . 

Thus, from equations (79) and (80), the dimensions of the physical quantities , , 0,1,2kiQ k i   emerge. 

Additionally, by combining equations (77) and (104), the dimensions of the physical quantities 

, 0,1,2,3kT k   emerge. Thus, we obtain relations 

 

 

1

1

, , , 0,1,2,3

, 0,1,2,3

ki

k

Q kgs k i k i

T kgs k

 



  

 
. (158) 

Using the first of equations (158) we can determine the units of measurement of the  ,ξ ω -field 

for every selfvariating charge Q . When Q  is the electric charge, we can verify that the field units are 

(Vm-1,T). When Q  is the rest mass, the field units are  2 1ms s , . The dimensions of the field depend 

solely on the units of measurement of the selfvariating charge Q . 

From equation (150), and considering that ,  , we can, by using the first of equations 

(158), determine the dimensions of the physical quantities q . If we write the constant    in the form 

0x   we obtain relations 

   
0x

q x Q

 


 (159)  
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where x   is a constant. From relations (159) we can determine the set of conserved physical quantities q  

of the generalized particle by determining the corresponding constant x . We reiterate that for the electric 

field 
0 0  , and for the gravitational field 0

1

4 G



 . In the case of the electric field, for 

1
x

e
 , 

where e is the charge of the electron, q  is a dimensionless conserved physical quantity, that is q . 

For x
e

 , q  is a conserved quantity of angular momentum. The eighth theorem of the TSV reveals the 

conserved physical quantities of the generalized particle.  

One of the most important corollaries of the eighth theorem of the TSV is the prediction that the 

generalized particle has wave-like behaviour. We prove the following corollary:  

“For function   the following equation holds 

2
2 2

2

0

2
2 2

2 2

i k
ki

k i

i k
ki

k i

j j
c

x x x

j j
c

c t x x

 

 

    
     

   

    
     

   

 (160) 

, , 0,1,2,3k i k i  .” 

To prove the corollary, considering that 
0x ict , we write equations (147) and (148) in the form 

0

0

2

0

0

1

i
j

c

ic

x

i

c c x





  

 


  




  



ξ

ω

ω
ξ

ξ
ω j

.                           (161) 

We will also use the identity (162) which is valid for every vector α   

  2   α α α . (162) 

From the third of equations (161) we obtain  

 

0

0

ic

x

ic

x

 
   

 


   



ω
ξ

ξ ω

 

and using the identity (162) we get  
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   2

0

ic

x


     


ξ ξ ω  

and with the first and fourth of equations (161) we get  

2
2

0 2

0 0

i i
j

c x c x 

  
     

  

ξ j
ξ  

and we finally get 

2
2

02

0 0

i
j

x c x

  
    

  

ξ j
ξ . (163) 

Working similarly from equation (161) we obtain  

2
2

2 2

0

1

x c


    



ω
ω j . (164) 

Combining equations (163) and (164) with equations (144) and (145), we get 

2
2

2

0

, , , 0,1,2,3i k
ki

k i

j ji
k i k i

x c x x




     
        

     
, 

which is equation (160).  

 From equation (160) the following two cases result, as given by equation (165) and equations 

(166) 

2 2
2 2

2 2 2

0

0
x c t

   
      

 
                           (165) 

2 2
2 2

2 2 2

0

2

0

1
, , , 0,1,2,3i k

ki

k i

F
x c t

j j
k i k i

c F x x




   
       

 

  
    

  

. (166) 

 In the first case, equation (160) gives the classical wave equation (165). In the second case, i.e. 

for 0F  , the physical quantities 
ki , , , 0,1,2,3k i k i   are expressed as a function of the rate of 

change of the four-vector of the current density j . The physical quantities 
ki , , , 0,1,2,3k i k i   

enter into a large number of equations of the TSV for the external symmetry. Therefore, through the 

second of equations (166) we can derive a set of equations, for the function 0F  , as well as for the rate 

of change of the four-vector j . Equation (160) can be characterized as “the wave equation of the TSV”.  

 We end the paragraph with the proof of equations (167) for the four-vector j 
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0

0

Nj

Mj




. (167) 

We first combine equations (128) and (129), and obtain  

2

2

2

0

0

0

M C

M J

M P







. (168) 

We now multiply equation (150) with the matrix N   from the left and get  

 
2c b

Nj NM J P


      

and with the first of equations (123) we obtain the first of equations (167). Multiplying equation (150) 

with the matrix M   from the left we also get 

 
2

2 2c b
Mj M J M P


      

and with equations (168) we obtain the second of equations (167). 

The eighth theorem completes the basic study of the law of Selfvariations. The major part of the 

study concerns the external symmetry, which is clearly more complicated than the internal one. In the two 

symmetries we used the same notation for the constant b of the law of Selfvariations, the total constant 

rest mass 
0M of the generalized particle, as well as the constants , 0,1,2,3kc k  . These constants do 

not have the same physical content in the two symmetries. The constants that enter into the equations of 

the TSV in the external symmetry are correlated with the theorems we presented, which determine the 

values of the above constants. In the internal symmetry, the constants b , 
0M  and 

ic , 0,1,2,3i  in 

equations (54), (57) and (58) are not correlated with theorems that correspond to the ones of the external 

symmetry. Therefore, they should be considered absolute constants. 

In the study we presented, we combined equations (14) and (15) with the law of Selfvariations for 

the rest mass 
0 0m  , as given in equation (13). We can equally well study the Selfvariations for the rest 

mass 0

2
0

E

c
  and the symmetric equation  

0
0 , k 0,1,2,3k

k

E b
J E

x


 


 

instead of law (13). We will, of course, not present this second study, since it is clear that the same results 

emerge and we just have a reversal of roles of the rest masses 
0m  and 0

2

E

c
. This remark is made in order 

to note the fact that the law of Selfvariations holds for 

0 00 0m E   . 
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In the case where 
0 0m   and 

0 0E  , the law of Selfvariations is not defined. Therefore, in the 

applications of the present study, every case in which it emerges that 0
0 2

0
E

m
c

   must be rejected. The 

study for 0
0 2

0
E

m
c

   can be made starting from equations (117) or from their symmetric 

  , , 0,1,2,3i
ki k k i

k

P b
c P P k i

x



   


. 

That is, not starting our investigation from the rest masses masses 
0m  or 0

2

E

c
. Of course, we 

could not arrive at equations (117) without the study we presented, which constitutes the fundamental 

investigation of the law of Selfvariations. 

The law of Selfvariations is connected with all the individual areas of physics, and it is 

impossible to investigate its consequences in one article. It is for this reason that we have chosen and 

present four basic applications of the TSV. 

 

10. The generalized photon 

 From equation (160) there result two states for the generalized particle, as expressed by 

equations (165) and (166). We shall refer to the state of the generalized particle for which equation (165) 

is valid, as the “generalized photon”. For the generalized particle the following corollary of the eighth 

theorem of the TSV holds: 

“For the generalized particle the following equivalences hold:  

2
2

2 2
0

c t

 
  


 (169) 

if and only if for each , , 0,1,2,3k i k i   it is 

i k

k i

j j

x x

 


 
             (170) 

if and only if  

2
2

2 2

2
2

2 2

0

0

c t

c t


  




  



ξ
ξ

ω
ω

.      (171) ” 

In the external symmetry there exists at least one pair of indices  ( , ), , , 0,1,2,3k i k i k i  , for 

which 0ki  . Therefore, when equation (170) holds, then equation (169) follows from equation (160), 

and vice versa. Thus, equations (169) and (170) are equivalent. When equation (170) holds, then the right 
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hand sides of equations (163) and (164) vanish, that is, equations (171) hold. The converse also holds, 

thus equations (170) and (171) are equivalent. Therefore, equations (169), (170), and (171) are equivalent.  

 For the generalized photon equation (165) holds, which is equation (169). Therefore, equations 

(170) and (171) also hold. According to equations (171), for the generalized photon the  ,ξ ω -field is 

propagating with velocity c  in the form of a wave. 

 We now prove that, for the generalized photon, the four-vector j  of the current density of the 

conserved physical quantities q , varies according to the equations  

2
2

2 2
0, 0,1,2,3k

k

j
j k

c t


   


.  (172) 

We prove equation (172) for 0k  , and we can similarly prove it  for 1,2,3k  . 

 Considering equation (142), we write equation (149) in the form  

0 31 2

0 1 2 3

0
j jj j

x x x x

  
   

   
. (173) 

Differentiating equation (173) with respect to 
0x  we get  

0

2

0 31 2

2

0 1 0 2 0 3

0
j jj j

x x x x x x x

        
       

           
 

0

2

0 31 2

2

1 0 2 0 3 0

0
j jj j

x x x x x x x

         
        

           
 

and with equation (170) we get 

0

0

2

0 0 0 0

2

1 1 2 2 3 3

2
20

02

0

0

j j j j

x x x x x x x

j
j

x

         
       

           


 



 

which is equation (172) for 0k  , since 
0

x ict . 

The way in which equations (171) emerge in the TSV is completely different from the way in 

which the electromagnetic waves emerge in Maxwell’s electromagnetic theory. In Maxwell’s theory, 

equations (171) emerge for 0j  . In the TSV it is 0j   due to the Selfvariations. Equations (171) 

emerge when equation (165) holds, that is, in the first of the two cases of equation (160). Furthermore, 

according to the TSV, in the electromagnetic waves, the current density j  varies according to equation 

(172). 
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 The solutions of differential equations (169) and (172) are known. Therefore, the functions   

and 
kj , 0,1,2,3k   are also known for the generalized photon. By knowing function   and the 

current density j , the theorems of the TSV give a set of data and information about the generalized 

photon. We reiterate that the four-vector j  concerns a set of conserved physical quantities, and not just 

the electric current density. 

 

11. The generalized particle of the  ,α β -field 

In this paragraph we present the study of the generalized particle of the field  ,α β . From 

equations (81), (82) and (144), (145) it follows that the  ,α β -field is z , that is 

 0 0 1 1 2 2 3 3exp
2

b
z c x c x c x c x

 
       

 
 

according to equation (74). Thus, taking into account equation (76) we obtain  

 
0

2 2
2 2 2 2 2 2

0 1 2 32 2 2
c c c c

x c t

   
        

 
 

and with equation (45) we get  

0

2 2
2 2 2 2

02 2 2
c

x c t

   
      

 
. (174) 

 We first study the generalized photon of the  ,α β -field. Comparing equations (169) and (174) 

we conclude that the generalized photon of the  ,α β -field has a vanishing total rest mass 
0M : 

0 0M  . (175) 

Therefore, from equations (139) we obtain equations 

1 01 2 02 3 03

2

0 0

0c c c

m c

      

  

α C
. (176) 

The current density j  of the  ,α β -field is given by equations (140). Combining these with the 

first of equations (176), it is easy to see that for the generalized photon of the  ,α β -field the four-

vector j of the current density vanishes  

0j   . (177) 

Equation (177) does not hold for the generalized photon of every  ,ξ ω  -field, where we generally have 

0j  . For z  and with equation (176) we obtain equation 
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, 0,1,2,3
2 2

k k

k k

bc bcz
z k

x x

 
      

 
. 

Comparing this relation with equation (146), and considering equation (44), we conclude that for the 

 ,ξ ω -field equation (178) holds: 

1

2
    . (178) 

It is easy to verify that equation (177) holds exclusively for the generalized photon of the  ,ξ ω -fields 

for which    in equation (146). In the cases where    it is also 0j  . 

 Let us now suppose that the generalized photon is moving along the axis 
1

x x . In this case it is 

1 0c   and
2 3 0c c  . Taking also into account equations (175) and (45) we get 

2 2

0 1 0c c   

and we finally get 

1 0c ic  . (179) 

According to equation (179), and since 
2 3 0c c   and 

0x ict , we get from equation (74) equation  

 0exp
2

ibc
z ct x

 
     

 
. (180) 

We now study the generalized particle of field  , ,α β  i.e. the case where 
0 0M   in equation 

(174). In the  ,α β -field, the functions z  and , 0,1,2,3kj k  , are already known as given by 

equation (140). Thus, we can easily study the consequences of equation (151) in the case when the 

generalized particle occupies a constant volume .V   

By combining the first of equations (140) for 0   with equation (151), we get  

 
 0

0 1 1 2 2 3 3exp exp
2 2 2

V

i cb bc b
q x c x c x c x dV

     
        

  


α C
. (181) 

According to the continuity equation (149), the physical quantity q  in equation (181) does not depend on 

time, that is, it is independent of 
0 .x ict  Furthermore, the volume  V V t  of the generalized particle 

changes with time. In the case where the generalized particle occupies a constant volume V , and given 

that the physical quantity q  does not depend on time, from equation (181) we obtain equations 
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 1 1 2 2 3 3exp 0
2

0

( constant)

V

b
c x c x c x dV

q

V

 
    
 







. (182) 

Equation (180) holds for the generalized photon of field  , .α β  We want to prove the 

corresponding equation for the generalized particle. Thus, we consider the case where the total 

momentum of the generalized particle is along the axis 
1 .x x  In this case, it is 

1 2 30, 0c c c   , and 

from equation (45) we get  

2 2 2 2

0 1 0 0c c M c    . (183) 

Let now the generalized particle occupy the constant volume V  defined by relations (184) in a 

system of reference  1 2 3, , ,t x x x   

1

2 2

3 3

2 3 2 3

0

0

, 0, ,  constants

x

x L

x L

L L L L

 

 

 

 

 





. (184) 

For   and   the following relation holds  

d d
u c

dt dt

 
   , (185) 

where u  the velocity with which volume V  is moving in the chosen reference frame. 

Combining the first of equations (182) with relations (185), and taking into account that 
2 3 0c c  , we 

get  

1 1exp exp 0
2 2

bc bc    
      
   

 

and we finally arrive at  

1exp 1
2

0

bc L

L  

 
 

 

  

. (186) 

Equation (186) holds only when constant b  is an imaginary number, when we get  
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1

4
, 1, 2, 3,...

b

0

c n n
L b

I

L



 

    



  

.              (187) 

Combining equations (183) and (187) we obtain  

2 2
2 2 2 2

0 0 22

16
, 1,2,3,...

b I

M c c n n
L b


   



 ,(188) 

Therefore, when the generalized particle of the  ,α β -field occupies a constant volume, its total rest 

mass 
0M  is quantized. 

Solving equation (188) with respect to 
0c  we obtain  

1
22 2

0 2 2 2

4 1
1 , 1, 2, 3,...

16

L bn i
c n

L b n





 
        

 
 

 (189) 

Combining equations (173), (187), (189), and considering that 
2 3 00,c c x ict    and b i b  , we 

obtain equation (190) for the confined  ,α β -field 

1
22 2

2 2 2

2 1
exp 1 , 1, 2, 3,...

16

L bn i
ct x n

L n





  
   

            
   

  

. (190) 

Equations (173)-(178) hold generally for the field  , .α β  Equations (179) and (180) hold for the 

generalized photon of the field  ,α β  in one dimension. Equations (181)-(190) hold for the confined 

within a stable part of space field  , .α β  

 

12. The plane   

In paragraph 8 we defined as   the plane normal to the vector β . Taking into account equations 

(82), the plane   is defined if and only if the constant vector τ  of equation (191) is not zero. 

321

2 13

3 21

0

0

0



  

 

    
    

      
    
    

. (191) 

In this paragraph we will study the plane   for the case where equations (192) hold 
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321

2 13

3 21

2 2 2

32 13 21

0

0

0

0



 

 

  

    
    

      
    
    

  

τ
. (192) 

As we have already observed regarding the physical quantities in the equations of the TSV, there are sums 

of squares that are equal to zero. Therefore, equations (191) and (192) are not equivalent. 

We now consider a constant vector n  as defined by 

011

2 02

3 03

an

n a

n a

  
  

    
   
   

n . (193) 

From equation (128) and the second relation of equations (192), it emerges that relations (194) hold for 

the vector n  

011

2 02

3 03

2 2 2

01 02 03

0

0

0

0

an

n a

n a

  

    
    

      
    
    

  

n
. (194) 

From equations (81), (82), and (109) we get 

01 32 02 13 03 21 0         

and with equations (191) and (193) we get 

0 τ n . (195) 

From this equation we conclude that vector n , being vertical to vector τ , belongs to the plane  . 

We consider a constant vector μ  as given by 

02 21 03 131

2 03 32 01 21

3 01 13 02 32

0

0

0

a a

a a

a a

 

  

  

    
    

         
         

μ n τ . (196) 

Vector μ  lies on plane   as vertical to vector τ , and is additionally vertical to vector n . Consequently, 

the vector pair  ,μ n  constitutes an orthogonal vector base on plane  . 

It is easily provable that for vectors , ,μ n τ , the following equations hold: 

2 2

2 2
i i

 

  

n τ

μ n τ
.  (197) 
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In order to prove equations (197) one must take into account equations (109) and (128). The symbol α  

for every vector α  of the TSV has been defined when we first use it in equations (134). 

Combining the pairs of equations (144), (194) and (145), (191), we get 

ic 

 

ξ n

ω τ
. (198) 

Consequently, the plane   is defined on every point of spacetime to which field  ,ξ ω  extends and 

relations (192) hold. Additionally, the orientation of plane   in space is defined by the field  ,ξ ω . 

From equations (75) for    , , 1,2,3i v    we get equations 

1 32 2 13 3 21

1 32 2 13 3 21

1 32 2 13 3 21

0

0

0

c a c a c a

J a J a J a

Pa P a Pa

  

  

  

 

and with equations (130), (131), (132), and (191) we get 

0

0

0

 

 

 

τ C

τ J

τ P

. (199) 

From equations (199) we conclude that the vectors C , J  , and P , as vertical to vector τ , belong to the 

plane  . 

Expanding the first of equations (167) we get equation 

32 1 13 2 21 3 0a j a j a j    

and with equations (142) and (191) we obtain 

0 τ j . (200) 

From equation (200) we conclude that the vector j , as vertical to vector τ , lies on plane  . 

From equations (146) and (131, (132) we get 

 
b
    J P .  (201) 

Vectors J  and P   belong to the plane  . Consequently, vector  , as a linear combination of vectors 

J   and P , also belongs to the plane  . 

We, thus, come to the conclusion that that the vectors J , P ,C , j , and   belong to the plane 

 . These vectors vary according to the theorems of the TSV remaining constantly on plane  . 

We now prove that, when plane   is defined, the 4-vector j  has a rigidly defined internal 

structure. Expanding the second of equations (167) we get four equations. The first of these is equation 

01 1 02 2 03 3 0j j j      
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which, together with equations (142) and (193), is written in the form 

0 n j . (202) 

Vector j  belongs to plane   and, according to equation (202), is normal to the vector n . Consequently, 

vector j  is parallel to vector μ . Therefore, vector j  is written in the form 

B
j μ

μ
, (203) 

where B is a function of 
0 1 2 3, , ,x x x x  with dimensions of the 4-vector j . The remaining three equations 

from the expansion of the second of equations (167) are equations 

01 0 21 2 13 3

02 0 21 1 32 3

03 0 13 1 32 2

0

0

0

a j a j a j

a j a j a j

a j a j a j

   

   

   

 

and with equations (191), (193), and (203) they are written in the form of equation  

0j B 
μ

n τ
μ

 

and with equation (196) we get 

 0

B
j   n τ n τ

μ
 

and since it is 0 n τ , we get 

2

0

B
j n τ n

μ
 

and because it is 0n , we get 

2

0j B
τ

μ
 

and with the second of equations (197) we get 

0

0

j iB

B ij

 

 
 

and with equation (203) we get 

0ij 
μ

j
μ

. (204) 

From equation (204), and taking into account that 
0j i c , we get 
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c 
μ

j
μ

. (205) 

From equations (142) and (204), (205) we get the 4-vector j  in the form 

0

1i

j c j i

   
   

 
   
      

μ μ

μ μ

. (206) 

According to equation (206), the 4-vector j  has an extremely complicated structure. This is due 

to the internal structure of vector μ  as given by equation (196), as well as due to the internal structure of 

the density   as given by the first of equations (150). This structure could not be determined by the 

physical theories of the last century. Equation (205) is completely different from equation 

j u , 

which is used by last century’s theories. 

We prove the following corollary: 

“The following equations hold in the plane   

0

0
0

0

20
0

0

2

0

2
2

2

0

0

ij c

j i
j

x

j
j i c F

x

i
c F j

F
x







  


  




   



  

 
  



μ μ
j

μ μ

μ
μ

μ
n

μ

τ μ
μ

. (207) ” 

The first of equations (207) is equation (204). The second emerges from the combination of the 

continuity equation (173) with equation (204). The third and fourth emerge from the combination of the 

wave equation (160) with equation (204). The last of equations (207) is the first of equations (166). 

For the generalized photon, it holds that 0F  , according to equation (165). So, taking into 

account equations (172), we get the following equations for the generalized photon on the plane   
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0

0
0

0

0
0

0

2
2

2

0

2
2 0

0 2

0

0

0

0

ij c

j i
j

x

j
j i

x

x

j
j

x

  


  




  



 
   




  



μ μ
j

μ μ

μ
μ

μ

μ
.       (208) 

For the generalized photon, the fourth and fifth of equations (208) can be solved and they give the   

function and the density 
0j i c , respectively. Then, from the first equation we get the current density 

j . Also, the second of equations (208) emerges from the third. 

The generalized photon is a special case, for 0F  , of a generalized particle. For 0F  , the 

system of differential equations (207) is not solvable in the simple way that the system (208) is. 

Additionally, the second, third, and fourth of equations (207) are not independent. Combined in pairs they 

give the third. 

Expanding the first of equations (167) we get four equations. As we have proven, the first of them 

is equivalent to equation (200), that is, with the fact that vector j  belongs to plane  . The remaining 

three are written in the form 

0j  τ n j .                        (209) 

Taking into account the first of equations (207), it is easily proven that equation (209) is equivalent to the 

second of equations (197). Analogous conclusions can be drawn from the second of equations (167), from 

which equation (202) as well as equation (210) emerge 

0j  n τ j .                          (210) 

Regarding the study of the corpuscular structure of the generalized particle in the plane , we 

expand the first of equations (75) for        , v, 0,3,2 , 0,1,3 , 0,2,1i k   and we obtain equations 

            

0 32 2 03 3 20

0 13 3 01 1 30

0 21 1 02 2 10

0

0

0

c a c a c a

c a c a c a

c a c a c a

  

  

  

 

and since it is 
ki ika a   for every k i , , 0,1,2,3k i   we get 

0 32 2 03 3 02

0 13 3 01 1 03

0 21 1 02 2 01

0

0

0

c a c a c a

c a c a c a

c a c a c a

  

  

  

.                (211) 
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From equations (130), (191), (193), and (211) we get 

0c  τ n C . (212) 

From equation (212) we get relation (213) on the plane   

0

0

0

 
 


 
  

C . (213) 

Indeed, if we assume that 0C  from equation (212) we get 
0 0c   and with equation (130) we get 

   0 1 2 3, , , 0,0,0,0c c c c  , which is impossible due to relation (60). 

Because of equation (213), two cases emerge from equation (212) for the corpuscular structure of 

the generalized particle on the plane  . In the case where the vectors n   and C  are parallel, from 

equation (212) we get 
0 0c   and from equation (44) we get 

2 2 2 2 2

0 1 2 3 0M c c c c     

and we finally get 

 
 

1

2 2 2 2 2
0 1 2 3M c i c c c   

C n

 (214) 

for the total rest mass 
0M  of the generalized particle. 

In the case where the vectors n  and C  are not parallel, from equation (212) we get 
0 0c  , and, 

therefore, equations (134), (136), and (139) hold. 

We now study the behaviour of the vectors J   and P  on the plane  . Because of the first of 

equations (134), it suffices to study the behaviour of vector J . We define the 4 4  matrix H  as given 

by 

0

1

2

3

0 0 0

0 0 0 1

0 0 0

0 0 0

H
zQ

 
 


   
 
 

 

. (215) 

Equation 

1
H

zQ
   

emerges from the combination of equations (78) and (104). 

Using matrix H , equations (105) are written in the form 

MJ HJ  . (216) 
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The right part of equation (216) is generally not zero (see equation (117) and the concluding remarks of 

paragraph 7). Taking now into account equations (131) and (193), the first of equations (105) is written in 

the form 

0 0T J  n J .                        (217) 

Taking into account equations (131), (191), and (193), the remaining three equations (105) are 

written in the form 

1 1

0 2 2

3 3

T J

J T J

T J

 
 

  
 
  

n τ J .           (218) 

Using matrix N  as given by equation (120), the second of equations (75) is written in the form 

0NJ  .                          (219) 

This equation is equivalent to the four different equations we get from the second of equations (75). The 

first of these is equivalent to the second of equations (199), and expresses the fact that the vector J   

belongs to the plane  . The remaining three are written in the form 

0J  τ n J .                           (220) 

The vector J  belongs to the plane    and, therefore, is written in the form 

   2 2
   

μ n
J μ J n J

μ n
 

and with equation (217) we get 

  0 02 2
J  

μ n
J μ J

μ n
.   (221) 

From the equations (220) and (221) we get 

 

 

0 0 02 2

0 2

J J

J

 
    

  


 

μ n
τ n μ J

μ n

n μ
τ μ J

μ

 

and with equation (196) we get 

 
 0 2

J


    
μ J

τ n n τ
μ

 

and since 0 n τ  we get 

  2

0 2
J


 

μ J
τ n τ

μ
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and since 0τ  we get 

 

 

2

0 2

0

2 2

J

J


 


 

μ J
n

μ

μ J

μ n

 

and with the second of equations (197) we get 

0iJ
 

μ J

μ μ
 

and substituting in equation (221) we get 

0 0
0

Ji
J


  

μ n
J

μ n n
. (222) 

Taking into account that 0

iW
J

c
 , equation (222) is written as 

0iW

c

 
    

 

μ n
J

μ n n
. (223) 

From equations (11) and (222), (223) we get the 4-vector J  in the form 

0 0 0

1i
W

J i J i
c

   
   

   
     
      

μ n μ n

μ n n μ n n

. (224) 

The corresponding mathematical expressions for the 4-vector P emerge from the combination of 

equations (222), (223), and (224) with equation (44). From equation (224) we conclude that 
0J  and 

0T  

are the only variable physical quantities in the 4-vectors J  and P . 

According to the study we presented, the corpuscular structure of the generalized particle is 

determined by the 4-vectors C , J , P  and their relation. According to equation (207), the wave 

behaviour of the generalized particle is determined by the 4-vector j. The “connecting element” between 

the corpuscular structure and the wave behaviour of the generalized particle are equations (146) and 

(150). 

The plane   is defined when relations (192) hold. Nevertheless, it should be considered the rule 

in the TSV, while the cases where the plane   is not defined should be considered as special. These 

cases can be examined using the theorems of the TSV. For this reason, as well as for reasons of economy 

of the present article, we will not refer to these special cases. 

 

13. Degrees of freedom of the TSV. The Schrödinger equation 
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One of the most important conclusions of the eighth theorem is that it gives the degrees of 

freedom of the equations of the TSV. In equation (146) the parameters , , ( , ) (0,0)      can have 

arbitrary values or can be arbitrary functions of 
0 1 2 3, , ,x x x x . Therefore, the investigation of the TSV 

takes place through the parameters   and   of equation (146). 

The TSV consists of a closed set of equations. Consequently, every specific choice of the 

parameters , , ( , ) (0,0)      completely determines the totality of the physical quantities that 

enter into the equations of the TSV. These include the rest masses 
0 0,M m  and 0

2

E

c
, as well as the 4-

vectors j  of the conservable physical quantities of the generalized particle. 

If we set    , , 1,0,b i    in equation (146), we get equations 

0

0

i

i
J

x

  


 



J

. (225) 

Taking into account that 
0x ict  and 0

iW
J

c
 , we recognize in equations (225) the Schrödinger 

operators [18-23]. Using the macroscopic mathematical expressions of the momentum J  and energy W  

of the material particle, we get the Schrödinger equation. The Schrödinger equation is a special case of 

the wave equation of the TSV. 

If we set    , , 1, ,b i    in equation (146), where   the fine structure constant, and take 

into account equation (44), we get equations 

  

  0 0

0

1

1

i

i
J c

x

 

 

    


   



J C

. (226) 

The fine structure constant in the TSV can have the following three forms 

2

0

0

2

0

4

4

4

e

c

eQ

c

Q

c
















 (227) 

in the electromagnetic interaction. We denote e  the constant value we measure in the lab for the electric 

charge of the electron [5] (paragraph 4.9). By Q  we denote the electron’s selfvariating charge. 
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The combination of equation (226) with each of equations (227), as well as the Schrödinger 

equation (225), give the exact same results for the hydrogen atom. For the TSV, the investigation of 

physical reality is put on the following terms: “In the application of the TSV, and in every case except of 

the generalized photon, the determination of the parameters   and  , is sought. This determination can 

be either theoretical or based on experimental data.” The determination of the parameter b  of the law of 

Selfvariations is made from the boundary conditions of the differential equations of the TSV, in the way 

we did in the application of paragraph 11. Of course, in the solution of that particular problem we cannot 

rule out the determination of the parameter b  by other methods, theoretical or experimental. 

In concluding this paragraph, it would be an omission not to refer to the work of Dirac. It is based 

on the investigation of equation (14) of Special Relativity [24, 25]. The development of the TSV showed 

that the Dirac equation is a special case of a wave equation when equation (112) holds. Its applicability 

concerns only flat spacetime. If spacetime is not flat in the hydrogen atom, the Dirac equation is only 

approximate. In every case, therefore for the hydrogen atom as well, the determination of the parameters 

  and   will give the exact wave equation. 

 

14. Conclusions 

In the study we present, it is proven that the interaction of material particles, the corpuscular 

structure of matter, and the quantum phenomena can be justified as a consequence of the law of 

Selfvariations. It is easily proven that the cosmological data are predicted and justified by the internal 

symmetry theorem. We have not included in the present article the analytical mathematical calculations 

about the consequences of the internal symmetry theorem. 

The TSV predicts a unified interaction of material particles (USVI) as given by equation (86). 

The USVI predicts a common mechanism for all interactions. Every interaction is resolved into three 

individual terms, clearly distinct from each other, as they appear in the right part of equation (86), and 

with clearly distinct consequences in the USVI. Equation (86) gives the rate of change of energy and 

momentum, as well as the orbits of material particles. 

We prove the wave equation (160) of the TSV, special cases of which are the Maxwell equations, 

the Schrödinger equation, and the related wave equations. We determine a single mathematical expression 

for the conservable physical quantities, and calculate the 4-vector j  of the current density. The energy 

and momentum of a material particle are calculated by solving the wave equation (160) of the TSV. 

From the study of the law of Selfvariations, equation (128) emerges as central for the theoretical 

prediction of the corpuscular structure of matter. The combination of equation (128) with the wave 

equation (160) clearly showcases the corpuscular structure and the wave behaviour of matter, as well as 

the relation between them. From this combination, a method for the calculation of the rest masses of 

material particles emerges. 

The TSV has two degrees of freedom, since there are two parameters ,  , ( , ) (0,0)    

in equation (146), which can have arbitrary values within the web of equations and theorems of the TSV. 

The investigation of physical reality is reduced to the determination of the parameters   and   in every 

application of the TSV. The only exception is the case of the «generalized photon», where the system of 

differential equations of the TSV does not require the determination of parameters   and   for its 

solution. 
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