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Abstract 

With the term “Law of Selfvariations” we mean an exactly determined increase of the 

rest mass and electric charge of material particle. In this article we present the basic theoretical 

investigation of the law of selfvariations. We arrive at the central conclusion that the interaction 

of material particles, the corpuscular structure of matter, and the quantum phenomena can be 

justified by the law of Selfvariations. We predict a unified interaction between material particles 

with a unified mechanism (Unified Selfvariations Interaction, USVI). Every interaction is the 

result of three clearly distinct terms with clearly distinct consequences in the USVI. We predict a 

wave equation, whose special cases are the Maxwell equations, the Schrödinger equation, and 

the related wave equations. We determine a mathematical expression for the total of the 

conservable physical quantities, and we calculate the curent density 4-vector. The corpuscular 

structure and wave behaviour of matter and their relation emerge clearly, and we give a 

calculation method for the rest masses of material particles. We prove the «internal symmetry» 

theorem which justifies the cosmological data. From the study we present, the method for the 

further investigation of the Selfvariations and their consequences also emerges. 

Keywords: Particles and Fields, Quantum Physics, Cosmology. 

 

 

 

 



2 
 

1. Introduction 

In the present article we attempt to give an axiomatic foundation of theoretical Physics 

based on three axioms: The principle of the conservation of the four-vector of momentum, the 

equation of the Theory of Special Relativity for the rest mass of the material particles, and the 

law of Selfvariations. 

With the term “Law of Selfvariations” we mean an exactly determined increase of the 

rest mass and electric charge of material particle. It is consistent with the principles of 

conservation of energy, momentum, angular momentum and electric charge. It is also invariant 

under the Lorentz-Einstein transformations. 

The most immediate consequence of the law of Selfvariations is that the energy, the 

momentum, the angular momentum, and the electric charge of material particles are distributed 

in the surrounding spacetime (when the material particle is electrically charged). 

In order for the value of the electric charge to increase in absolute value, the electron, in 

some way, should 'emit' a positive electric charge in the space-time environment. Otherwise, the 

conservation of the electric charge is violated. Similarly, the increase of the rest mass of the 

material particle involves the “emission” of negative energy as well as momentum in the space-

time surrounding the material particle (spacetime energy-momentum, STEM). The law of 

Selfvariations describes quantitatively the interaction of material particles with the STEM. 

Every material particle interacts both with the STEM emitted by itself due to the 

selfvariations, and with the STEM originating from other material particles. The material particle 

and the STEM with which it interacts, comprise a dynamic system which we called “generalized 

particle”.  We study this continuous interaction in the present article. For the formulation of the 

equations the following notation is used: 

W   the energy of the material particle 

J  the momentum of the material particle 

0m   the rest mass of the material particle 

E   the energy  of the STEM interacting with the material particle 

P  the momentum of the STEM interacting with the material particle  
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 0E   the rest energy of the STEM interacting with the material particle  

With the above symbolism, the law of Selfvariations for the rest mass is given by equations 
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    The the findings resulting from the law of Selfvariations will be referred to as "the 

Theory of Selfvariations" (TSV). Initially, we present the TSV in inertial frames of reference. 

 

 

2. The basic study of the internal structure of the generalized particle 

   We consider a material particle with rest mass 0 0m  . That is, we consider a 

generalized particle. The rest mass 0m  and the rest energy 0E   given by equations (2.1) and (2.2) 

respectively according to special relativity [1-4] 
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0m c W c  J
                                                                                                                (2.1) 
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.                                                                                                                  (2.2) 

We now denote the four-vectors  
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where c  is the vacuum velocity of light and i   is the imaginary unit, 2 1i   . 

 

Using this notation, equations (1.1), (2.1) and (2.2) are written in the form of equations (2.6), 

(2.7) and (2.8) 
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  After differentiating equation (2.7)   with respect to , 0,1,2,3kx k   we obtain 
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and with equation (2.6)  we obtain 
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and with equation (2.7)  we obtain 
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We now symbolize 

, , 0,1,2,3i
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k

J b
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.                                                                            (2.10) 

With this notation, equation (2.9) can be written in the form 

0 0 1 1 2 2 3 3 0, 0,1,2,3k k k kJ J J J k        .                                                        (2.11) 

    We now need the 4 4  matrix T  as given by equation  
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With this notation, equation (2.11) can be written in the form 

0TJ  .                                                                                                                     (2.13) 

    We now prove the following relationship 
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Proof. Indeed, by differentiating equation (2.6) with respect to , 0,1,2,3ix i   we get    
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we get 
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and with equation (2.6) we have 
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 and with equation  (2.6)  we have 
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from which we obtain equation (2.14).  

We now prove the following theorem:  

Theorem 2.1 ‘’For every  , , 0,1, 2,3k i    the following equation holds 
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 Proof. Indeed, by differentiating equation (2.10) with respect to , 0,1,2,3vx v   we get
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and with equation  (2.10) we have 
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 and with equation (2.14) we get 
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which is equation (2.15).  

 

3. Physical quantities ki
λ , k, i = 0,1,2,3  and the conservation principles of energy and 

momentum 

   The physical quantities , , 0,1,2,3ki k i   are related to the conservation of energy and 

momentum of the generalized particle. This investigation we will present in this section. We 

prove the following theorem: 

 Theorem 3.1 ΄΄If the generalized particle conserves its momentum along the axes , 0,1,2,3ix i   

, that is  

constanti i iJ P c   .                                                                                                  (3.1) 

then the following equation holds 
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J P J P c J c J c P c P                                                 (3.2)   

for every , 0,1,2,3, .k i k i   ΄΄ 

Proof. Combining equations (2.14) and (3.1) we obtain 

    i i k k

k i

c J c J
x x

 
  

 
 

 i k

k i

J J

x x

 


 
 

and with equation (2.10) we get 
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which is equation (3.2). The rest of equations (3.2) are derived taking into account equation 

(3.1).  (3.2). Equation (3.2) holds for , , i 0,1,2,3k i k  , since equation (2.14), from which 

equation (3.2) results is an identity k i and gives no information in this case.  
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We now prove the following theorem: 

 Theorem 3.2. TSV theorem for the symmetry of indices: 

΄΄If the generalized particle conserves its momentum along the axes ix and kx  with k i , the 

following equivalences hold 

 1.  ik ki k i i k i k k i k i i kJ P J P c J c J c P c P        .                                                  (3.3) 

 2.  ik ki         
2 2 2

ki k i i k i k k i k i i k

b b b
J P J P c J c J c P c P       .                   (3.4)          

, 0,1,2,3,k i k i   .΄΄  

Proof. The theorem is an immediate consequence of equation 3.2.  

 

    We now consider the four-vector ,C  as given by equation 
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                                                                                                              (3.5) 

When the generalized particle conserves its momentum along every axis, then the four-vector C  

is constant. Also, we denote 0M  the total rest mass of the generalized particle, as given by 

equation  

2 2 2 2 2 2

0 1 2 3 0 cTC C c c c c M      .                                                                                     (3.6) 

where 
TC  is the adjoint of the column vector C . 

 For reasons that will become apparent later in our study, we give the following definitions: We 

name the symmetry , , , 0,1,2,3ik ki k i k i     internal symmetry, and the symmetry 

, , , 0,1,2,3ik ki k i k i      external symmetry. We now prove the following theorem: 
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 Theorem 3.3. Internal Symmetry Theorem: 

΄΄ If the generalized particle conserves its momentum in every axis, the following hold:  

1.   ik ki   for every , 0,1,2,3k i     J , P  and C  are parallel                   

          P J where , 0   .                                                                         (3.7) 

2.  For 1    the following equation holds: 

      2

0 0E m c                                                                                                                 (3.8) 

3.  For 1    the following equations hold: 

  0 0 1 1 2 2 3 3exp
b

K c X c X c X c X
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                                                      (3.9) 
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                                                                                                                 (3.10) 
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c
J i 


                                                                                                   (3.12) 

    , i 0,1,2,3
1

i
i

c
P


 


                                                                                                  (3.13) 

 where K  is a dimensionless constant physical quantity. 

 4.  We have  ik ki   for every , i 0,1,2,3k   

                                                                                                                                     (3.14) 

      0ki   for every , i 0,1,2,3k   . ΄΄  

 Proof. Equivalence (3.7) results immediately from equivalence (3.3). For 0  from the last of 

equivalence (3.7) we obtain  0,P   which is impossible, since in this case the Selfvariations of 

the rest mass 0 0m  , do not exist, as seen from equation (2.6). Therefore, 0.  For 1    

from the last of equivalence (3.7) we obtain P J   and from equations (2.7) and (2.8) we 

obtain  
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2 2 4

0 0E m c   

which is equation (3.8).  

For 1    from the last of equivalence (3.7) we obtain  i iP J   for every 0,1,2,3i   and with 

equation (3.1)  i i iJ P c   we initially obtain equations (3.12) and (3.13). Then, combining 

equations (2.7) and (3.12) we get 
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 and with equation (3.6) we obtain equation 
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which is equation  (3.10). Similarly, combining equations (2.8) and (3.13) we obtain equation 

(3.11). We now prove that function   is given by equation (3.9). 

    Differentiating equation (3.15) with respect to , 0,1,2,3vx v   and considering 

equation (2.6) we obtain  
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and with equation (3.15) we have  
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 and with equation (3.13) for i v  we arrive at equation 
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  , 0,1, 2,3.v

v

b
c v
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
                                                                                 (3.16) 

By integration of equation (3.16) we obtain 
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where K  is the integration constant, which is equation (3.9). 

    Combining equations (2.10), (3.12) and (3.13) for 0,1,2,3k   we obtain 
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and with equation (3.16) for k   we obtain 
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2 2
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i k i
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c c cb b
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
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    0ki  .  

  According to the previous theorem, internal symmetry is equivalent to the parallelism of 

the four-vectors ,J P . Starting from this conclusion we can determine the physical content of the 

internal symmetry. 

In an isotropic space the spontaneous emission of generalized photons by the material 

particle is isotropic. Due to the linearity of the Lorentz-Einstein transformations, this isotropic 

emission has as a consequence the parallelism of the four-vectors ,J P [5] ( par. 5.3). Thus, the 

theorem of internal symmetry 3.3 holds for the spontaneous emission of generalized photons by 

the material particle due to Selfvariations . 

In the following paragraphs, we will make clear that the internal symmetry refers to a 

spontaneous internal increase of the rest mass and the electrical charge of the material particles, 

independent of any external causes. The consequences of this increase is the cosmological data, 
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as we'll see in Paragraph 11. Also, the internal symmetry is associated with Heisenberg's 

uncertainty principle. 

We start the investigation of the internal symmetry with the proof of the following 

theorem:  

Theorem 3.4. First theorem of the TSV for the internal symmetry: ΄΄If the generalized particle 

conserves its momentum along every axis, and the symmetry 
ik ki    holds for every 

k i, , 0,1,2,3k i  , then: 

 1.  

0

0

0

i vk k iv v ki

i k k i v ki

i k k i v ki

c c c

c J c J c J

c P c P c P

 

 

    

  

  

                                                                                                   (3.17) 

for every , , , , , 0,1,2,3i v v k k i k i v    . 

 2.  
2 2

ki v v
v ki ki v ki ki

v

bc bcb b
P J

x


   


    


                                                                    (3.18) 

for every , , , 0,1,2,3k i k i   . 

 3.  01 32 02 13 03 21 0        . ΄΄                                                                                          (3.19) 

 Proof. From equivalence (3.4) we obtain       

    , , , 0,1,2,3ki i k k i

b
c J c J k i k i     .                                                                             (3.20) 

Considering equation (3.20) we get 

      0
2

i vk k iv v ki i k v v k k v i i v v i k k i

b
c c c c c J c J c c J c J c c J c J              

Thus, we get the first of equations (3.17). Similarly, from the other two equalities of equivalence 

(3.4) we obtain the second and the third equation of (3.17). Since k i in equivalence (3.4), the 

physical quantities , ,k i ki     in equations (3.17) are defined for 

, , , , , 0,1,2,3k i k i k i       . 

 Differentiating equation (3.20) with respect to , 0,1,2,3vx v   we obtain 
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2

ki k i
i k

v v v

J Jb
c c

x x x

    
  

   
 

and with equation (2.10) we get 

   

   

2

2

2 2

ki
i v k vk k v i vi

v

ki
v i k k i i vk k vi

v

ki
v i k k i i vk k vi

v

b b b
c P J c P J

x

b b
P c J c J c c

x

b b b
P c J c J c c

x


 


 


 

     
            

  
      


   



 

and with equation (3.20) we obtain 

   
2

ki
v ki i vk k vi

v

b b
P c c

x


  


  


 

and with the first of equations (3.17) we obtain 

 
i vk k vi v kic c c      

  we get 

 
2

ki v
v ki ki

v

bcb
P

x


 


 


 

 which is equation (3.18). The second equality in equation (3.18) emerges from the substitution 

  , 0,1,2,3v v vP c J v    

 according to equation (3.5). 

Taking into account equation (3.20) we obtain 

  
        

01 32 02 13 03 21

2

1 0 0 1 2 3 3 2 2 0 0 2 3 1 1 3 3 0 0 3 1 2 2 12
0

4

b
c J c J c J c J c J c J c J c J c J c J c J c J

       

          

 

after the calculations.  

In the next paragraphs we investigate the external symmetry. 
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4. The Unified Selfvariations Interaction (USVI) 

According to the law of selfvariations every material particle interacts both with the 

generalized photons emitted by itself due to the selfvariations, and with the generalized photons 

originating from other material particles. In the second case, an indirect interaction emerges 

between material particles through the generalized photons. Generalized photons emitted by one 

material particle interact with another material particle. Through this mechanism the TSV 

predicts a unified interaction between material particles. The individual interactions only emerge 

from the different, for each particular case, physical quantity Q  which selfvariates, resulting in 

the emission of the corresponding generalized photons.In this paragraph we study the basic 

characteristics of the USVI. We suppose that for the generalized particle the conservation of 

energy-momentum holds, hence the equations of the preceding paragraph also hold. For the rate 

of change of the four-vector 
0

1
J

m
 we get  

0

2

0 0 0

1i i i

k k k

J J m J

x m m x m x

   
   

     

and with equations (2.6) and (2.10) we get 

 02

0 0 0

1i i
k k i ki

k

J J b b
P m P J

x m m m


   
      

   
 

and we finally obtain  

0 0

, , 0,1,2,3i ki

k

J
k i

x m m

 
  

  
.                                                                        (4.1) 

      According to equation (4.1), when 0ki   for at least two indices , , , 0,1, 2,3,k i k i   the 

kinetic state of the material particle is disturbed. According to equivalence (3.14) in the internal 

symmetry it is 0ki   for every , 0,1,2,3.k i   Therefore, in the internal symmetry the material 

particle maintains its kinetic state. In an isotropic space we expect that the spontaneous emission 

of generalized photons by the material particle cannot disturb its kinetic state. Consequently, the 
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internal symmetry concerns the spontaneous emission of generalized photons by the material 

particle in an isotropic space. 

In contrast, in the case of the external symmetry it can be 0ki   for some indices 

, , , 0,1,2,3k i k i  . Therefore, the external symmetry must be due to generalized photons with 

which the material particle interacts, and which originate from other material particles. The 

distribution of generalized photons depends on the position in space of the material particle 

relative to other material particles. This leads to the destruction of the isotropy of space for the 

material particle. The external symmetry factor will emerge in the study that follows. 

The initial study of the Selfvariations  concerned the rest mass and the electric charge. The 

study we have presented up to this point allows us to study the Selfvariations in their most 

general expression. 

We consider a physical quantity Q  which we shall call selfvariating “charge Q  ”, or simply 

charge Q , unaffected by every change of reference frame, therefore Lorentz-Einstein invariant, 

and obeys the law of Selfvariations, that is equation 

  , 0,1,2,3.k

k

Q b
P Q k

x


 


                                                                                          (4.2) 

In equation (4.2) the momentum , k 0,1,2,3kP  , i.e. the four-vector P , depends on the 

selfvariating charge .Q  Two material particles carrying a selfvariating charge of the same nature 

interact with each other when the STEM emitted by the charge 1Q  of one of them interacts with 

the charge Q  of the other. In this particular case, we denote Q  the charge of the material particle 

we are studying. 

The rest mass 0m  is defined as a quantity of mass or energy divided by 
2c , which is 

invariant according to the Lorentz-Einstein transformations. The 4-vector of the momentum J  

of the material particle is related to the rest mass 0m  through equation (2.7). The charge Q  

contributes to the energy content of the material particle and, therefore, also contributes to its rest 

mass. Furthermore, the charge Q  modifies the 4-vector of momentum J  of the material particle 

and, therefore, contributes to the variation of the rest mass 0m  of the material particle. 

Consequently, for the change of the four-vector J  of the material particle due to the charge ,Q  
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the four-vector P  of equation (2.10) enters into equation (4.2). The consequences of this 

conclusion become evident when we calculate the rate of change of the four-vector 
1

.J
Q

 

 

 Theorem 4.1 Second theorem of the TSV for the external symmetry  

΄΄The rate of change of the four-vector 
1

J
Q

 due to the Selfvariations of the charge Q  is given 

by equation  

, , 0,1,2,3i ki

k

J
k i

x Q Q

 
  

   .                                                                           (4.3) 

For k i  the physical quantities ki

Q


 are given by  

, k i,k,i 0,1,2,3ki
kiza

Q


  

                                                                                       (4.4) 

where z is the function 

 0 0 1 1 2 2 3 3exp
2

b
z c x c x c x c x

 
     

  .                                                                     (4.5) 

For the constants kia  the following equations hold 

0

0

0

i vk k iv v ki

i vk k iv v ki

i vk k iv v ki

c a c a c a

J a J a J a

Pa P a P a

  

  

  

                                                                                       (4.6) 

for every , , , , , 0,1,2,3i v v k k i i k     .  

  , , , 0,1,2,3ik ki k i k i                                                                                          (4.7) 

 

  01 32 02 13 03 21 0        .”                                                                                      (4.8) 

 

Proof. In order to prove the theorem, we take 
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2

1i i i

k k k

J J JQ

x Q Q x Q x

   
   

     

and with equations (4.2) and (2.10) we get  

i ki

k

J

x Q Q

 
 

   , 

which is equation (4.3).  

Equations (4.2) and (2.10) hold for every , i 0,1,2,3.k   Therefore, equation (4.3) also 

holds for every , 0,1,2,3.k i  . For , , 0,1, 2,3k i k i   and 0,1, 2,3v   equation (3.18) holds and, 

since 0Q  , we obtain  

2

ki v
v ki ki

v

bcb
Q PQ Q

x


 


 

  

and with equation (4.2) we get  

2

2

ki v
ki ki

v v

ki v ki

v

bcQ
Q Q

x x

bc

x Q Q


 

 

 
 

 

 
  

    

and integrating we obtain  

 0 0 1 1 2 2 3 3exp
2

ki
ki

b
a c x c x c x c x

Q

  
     

  , 

where , , , 0,1,2,3kia k i k i   are the integration constants, and with (4.5) we get equation (4.4). 

Equations (4.6) are derived from the combination of equations (3.17) and (4.4), taking into 

account that 0zQ  . Equation (4.7) is derived from the combination of equation 

, , , 0,1,2,3ik ki k i k i      with equation (4.4). Simirarly, equation (4.8) is derived from the 

combination of equations (3.19) and (4.4).  

    We will also use equation 

    , 0,1, 2,3
2

k

k

bcz
z k

x


  


                                                                                    (4.9) 

which results immediately from equation (4.5).  
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    For , , 0,1, 2,3k i k i   equation (4.4) does not hold. So we define the physical 

quantities k  and kT  as given by equation 

     , 0,1,2,3kk
k k kkzT z k

Q


     .                                                                                 (4.10) 

Taking into account the notation of equation (4.10) the main diagonal of matrix T  of equation 

(2.12) is given from matrix   

 

     

00 0 0

11 1 1

22 2 2

33 3 3

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 01

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

΄ zT

zT

zTQ

zT









     
     


        
     
     

     

  .          (4.11) 

We now define the three-vectorsα  and β , as given by equations (4.12) and (4.13) 

respectively 

     

011

2 02

3 03

1
x

y

z

ic

ic
Q

ic

 

  

 

    
    

      
    
    

α                                                                                         (4.12)  

     

321

2 13

3 21

1
x

y

z

Q

 

  

 

    
    

      
    
    

β                                                                                              (4.13) 

 

Vectors α and β  contain all of the physical quantities ki  for , , 0,1,2,3k i k i  since ik ki   . 

    Combining equations (4.12) and (4.13) with equation (4.4), the vectorsα  and β  are 

written in the form of equations (4.14) and (4.15), respectively 

   

011

2 02

3 03

x

y

z

icz

 

  

 

    
    

      
    
    

α                                                                                            (4.14) 
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321

2 13

3 21

x

y

z

z

 

  

 

    
    

      
    
    

β  .                                                                              (4.15) 

We write equation (2.10) in the form  

,k,i 0,1,2,3.i
k i ki

k

J b
P J

x



  


                                                                   (4.16) 

The rate of change of the momentum of the material particle equals the sum of the two 

terms in the right part of equation (4.16). For 0k  , and since 
0x ict , equation (83) gives the 

rate of change of the particle momentum with respect to time ,t  i.e. the physical quantity we call 

“force”. By using the concept of force, as defined by Newton, we also have to use the concept of 

velocity. For this reason we symbolize u  the velocity of the material particle, as given by 

equation 

       

1

2

3

x

y

z

uu

u u

u u

  
  

    
   
   

u  .                                                                                                 (4.17) 

Also, we define the 4-vector of the four-vector  u  , as given by equation 

     

0

1

2

3

.
x

y

z

icu

uu
u

uu

u u

  
  
   
  
  
    

                                                                                                     (4.18) 

We now prove the following theorem: 

 

 

Theorem 4.2. ΄΄The rates of change with respect to time  0t x ict  of the four-vectors J  and 

P  of the momentum of the generalized particle carrying charge Q  are given by equations 
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0 0

i
dJ dQ i i

J Q u Q c
dx Qdx c c

 
    

 
  

u α

α u β

                                                             (4.19) 

      
0 0

i
dP dQ i i

J Q u Q c
dx Qdx c c

 
     

 
  

u α

α u β

 .΄΄                                                    (4.20) 

  

Proof. The matrix   is given in equation (4.11). By u β  we denote the outer product of 

vectors u  and .β   

We now prove the first of equations (4.19):

0 0 0 0 0
1 2 3

J J J J Jd
u u u

dt Q t Q x Q y Q z Q

            
            
            

  

and using the notation of equation (2.3) we get 

0 0 0 0 0
1 2 3

0 0 1 2 3

J J J J Jicd
ic u u u

dx Q x Q x Q x Q x Q

            
            

            
 

and with equation (4.3) we get 

0 00 10 20 30
1 2 3

0

Jicd
ic u u u

dx Q Q Q Q Q

    
    

 
 

0 00 10 20 30
1 2 3

0

Jd i
u u u

dx Q Q c Q Q Q

      
      

   
 

0 00 01 02 03
1 2 3

0

Jd i
u u u

dx Q Q c Q Q Q

      
      

   
 

0 0 00 01 02 03
1 2 32

0 0

1 dJ J dQ i
u u u

Q dx Q dx Q c Q Q Q

    
     

 
  

 0
0 00 1 01 2 02 3 03

0 0

dJ dQ i
J u u u

dx Qdx c
         

and with equations (4.10) and (4.12) we have  
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0
0 0 1 1 2 2 3 3

0 0

dJ dQ i i i i
J Q Q u u u

dx Qdx c c c c
  

 
      

 
 

which is the first of equations (4.19) since  

0 0 0 0.
i i

Q u Q ic Q
c c

        

We prove the second of equations (4.19) and we can similarly prove the third and the 

fourth: 1 2 3
x x x x xJ J J J Jd

u u u
dt Q t Q x Q y Q z Q

            
            
            

  

and using the notation of equations (2.3) and (2.4) we obtain 

1 1 1 1 1
1 2 3

0 0 1 2 3

J J J J Jicd ic
u u u

dx Q x Q x Q x Q x Q

            
            
            

 

and with equation (4.3) we get  

01 311 11 21
1 2 3

0

Jicd
ic u u u

dx Q Q Q Q Q

   
    

 
 

01 3 131 1 11 2 21

0

iuJ iu iud

dx Q c Q Q c Q c Q

   
     

 
 

01 3 131 1 1 11 2 21

2

0 0

1 iudJ J iu iudQ

Q dx Q dx c Q Q c Q c Q

  
        

31 1 2
1 11 01 21 13

0 0

iudJ iu iudQ
J

dx Qdx c c c
         

and with equations (4.10), (4.12) and (4.13), we obtain  

   1
1 1 1 2 3 3 2

0 0

dJ dQ i i i
J Q Q Q u u

dx Qdx c c c
         

which is the second of equations (4.19). Equation (4.20) results from the combination of 

equations (4.19) and (3.5).  

Using the symbol J  for the momentum vector of the material particle  
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1

2

3

x

y

z

JJ

J J

J J

  
  

    
   
   

J  

and taking into account equations (2.3) and (2.4) and (4.11) the set of equations (4.19) can be 

written in the form  

      

 

2

0

1 1

2 2

3 3

dW dQ
W Qc Q

dt Qdt

u
d dQ

Q u Q
dt Qdt

u

    

 
 

      
  

u α

J
J α u β

   .                                                          (4.21)      

Equations (4.21) are a simpler form of equation (4.19) with which are equivalent.  

The rate of change of the four-vector J  of the momentum of the material particle is 

given by the sum of the three terms in the right part of equation (86). The USVI and its 

consequences for the material particle depend on which of these terms is the strongest and which 

is the weakest. 

The first term expresses a force parallel to four-vector J  which is always different than 

zero due to the Selfvariations. As we will see next, the second term is related to the curvature of 

spacetime. The third term on the right of equation (4.19) is known as the Lorentz force, in the 

case of electromagnetic fields. In many cases a term or some of the terms on the right of equation 

(4.19) are zero, with the exception of the first term which is always different than zero.      

From equation  (4.19) we conclude that the pair of vectors  ,α β  expresses the intensity 

of the field of the USVI according to the paradigm of the classical definition of the field 

potential.  From equation (2.10) we derive tha physical quantities  , , 0,1,2,3ki k i   have units 

(dimensions) of 
1kg s .  Thus, from equation (4.12) we derive that if Q  is the rest mass, the 

intensity α  has unit of 
2m s . If Q is the electric charge, the intensity α  has unit of

1N C  . Now 

we will prove that for field  ,α β  the following equations (4.22) hold. 

Theorem 4.3. ΄΄ For the vector pair  ,α β  the following equations hold: 
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     1 01 2 02 3 03
2

icbz
c c c      α                                 (a) 

   0 β                                                  (b) 

   
t


  



β
α                                      (c)                              

(4.22) 

    

0 01 2 21 3 31

0 02 2 12 3 32 2

0 03 2 13 3 23

2

c c c
bz

c c c
c t

c c c

  

  

  

  
 

          

α
β . ΄΄                   (d)  

Proof. Differentiating equations (4.14) and (4.15) with respect to , 0,1,2,3kx k   and 

considering equation (4.9), we obtain equations  

      
2

k

k

bc

x


 



α
α                                                                                                          (4.23)   

      
2

k

k

bc

x


 



β
β .                                                                                                        (4.24) 

From equations (4.23) and (4.24) we can easily derive equations (4.22). Indicatively, we prove 

equation (4.22b). From equation (4.15) we obtain  

 32 13 21

1 2 3

z z z

x x x
  

  
    

  
β   

and with equation (4.9) we get  

   1 32 2 13 3 21
2

bz
c c c      β  

and with the first of equations (4.6) for    , , 1,3,2i v k   we get  

      0 β  

The first of equations (4.6) should be taken into account for the proof of the rests of equations of 

(4.22).  
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    Considering equations (4.22) we define the scalar quantity  and the vector quantity j , as 

given by equations 

        

 1 01 2 02 3 03

0 01 2 21 3 132

0 02 1 21 3 32

0 03 1 13 2 32

2

2

icbz
c a c a c a

c a c a c a
c bz

c a c a c a

c a c a c a

  



     

   
 

    
    

α

j

                                                         (4.25) 

where 0   is a constant. We now prove that for the physical quantities   and j  the following 

continuity equation holds: 

      0
t


 


j .                                                                                                        (4.26) 

   Proof. : From the first of equations (4.25) we obtain  

         
t t

t t

 







  

 
  

 

  
   

  

α

α

α

 

and with the second of equations (4.25) and equation (4.22d) we get 

       

 2c
t

t







   




 



β j

j

 

which is equation (4.26).   

According to equation (4.26), the physical quantity   is the density of a conserved 

physical quantity q  with current density j . The conserved physical quantity q  is related to field 

 ,α β through equations (4.22).We will revert to the issue of sustainable physical quantities in 

the next paragraphs. 
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  The density  and the current density  j have a rigidly defined internal structure as 

derived from equations (4.25).   

We now consider the four-vector of the current density j  of the conserved physical 

quantity q , as given by equation 

   

0

1

2

3

x

y

z

i cj

jj
j

jj

j j

  
  
   
  
  
    

                                                                                                            (4.27) 

and the 4 4  matrices M  

  

01 02 03

01 21 13

02 21 32

03 13 32

0

0

0

0

M

  

  

  

  

 
 
 
 
  
 
  

 .                                                                                (4.28) 

Using matrix M  equations (4.25) can be written in the form of equation 

   
2

2

c bz
j MC


 .                                                                                                             (4.29) 

     From equations (4.22bc) we conclude that the potential is always defined in the  ,α β

- field of the USVI. That is, the scalar potential  

      0 1 2 3, , , , , ,V V t x y z V x x x x   

and the vector potential A   

   
1

0 1 2 3 2

3

, , , , , ,

x

y

z

AA

t x y z x x x x A A

A A

  
  

      
   
   

A A A  

are defined through the equations 
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0

ic
V V

t x

 

 
     

 

β Α

Α Α
α

 .                                                                               

We can introduce in the above equations the gauge function .f  That is, we can add to the 

scalar potential V  the term  

    
0

f ic f

t x

 
  
 

 

 and to the vector potential A  the term 

      f  

 for an arbitrary function f   

        0 1 2 3, , , , , ,f f t x y z f x x x x   

without changing the intensity  ,α β of the field. The proof of the above equations is known and 

trivial  and we will not repeat it here. For the field potential of the USVI the following theorem 

holds: 

Theorem 4.4. ΄΄In the  ,α β -field of USVI the pair of scalar-vector potentials  ,V A  is always 

defined through equations  

         
0

0

ic
V ic A

t x



 
     

 

β Α

Α Α
α

   .                                                                            (4.30)                                                                                                                                                                                                    

The four-vector A  of the potential 

    

0

1

2

3

x

y

z

iV
A

c
A

AA
A

A
A

A

 
   
   
    
   
   
    

                                                                                                          (4.31) 

is given by equation  
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2
,for

, for

ki k

k i

i

k

i

f
z i k

b c x
A

f
i k

x

 
  

 
 



                                                                             (4.32)                                                                            

 where 0, , 0,1,2,3kc k i   and kf  is the gauge function΄΄ 

Proof. Equations (4.30) are equivalent to equations (4.22b, c) as we have already mentioned. 

The proof of equation (4.32) can be performed through the first of equations (4.6). The 

mathematical calculations do not contribute anything useful to our study, thus we omit them. 

You can verify that the potential of equation (4.32) gives equations (4.14) and (4.15) through 

equations (4.30) taking also into account the first of equations (4.6). □ 

From equation (4.32) the following four sets of the potentials follow:  

    

0

0
0

0

01 0
1

0 1

02 0
2

0 2

03 0
3

0 3

0

2

2

2

c

f
A

x

fz
A

b c x

fz
A

b c x

fz
A

b c x














 




 




 



                                                                                          (4.33) 

 

    

1

10 1
0

1 0

1
1

1

12 1
2

1 2

13 1
3

1 3

0

2

2

2

c

fz
A

b c x

f
A

x

fz
A

b c x

fz
A

b c x










 








 




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

                                                                                          (4.34) 
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
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
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
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                                                                                           (4.35) 
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3 2

3
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0
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2
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fz
A

b c x

fz
A

b c x

fz
A

b c x

f
A

x










 




 




 







                                                                                           (4.36) 

  Indicatively, we calculate the components 1  and 1  of the intensity  ,á â  of the USVI 

field from the potentials (4.35). From the second of equations (4.30) we obtain 

 0 1
1

1 0

A A
ic

x x


  
  

  
 

and with equations (4.33) we get  

          0 01 0
1

1 0 0 0 1

2f fz
ic

x x x b c x




      
      

       

 

    01
1

0 0

2 z
ic

b c x





 


 

and with equation (4.9) we get 

          1 01icz   

that is we get the intensity 1 of the field, as given by equation (4.14). 

    From the first of equations (4.30) we have  
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         3 2
1

2 3

A A

x x


 
 
 

 

and with equations (4.33) we get 

       03 0 02 0
1

2 0 3 3 0 2

2 2f fz z

x b c x x b c x

 


     
      
      

 

     03 02
1

0 2 0 2

2 2z z

b c x b c x

 


 
 

 
 

 and with equation (4.9) we get 

    2 03 3 02
1

0 0

c c
z z

c c

 
     

and considering that 
02 20   , we get  

          1 2 03 3 20

0

z
c c

c
     .                                                                                  (4.37) 

From the first of equations (4.6) for    , , 2,0,3i v k   we obtain 

       
2 03 3 20 0 32

2 03 3 20 0 32

0c a c a c a

c a c a c a

  

  
 

and substituting into equation (4.37), we see that 

     1 32z   

that is, we get the intensity 1  of the field, as given by equation (4.15). 

    The gauge functions , k 0,1,2,3kf   in equations (4.33)-(4.36) are not independent of each 

other. For 0kc   and 0ic   for , , 0,1,2,3k i k i   equation (4.38) holds  

2

2

4
, 0, , , 0,1, 2,3ki

k i k i

k i

z
f f c c k i k i

b c c


     .                                                        (4.38) 

The proof of equation (4.38) is through the first of equations (4.6). The proof is lengthy 

and we omit it. Indicatively, we will prove the third of equations (4.33) from the third of 

equations (4.34) for 1k   and 0i   in equation (4.38). 

  For 
0 0c   and 

1 0c   both equations (4.33) and equations (4.34) hold. From equation 

(4.38) for 1k   and 0i   we get equation 
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2

10
1 0 2

0 1

4 z
f f

b c c


   .                                                                                              (4.39)  

From the third of equations (4.33) and equation (4.39) we get 
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2 0 2

1 2 0 1

2

0 1012
2 2

1 2 0 1 2

2 4

2 4

z z
A f

b c x b c c
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 
   

  

 
  

 

 

and with equation (4.9) we obtain 

      0 2 1012
2

1 2 0 1

2 2f cz z
A

b c x b c c

 
  


 

  0
2 0 12 2 10

0 1 2

2 fz
A c c

bc c x
 


  


 

and since 
10 01   , we get equation 

 

  0
2 0 12 2 01

0 1 2

2 fz
A c c

bc c x
 


  


                                                                          (4.40) 

From the first of equations (4.6) for    , , 0,1,2i v k   we obtain 

        

0 12 2 01 1 20

0 12 2 01 1 20

0 12 2 01 1 02

0c a c a c a

c a c a c a

c a c a c a

  

  

 

 

and substituting into equation (4.40) we obtain equation 

      02 0
2

0 2

2 fz
A

b c x

 
 


                                                                                              (4.41) 

Equation (4.41) is the third of equations (4.33).  

According to equation (4.38), if 0kc   for more than one of the constants , 0,1,2,3kc k  , 

the sets of equations of potential resulting from equation (4.32) have in the end a gauge function. 

In the application we presented assuming 
0 0c   and 

1 0c   for a specific gauge function 0f  in 

equations (4.33), the gauge function 1f  in equations (4.34) is given by equation (4.39).  
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We conclude the investigation of the potential of the field  ,α β of USVI by proving the 

following corollary: 

Corollary 4.1.  ΄΄In the external symmetry, the 4-vector C  of the total energy content of the 

generalized particle cannot vanish: 

     

0

1

2

3

0

0

0

0

c

c
C

c

c

   
   
    
   
   

  

.΄΄                                                                                                               (4.42) 

Proof. Indeed, for 0C   we obtain J P   from equation (3.5). Therefore, the four-vectors J  

and P   are parallel. According to equivalence (3.7) the parallelism of the four-vectors J   and P

is equivalent to the internal symmetry. Therefore, in the external symmetry it is 0C  .  

A direct consequence of these findings is that the potential of the field  ,α β of USVI is 

always defined, as given from equation (4.42). This conclusion is derived from the fact that at 

least one of the constants  , 0,1,2,3kc k is always different than zero. 

 

 5. The conserved physical quantities of  the generalized particle and the wave equation of 

the TSV 

       The generalized particle has a set of conserved physical quantities q which we 

determine in this paragraph. At first, we generalize the notion of the field, as it is derived from 

the equations of theTSV. We prove the following theorem: 

 

Theorem 5.1. ΄΄For the field  ,ξ ω  of the pair of vectors  
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a

ic a

a

 
 

  
 
 

ξ                                                                                                           (5.1) 
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 
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 
 

ω                                                                                                             (5.2) 

 where  0 1 2 3, , ,x x x x   is a function satisfying equation 

      k k

k

b
J P

x
 


  


                                                                                     

 0,1,2,3, ( , ) 0,0 , ,k        are functions of 
0 1 2 3, , ,x x x x , the following equations 

hold 
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 


   



ω

ω
ξ

                                                                                                             (5.4) 

    The generalized particle has a set of conserved physical quantities q  with density   and 

current density j   

      
2

2
c

c t

 



 

 
   
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ξ

ξ
j ω

                                                                                           (5.5) 

where 0   are constants, for which conserved physical quantities the following continuity 

equation holds 

    0
t


 


j .                                                                                                           (5.6) 

The four-vectors of the current density j   are given by equation 

       
2c b

j M J P


      .΄΄                                                                              (5.7) 

 Proof. Matrix M in equation (5.7) is given by equation (4.28). We denote J and P  the three-

dimensional momentums as given by equations 
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1

2

3

J

J

J

 
 

  
 
 

J                                                                                                                     (5.8) 

    

1

2

3

P

P

P

 
 

  
 
 

P .                                                                                                                    (5.9) 

 For the proof of the theorem we first demonstrate the following auxiliary equations (5.10)-(5.15) 

   

32

13

21

0

a

a

a

 
 
  
 
 

J                                                                                                                 (5.10) 

   

32

13

21

0

a

a

a

 
 
  
 
 

P                                                                                                                 (5.11) 

   

01 32

02 0 13

03 21

a a

a J a

a a

   
   

     
   
   

J                                                                                                    (5.12) 

   

01 32

02 0 13

03 21

a a

a P a

a a

   
   

     
   
   

P                                                                                                     (5.13) 

   

32 2 21 3 13

13 3 32 1 21

21 1 13 2 32

a J a J a

a J a J a

a J a J a

   
   

     
      

J                                                                                            (5.14) 

   

32 2 21 3 13

13 3 32 1 21

21 1 13 2 32

a P a P a

a P a Pa

a Pa P a

   
   

     
      

P                                                                                             (5.15) 

In order to prove equation (5.10) we get  
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32

13 1 32 2 13 3 21

21

a

a J a J a J a

a

 
 
    
 
 

J  

and with the second of equations (4.6) for ( , , ) (1,3, 2)i v k  , we have  

  

32

13

21

0

a

a

a

 
 
  
 
 

J  

Similarly, from the third of equations (4.6) we obtain equation (5.11). We now get  

 

01 2 03 3 02 2 03 3 20

02 3 01 1 03 3 01 1 30

03 1 02 2 01 1 02 2 10

a J a J a J a J a

a J a J a J a J a

a J a J a J a J a

      
     

         
           

J  

and with the second of equations (4.6) we obtain  

  

01 0 32

02 0 13

03 0 21

a J a

a J a

a J a

   
   

     
      

J  

which is equation (5.12). Similarly, by considering the third of equations (4.6) we derive 

equation (5.13). Equations (5.14) and (5.15) are derived by taking into account equations (5.8) 

and (5.9). 

    Equations (5.4) are proven with the use of equations (5.10)-(5.15). We prove the first as an 

example. From equation (5.2) we obtain 
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a

a

a

 
 

     
 
 

ω  

and with equation (5.3) we get 
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21 21

a a
b b

a a

a a

 

   
   

          
   
   

ω J P  
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and with equations (5.10) and (5.11) we obtain  

    0 ω . 

From equations (5.4) and (5.5), the continuity equation (5.6) results. The proof is similar to the 

one for equation (4.26). The proof of equation (5.7) is done with the use of equations (5.10)-

(5.15), and equation (4.28).  

 Field  ,α β presented in the previous paragraph is a special case of the field  ,ξ ω for 

1

2
    . For these values of the parameteres ,   we obtain from equations (5.3)   

 

 

1 1

2 2

2

k k

k

k k

k

b
J P

x

b
J P

x

  
    

  


   



 

and with equation (3.5) we obtain 

   
2

k

k

bc

x


  


 

and finally we obtain 

    0 0 1 1 2 2 3 3exp
2

b
z c x c x c x c x

 
       

 
 

and from equations (5.1),(5.2) and (4.14),(4.15) we obtain  =ξ α and ω β . 

From equation (2.10) it emerges that the dimensions of the physical quantities , , 0,1,2,3ki k i   

are  

  1, , 0,1,2,3ki kgs k i   . 

Thus, from equations (4.12), (4.13) and (4.14), (4.15) we obtain the dimensions of the physical 

quantities , , 0,1,2,3kiQ k i  . Furthermore, from equation (4.11) we obtain the dimensions of the 

physical quantities , 0,1,2,3.kT k   Thus, we get the following relationships  
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 

 

1

1

, , , 0,1,2,3,

, 0,1,2,3.

ki

k

Q kgs k i k i

T kgs k

 



  

 
                                                                       (5.16) 

        Using the first of equations (5.16) we can determine the units of measurement of the  ,ξ ω -

field for every selfvariating charge Q . When Q  is the electric charge, we can verify that the 

field units are  1,TV m . When Q  is the rest mass, the field units are  2 1m s s  , . The 

dimensions of the field depend solely on the units of measurement of the selfvariating  charge  

Q . 

From equation (5.7) and taking into account that ,    we can define the dimensions 

of the physical quantities q through the first of equations (5.16). For 0  , where 0  is the 

electric permeability of the vacuum, q is a conserved physical quantity of electric charge. For

0

e


  , where e  the constant value we measure in the lab for the electric charge of the electron,  

q  is a conserved physical quantity of angular momentum. For 
1

4 G



 , where G is the 

gravitational constant, q  is a conserved physical quantity of matter. Theorem 5.1 reveals the 

conserved physical quantities of the generalized particle.  

One of the most important corollaries of the theorem 5.1 is the prediction that the 

generalized particle has wave-like behavior. We prove the following corollary:  

 

 

Corollary 5.1. ΄΄For function   the following equation holds 

    

2
2 2

2

0

2
2 2

2 2

i k
ki

k i

i k
ki

k i

j j
c

x x x

j j
c

c t x x

 

 

    
     

   

    
     

   

                                                                      (5.17) 

, , 0,1, 2,3k i k i  .΄΄ 
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  Proof. To prove the corollary, considering that 
0x ict , we write equations (5.4) and (5.5) in 

the form 

     

0

0

2

0

0

1

i
j

c

ic

x

i

c c x





  

  


  




  



ξ

ω

ω
ξ

ξ
ω j

                                                                                            (5.18) 

We will also use the identity (162) which is valid for every vector α   

       2   α α α                                                                                    (5.19) 

From the third of equations (5.18) we obtain  

      

 

0

0

ic

x

ic

x

 
   

 


   



ω
ξ

ξ ω

  

and using the identity (5.19) we get  

       2

0

ic

x


      


ξ ξ ω   

and with the first and fourth of equations (5.18) we get  

   

2
2

0 2

0 0

i i
j

c x c x 

  
     

  

ξ j
ξ  

and we finally get 

     
2

2

02

0 0

i
j

x c x

  
    

  

ξ j
ξ                                                                                 (5.20) 

Working similarly from equation (5.18) we obtain  
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2

2

2 2

0

1

x c


    



ω
ω j                                                                                               (5.21) 

Combining equations (5.20) and (5.21) with equations (5.1) and (5.2), we get 

     
2

2

2

0

, , , 0,1,2,3i k
ki

k i

j ji
k i k i

x c x x




     
         

     
 

which is equation (5.17).  

     Equation (5.17) can be characterized as “the wave equation of the TSV”. The basic 

characteristics of equation (5.17) depend on whether the physical quantity  

    

2 2
2 2

2 2 2 2

0

F
x c t

   
       

 
                                                                                   (5.22) 

is zero or not. 

This conclusion is drawn through the following theorem: 

Theorem 5.2. ΄΄For the generalized particle the following equivalences hold 

    
2

2

2 2
0

c t

 
  


                                                                                                       (5.23) 

if and only if for each , , 0,1, 2,3k i k i   it is 

    i k

k i

j j

x x

 


 
                                                                                                                   (5.24) 

if and only if  

    

2
2

2 2

2
2

2 2

0

0

c t

c t


  




  



ξ
ξ

ω
ω

  ΄΄                                                                                                        (5.25)  

Proof. In the external symmetry there exists at least one pair of indices 

 ( , ), , , 0,1,2,3k i k i k i  , for which 0ki  . Therefore, when equation (5.24) holds, then 
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equation (5.23) follows from equation (5.17), and vice versa. Thus, equations (5.23) and (5.24) 

are equivalent. When equation (5.24) holds, then the right hand sides of equations (5.24) and 

(5.25) vanish, that is, equations (5.25) hold. The converse also holds, thus equations (5.24) and 

(5.25) are equivalent. Therefore, equations (5.23), (5.24), and (5.25) are equivalent. □ 

In case that 0F  , that is in case that equivalences (5.23), (5.24) and (5.25) hold, we shall refer 

to the state of the generalized particle as the “generalized photon”. According to equations 

(5.25), for the generalized photon the  ,ξ ω -field is propagating with velocity c  in the form of a 

wave. 

For the generalized photon, the following corollary holds: 

Corollary 5.2: ΄΄ For the generalized photon, the four-vector j  of the current density of the 

conserved physical quantities q , varies according to the equations  

  
2

2

2 2
0, 0,1,2,3k

k

j
j k

c t


   


.΄΄                                                                    (5.26) 

 

Proof. We prove equation (5.26) for 0k  , and we can similarly prove it  for 1,2,3k  . 

Considering equation (4.27), we write equation (5.6) in the form   

     0 31 2

0 1 2 3

0
j jj j

x x x x

  
   

   
                                                                                      (5.27)  

Differentiating equation (5.27) with respect to 0x  we get  

     

0

2

0 31 2

2

0 1 0 2 0 3

0
j jj j

x x x x x x x

        
       

           
 

    

0

2

0 31 2

2

1 0 2 0 3 0

0
j jj j

x x x x x x x

         
        

           
 

and with equation (5.24) we get 
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0
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2

1 1 2 2 3 3

2
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02

0

0

j j j j

x x x x x x x

j
j

x

         
       

           


 



 

which is equation (5.26) for 0k  , since 
0

x ict .  

The way in which equations (5.25) emerge in the TSV is completely different from the 

way in which the electromagnetic waves emerge in Maxwell’s electromagnetic theory [6-10]. In 

Maxwell’s theory, equations (5.25) emerge for   0j  . In the TSV it is 0j   due to the 

Selfvariations. Furthermore, according to the TSV, in the electromagnetic waves, the current 

density j  varies according to equation (5.26). 

One of the most important conclusions of the theorem 5.1 is that it gives the degrees of 

freedom of the equations of the TSV. In equation (5.7) the parameters , , ( , ) (0,0)      

can have arbitrary values or can be arbitrary functions of 0 1 2 3, , ,x x x x . Therefore, the 

investigation of the TSV takes place through the parameters   and   of equation (5.7). 

If we set    , , 1,0,b i    in equation (5.7), we get equations 

  

0

0

i

i
J

x

  


 



J

 .                                                                                                          (5.28) 

Taking into account that 0x ict  and  0

iW
J

c
 , we recognize in equations (5.28) the 

Schrödinger operators. Using the macroscopic mathematical expressions of the momentum J  

and energy W  of the material particle, we get the Schrödinger equation [11-15]. The 

Schrödinger equation is a special case of the wave equation of the TSV. 

 In Schrodinger’s equations, we can slightly modify the three parameters  , ,b  . If we set 

   , , 1, ,b i    in equation (5.7), where   the fine structure constant, and take into account 

equation (3.5), we get equations 
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  

  0 0

0

1

1

i

i
J c

x

 

 
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
   



J C

 .                                                                                    (5.29) 

The fine structure constant in the TSV can have the following three forms 

              

2

0

0

2

0

4

4

4

e

c

eQ

c

Q

c
















                                                                                                                (5.30) 

in the electromagnetic interaction. We denote e  the constant value we measure in the lab for the 

electric charge of the electron . By Q  we denote the electron’s selfvariating charge. The 

difference between the two physical quantities e and Q  is due to  ΄΄the internality of the Universe 

to the measurement procedure΄΄.The unit of measurement of the charge Q is itself subject to the 

Selfvariations [5] (par. 4.9). 

The combination of equation (5.28) with each of equations (5.29), as well as the 

Schrödinger equation (5.28), give the exact same results for the hydrogen atom. For the TSV, the 

investigation of physical reality is put on the following terms: “In the application of the TSV, 

and in every case except of the generalized photon, the determination of the parameters   and 

 , is sought. This determination can be either theoretical or based on experimental data.” The 

determination of the parameter b  of the law of Selfvariations is made from the boundary 

conditions of the differential equations of the TSV, to which we will not refer to in the present 

study. 

 

6. The Lorentz-Einstein-Selfvariations Symmetry 

  In this paragraph we calculate the Lorentz-Einstein transformations of the physical 

quantities  ki , , 0,1,2,3.k i   The part of spacetime occupied by the generalized particle can be 

flat or curved. TheLorentz-Einstein transformations give us information about this subject. 
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We consider an inertial frame of reference  , x , y ,zO t      moving with velocity  ,0,0u  

with respect to another inertial frame of reference  , x, y,zO t , with their origins O  and O  

coinciding at 0t t   . We will calculate the Lorentz-Einsteintransformations for the physical 

quantities , , 0,1,2,3ki k i  . We begin with transformations (6.1) and (6.2) 
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u
t t x
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x x c t

y y

z z





   
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                                                                                        (6.1) 
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                                                  (6.2) 

 

where 

1
2 2

2
1 .

u

c




 
  
 

 

 We then use the notation (2.3), (2.4), (2.5) and obtain the transformations (6.3) and (6.4) 
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1 1 0

2 2

3 3

u
J J i J

c

u
J J i J

c

J J

J J





    
 

    
 

 

 

      

0 0 1

1 1 0

2 2

3 3

u
P P i P

c

u
P P i P

c

P P

P P





    
 

    
 

 

 

                                                 (6.4) 

 

We now derive the transformation of the physical quantity 00 . From equation (2.10) for 

0k i   we get for the inertial reference frame  , x , y ,zO t      

     0
00 0 0

0

J b
P J

x


   


 

and with transformations (6.3) and (6.4) we obtain 

    

2 2

00 0 1 0 1 0 1

0 1

2 2
2 0 01 1

00 0 0 0 1 1 0 1 12 2

0 0 1 1

u u b u u
i J i J P i P J i J

x c x c c c

J JJ Ju u u b u b u b u b
i i P J i P J i PJ PJ

x c x c x c x c c c

  

 

                  
       

            
      

and replacing physical quantities 

 0 01 1

0 0 1 1

, , ,
J JJ J

x x x x

  

   
  

from equation (2.10) we get  
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2
2

00 0 0 00 0 1 01 1 0 10 1 12

2 2

11 0 0 0 1 1 0 1 12 2

(

)

b u b u u b u u b
P J i P J i i PJ i PJ

c c c c c

u b u b u b u b
P J i P J i PJ PJ

c c c c

    



       

    
 

and we finally obtain equation 

     
2

2

00 00 01 10 112

u u u
i i

c c c
     

 
     

 
. 

 Following the same procedure for , i 0,1,2,3k   we obtain the following 16 equations 

(27) for the Lorentz-Einstein transformations of the physical quantities  ki  : 

    

2
2

00 00 01 10 112

2
2

01 01 00 11 102

02 02 12

03 03 13

u u u
i i

c c c

u u u
i i

c c c

u
i

c

u
i

c

     

     

   

   

 
     

 

 
     

 

    
 

    
      

     

2
2

10 10 11 00 012

2
2

11 11 10 01 002

12 12 02

13 13 03

u u u
i i

c c c

u u u
i i

c c c

u
i

c

u
i

c

     

     

   

   

 
     

 

 
     

 

    
 

    
 

                                                               (6.5) 

     

20 20 21

21 21 20

22 22

23 23

u
i

c

u
i

c

   

   

 

 

    
 

    
 

 

             
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The first two of equations (6.5) is self-consistent when equation 

      00 11                                                                                                                                  (6.6) 

Then by the second of equations (6.5) we obtain 

    
01 01   . 

According to equivalence  (3.14) these transformations relate to the external symmetry, in which 

it holds that ik ki    for , , 0,1,2,3i k i k  .  Thus, we obtain the following transformations for 

the physical quantities , , 0,1,2,3ki k i   

       

00 00

11 11

22 22

33 33

 

 

 

 

 

 

 

 

                                 

01 01

02 02 21

03 03 13

32 32

13 13 03

21 21 02

u
i

c

u
i

c

u
i

c

u
i

c

 

   

   

 

   

   

 

    
 

    
 

 

    
 

    
 

                                                        (6.7) 

                                                                                                                                                         

Taking into account equations (4.4), (4.10) and that the physical quantity zQ  is invariant under 

the Lorentz-Einstein transformations, we obtain the following transformations for the constants 

, , , 0,1,2,3ki k i k i   and the physical quantities , 0,1,2,3kT k   
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0 0

1 1

2 2

3 3

T T

T T

T T

T T

 

 

 

 

                               

01 01

02 02 21

03 03 13

32 32

13 13 03

21 21 02

u
i

c

u
i

c

u
i

c

u
i

c

 

   

   

 

   

   

 

    
 

    
 

 

    
 

    
 

                                                       (6.8) 

Equation (6.6) correlates the physical quantities 00 and 11  in the same inertial frame of 

reference. Taking into account equation (4.10) we obtain 

    0 1T T                                                                                                                                        

Thus, when transformations (6.8) hold, equation (6.9) also holds. Thus, we derive the following 

two corollaries.  

Corollary 6.1. ΄΄ If the part of spacetime occupied by the generalized particle in external 

symmetry is flat, then  

    1 0T T .΄΄                                                                                                                            (6.9) 

Corollary 6.2.΄΄If 

    1 0T T                                                                                                                                 (6.10) 

the part of spacetime occupied by the generalized particle cannot be flat, it is curved.΄΄ 

    In the external symmetry it is 0ki   for at least on pair of indices  , 0,1,2,3k i . Thus, in 

external symmetry it is 0ki  only for some pairs of indices  , 0,1,2,3k i . The Lorentz-

Einstein transformations reveal that in flat spacetime this cannot be arbitrary. Let’s assume that it 

is 

    02 0   
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for every inertial frame of reference. Then, we obtain 

    
02 0    

and with transformations (6.8) we obtain 

    
02 21 0

u
i

c
  
 

  
 

 

and since it is 02 0   we obtain that it also holds 

    21 0  . 

Working similarly with all of the transformations (6.8) we end up with the following four sets of 

equations of external symmetry in the flat spacetime:   

      

01 01

02

03

32

13

21

0 0

0

0

0

0

0

 











  











                                                                                                               (6.11) 

      

01 01

02

03

32 32

13

21

0 0

0

0

0 0

0

0

 





 





  





  





                                                                                                              (6.12) 

       

01 01

02 02

03

32 32

13

21 21

0 0

0 0

0

0 0

0

0 0

 

 



 



 

  

  



  



  

                                                                                                             (6.13 
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01 01

02

03 03

32 32

13 13

21

0 0

0

0 0

0 0

0 0

0

 



 

 

 



  



  

  

  



                                                                                                              (6.14) 

   The symmetry that equations (6.11)-(6.14) express will be referred to as the symmetry of the 

Lorentz-Einstein-Selfvarlations. These symmetries hold only in case that the part of spacetime 

occupied by the generalized particle is flat. 

 

7. The Fundamental Study for The Corpuscular Structure of Matter. The Π-Plane. 

The internal structure of the generalized particle is determined by the relations among the 

elements of the matrix T . The same holds for the rest mass 0m of the material particle, the rest 

energy 0E  of STEM, with which the material particle interacts, and the total rest mass 0M of the 

generalized particle. In this paragraph, we study this relation among the elements of the matrix 

T . We now prove the following theorem:  

 Theorem 7.1. ‘’ For the elements of the matrix T  matrix it holds that:  

2 2 2 2 2 2

0 1 2 3 0 1 32 0 2 13 0 3 21 1 2 03 1 3 02 2 3 01 0T TT T T T T T T T TT TT T T            .”                                 (7.1) 

Proof. We develop equation (2.13), obtaining the set of equations  

          

0 00 1 01 2 02 3 03

0 01 1 11 2 21 3 13

0 02 1 21 2 22 3 32

0 03 1 13 2 32 3 33

0

0

0

0

J J J J

J J J J

J J J J

J J J J

   

   

   

   

   

    

    

    

 

and from equations (4.4) and (4.10) we have 

 

0 0 1 01 2 02 3 03

0 01 1 1 2 21 3 13

0 02 1 21 2 2 3 32

0 03 1 13 2 32 3 3

0

0

0

0

J zQT J zQ J zQ J zQ

J zQ J zQT J zQ J zQ

J zQa J zQa J zQ J zQa

J zQ J zQ J zQ J zQT

  

  

  

   

    

     

    

 

and since it holds that 0zQ   , we take the set of equations 
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0 0 1 01 2 02 3 03

0 01 1 1 2 21 3 13

0 02 1 21 2 2 3 32

0 03 1 13 2 32 3 3

0

0

0

0

J T J J J

J J T J J

J J J T J

J J J J T

  

  

  

  

   

    

    

    

                                                                                   (7.2) 

The set of equations given in (7.2) comprise a 4 4  homogeneous linear system of equations 

with unknowns the momenta 0 1 2 3, , ,J J J J . In order for the material particle to exist, the system 

of equations (7.2) must obtain non-vanishing solutions. Therefore, its determinant must vanish. 

Thus, we obtain equation 

0 1 2 3 0 1 32 0 2 13 0 3 21 1 2 03 1 3 02 2 3 01

2

01 32 02 13 03 21( ) 0

T TT T T T T T T T TT TT T T     

     

     

   
 

and with equation (4.8) we arrive at equation (7.1).  

 

We consider the  4 4  matrix N matrix, given as:  

32 13 21

32 03 02

13 03 01

21 02 01

0

0

0

0

N

  

  

  

  

 
 
 
 
  
 
  

  .                                                                                      (7.3) 

Using the matrix N , we now write equation (4.6) in the form of 

0

0

0

NC

NJ

NP







.                                                                                                                             (7.4) 

We now prove Lemma 7.1: 

Lemma 7.1.  ‘’The four-vectors , ,C J P   satisfy the set of equations  

2

2

2

0

0

0

N C

N J

N P







.”                                                                                                                             (7.5) 

Proof. We multiply the set of equations (7.4) by the left with the matrix N , and equations (7.5) 

follow.     

Using lemma 7.1 we prove theorem 7.2 : 

Theorem 7.2. ‘’For  0M   it holds that: 

1.   0MN NM          (7.6) 
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2.    2 2 2M N I          (7.7) 

       2 2 2 2 2 2 2

01 02 03 32 13 21                  (7.8) 

Here, I  is the 4 4  identity matrix.  

3.   For  0   the matrix M  has two eigenvalues 1   and 2 , with corresponding eigenvectors  

1  and  2  , given by: 

1

2 2 2

01 02 03

01 03 13 02 21

1 2

02 01 21 03 32

03 02 32 01 13

0

1

i

i

 

  

    


     

    



   
  

   
   
  

    

                                                                                  (7.9) 

 

         

2

2 2 2

01 02 03

01 03 13 02 21

2 2

02 01 21 03 32

03 02 32 01 13

0

1

i

i

 

  

    


     

    

 

   
  

   
   
  

    

.                                                                          (7.10) 

 4.For 0   the matrix N has the same eigenvalues with the matrix M , and two corresponding 

eigenvectors 1n  and  2n  , given by: 

1

2 2 2

32 13 21

32 02 21 03 13

1 2

13 03 32 01 21

21 01 13 02 32

0

1

i

i
n

 

  

    

     

    



   
  

   
   
  

    

                                                                                 (7.11) 

 

2

2 2 2

32 13 21

32 02 21 03 13

2 2

13 03 32 01 21

21 01 13 02 32

0

1

i

i
n

 

  

    

     

    

 

   
  

   
   
  

    

.                                                                               (7.12) 

 5.  2 2 2 2 2 2 2

01 02 03 32 13 21 0                                                                              (7.13) 
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6.  

2

2

2

0

0

0

M C

M J

M P







.”                                                                                                                         (7.14) 

Proof. The matrices   M  and N  are given by equations (4.28) and (7.3). The proof of equations 

(7.6), (7.7), (7.9), (7.10), (7.11) and (7.12) can be performed by the appropriate mathematical 

calculations and the use of equation (4.8). 

   We multiply equation (7.7) from the left with the column matrices , ,C J P  , and obtain 

2 2 2

2 2 2

2 2 2

M C N C C

M J N J J

M P N P P







  

  

  

 

and from equations (7.5) we obtain 

2 2

2 2

2 2

M C C

M J J

M P P







 

 

 

.                                                                                                                          (7.15) 

According to the set of equations (7.15) , and for 0  , the matrix  2M  has as 

eigenvalue 
2 0  with corresponding eigenvector 0  . From equations (7.15) it is evident that 

the four-vectors , ,C J P   are parallel to the four-vector  , hence they are also parallel to each 

other. This is imposssible in the case of the external symmetry, according to Theorem 3.3. 

Therefore, 
2 0   , so that the matrix 2M  does not have the four-vector   as an eigenvector. 

Thus, we arrive at equation (7.13). Then, from equations (7.15) we arrive at equations (7.14), 

since it holds that 
2 0  .  

The matrix 2M  , for 0M   , is a 4 4 symmetric matrix. Furthermore, according to 

theorem 7.2 , it holds that  2 2 0tr M   . An immediate consequence of theorem 7.2 is 

corollary 7.1. 

Corollary 7.1. ‘’For the matrix of the external symmerty T , not  only one out of the physical 

quantities  0,k i,k,i 0,1,2,3ki    can be zero.” 

Proof. Let us suppose that the matrix  T  has only one element (physical quantity), for which it 

holds that:  0, , , 0,1,2,3ki k i k i    . From equation (4.28) we see that 0M  , and from 

equation (7.8) we obtain 2 2 0ki   . This cannot hold, according to equation (7.13).  

From theorem 7.2 corollary 7.2 follows:  

Corollary 7.2. ‘’For the four-vector j  of the conserved physical quantities q it holds that: 
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0Mj                                                                                                                                      (7.16) 

0Nj  .’’                                                                                                                                  (7.17) 

Proof. We multiply equation (5.7) by matrix M by the left and obtain 

 
2

2 2c b
Mj M J M P


      

and with the second and the third of equations (7.14) we have 

0Mj  . 

We multiply the terms of equation (5.7) by the left with the matrix N , and obtain 

 
2c b

Nj NM J P


      

and with equation (7.6) we take 

0Nj  .  

In the equations of the TSV there appear sums of squares that vanish, as the 

corresponding ones appearing in equations (3.6) and (7.13). Writing these equations in a 

convenient manner, we can introduce into the equations of the TSV complex numbers. From 

equation (3.6) , and for 0 0M  , we obtain 

2 2 2 2

0 31 2

0 0 0 0

1 0
c cc c

M c M c M c M c

       
           

       
 

Therefore, the physical quantities 

0 31 2

0 0 0 0

, , ,
c cc c

M c M c M c M c
 

belong in general to the set of complex numbers . This transformation of the equations of the 

TSV is not necessary. It suffices to remember that within the equations of the TSV there are 

sums of squares that vanish. We prove theorem 7.3, which intercorrelates together all of the 

elements of the matrix T : 

Theorem 7.3.  ‘’In the external symmetry and for the elements of the matrixT  it holds that: 

0

, , , , , 0,1, 2,3

i kT a

i k k i i k



  



   
 .” 

Proof. We differentiate the second equation of the set of equations (4.6) 
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0

, , , , , 0,1, 2,3

i k k i kiJ J J

i k k i i k

    

  

  

   
 

with respect to , 0,1,2,3jx j  . Considering equations (2.10) and (4.4), we have 

0k j i ji i j k jk ki j j

b b b
P J zQ P J zQ P J zQ        

     
          

     
 

      0j i k k i ki k ji i jk ki j

b
P J J J zQ                    

and with the second equation of the set of equations (4.6), and taking into account that 0zQ  , 

we obtain 

   
0

, , , , , , 0,1, 2,3

k ji i jk ki j

i k k i i k j

       

  

  

   
                                                                               (7.19) 

Inserting successively into equation (7.19) the values of the elements having as indices the triples 

        , , 0,1,2 0,1,3 0,2,3 1,2,3i k  , and for 0,1,2,3j  , we arrive at the set of equations 

  

0 32

0 13

0 21

1 02

1 03

1 32

2 01

2 03

2 13

3 01

3 02

3 21

0

0

0

0

0

0

0

0

0

0

0

0

T

T

T

T

T

T

T

T

T

T

T

T

















































.                                                                                                                       (7.20) 

The set of equations (7.20) is equivalent to equation (7.18).    

  Theorem 7.3 is one of the most powerful tools for investigating the external symmetry. This 

results from corollary 7.3 :  

Corollary 7.3. ‘’For the elements of the matrix T of the external symmetry the following hold: 

1. For every   , , , , , 0.1.2,3k i k i k i        it holds that 
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0

0

,

ki

k i

k i







 


   
 

.                                            (7.21) 

 2.  If 0ki   for maximum up to two pairs of indices   , , , , 0,1,2,3k i k i k i  , then all the 

elements of the main diagonal of the matrix T vanish: 

  



0 1 2 3

0

0

, ,
0

,

, , , 0,1, 2,3

ki

j

k i j
T T T T

i j

j

k i j















 




 
    

 



 

.’’                                     (7.22) 

   Proof. Corollary 7.3 is an immediate consequence of theorem 7.3.  

From theorem 7.3 corollary 7.4 follows, regarding the elements of the main diagonal of 

the matrices of the external symmetry: 

   Corollary 7.4. ‘’The elements of the main diagonal of the matrix T cannot all be different 

from zero.’’ 

Proof. If 0T  for every 0,1,2,3  , from equations (7.20)  we obtain 0ki   for every set of 

indices , , 0,1,2,3k i k i  , and from equation (7.1) we take 

0 1 2 3 0T TT T   

This cannot hold, since we assumed that 0T  for every   0,1,2,3  . Therefore, at least one 

element of the main diagonal of the matrix T is equal to zero.  

We present a second way for proving this result. In the case of  0T  for every   0,1,2,3  , 

we obtain from equations (7.20) that  0ki   , for every  , , 0,1,2,3k i k i  .Thus, the matrix  T

takes the form 

  

0

1

2

3

0 0 0

0 0 0

0 0 0

0 0 0

T

T
T

T

T

 
 
 
 
 
 

. 

From equation (2.13) we take 

0 0 1 1 2 2 3 3 0T J T J T J T J     
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Since we assumed that  

0 1 2 3 0T TT T   

we obtain  

0 1 2 3 0J J J J     

Thus, the material particle does not exist.   

   We consider the three-dimensional vectors     

1 32

2 13

3 21

 

 

 

   
   

    
   
   

τ                                                                                                     (7.23) 

 

1 01

2 02

3 03

      

n

n

n







   
   

    
   
   

n                                                                                                   (7.24) 

In the case of the T matrices, where      τ 0  and    n 0 , we define the vector    μ 0  as 

1 02 21 03 13

2 03 32 01 21

3 01 13 02 32

  

    

    

    

   
   

     
      

μ  .                                                                         (7.25) 

Combining equations (5.1), (5.2) with equations (7.23) and (7.24) we obtain 

              ic ξ n                                                                                                        (7.26) 

     ω τ  .                                                                                                                (7.27) 

The field    ξ stays parallel to the vector  n and the field  ω stays parallel to the vector τ . 

  For every vector  

1

2

3







 
 

  
 
 

α  

as determined by the physical quantities of the TSV, we define the physical quantity 

   
1 1

2 2 22 2
1 2 3

T      α α α                                                                            (7.28) 

Here, the matrix 
T

α is the inverse matrix of the column matrix α . 
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   From equations (7.23) and (7.24) we obtain 

01 32 02 13 03 21        τ n  

Also, from equation (4.8) we have 

0 τ n .                                                                                                                                (7.29) 

Therefore, the vectors τ and n are perpendicular to each other. Considering also equation (7.25), 

we see that the triple of the vectors { , ,μ n τ } forms a right-handed vector basis. 

   From equation (7.13) we have 

 2 2 2 2 2 2

01 02 03 32 13 21            

and with equations (7.23), (7.24), and using the notation of equation (7.28), we obtain 

2 2 n τ  

and finally we obtain 

i n τ .                                                                                                                         (7.30) 

     From equation (7.25) we have 

 
22  μ n τ  

and since the vectors τ and n are perpendicular to each other, we obtain from equation (7.29) that 

2 2 2μ n τ  

and using the notation of equation (7.28) we have 

2 2 2μ n τ  

 μ n τ  

and from equation (7.30) we take 

2 2i  μ n τ .                                                                                                           (7.31) 

   In the case of the T matrices, where n 0 ,and from equation(7.31), it follows that 

0, 0 τ μ . In these cases we can define the set of unit vectors { 1 2 3, ,ε ε ε }, given by 
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1

2

3

0









μ
ε

μ

n
ε

n

τ
ε

τ

n

   .                                                                                                                            (7.32) 

   The triple of the vectors { 1 2 3, ,ε ε ε } forms also a right-handed orthonormal vector basis. 

   In the cases of the T  matrices, where τ 0 , we define as   the plane perpendicular to the 

vector τ 0  . Furthermore, in the cases, for which it also holds n 0 , we obtain from equation 

(7.25)  that μ 0 . 

In these cases the vectors n and μ  are perpendicular to the vector τ , as we obtain from equations 

(7.25) and (7.29). Therefore, the vectors n and μ  belong to the plane  , and they also form an 

orthogonal basis of this plane. We note that the vectors of the TSV, which eventually might 

belong to the plane  , are given as a linear combination of the vectors n and μ . Therefore, the 

condition for τ 0  is not sufficient, in order for the plane   to acquire a physical meaning. 

Also, we note that because of equation (7.13), the plane  , when it is defined, is not a vector 

subspace of  3 .  

We prove theorem 7.4: 

Theorem 7.4.  ‘’In the case of the T matrices, where τ 0  and n 0  and   τ n 0 , the 

vectors  

, , , ,J P C j  belong to the same plane  .’’ 

Proof. From equations (4.6), and for the indices    , , 1,3,2i k  , we obtain 

1 32 2 13 3 21

1 32 2 13 3 21

1 32 2 13 3 21

0

0

0

c c c

J J J

P P P

  

  

  

  

  

  

 

and from equations (5.8),(5.9) and (7.23) we take 

0

0

0

 

 

 

τ C

τ J

τ P

                                                                                                             (7.33) 

where 

 C J P                                                                                                             (7.34) 
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as derived from equation (3.5). From equation (7.33) we obtain that the vectors , ,C J P , being 

perpendicular to vector  τ , belong to the plane  . From equation (5.3) and equations (5.8) and 

(5.9) we obtain 

 
b

   J P  

Therefore, the vector  , as a linear combination of the vectors ,J P , belongs to the plane  . 

By developing the terms of equation (7.17), the first obtained equation is 

32 1 13 2 21 3 0j j j      

and using equation (7.23) we have 

0 τ j .                                                                                                                           (7.35) 

Therefore, the vector j , being perpendicular to the vector τ , belongs to the plane  . The set of 

vectors , , , ,J P C j vary according to the equations of the TSV, but they always stay on the 

same plane  .  

   From this study we can obtain a method about the determination of the four-vectors  , ,J P C , as 

well as for the set of the rest masses 0
0 02
, ,
E

m M
c

. This method is applied in the case the matrix 

M does not vanish, that is 0M  . We shall refer to this method as the SV M  method. 

The steps of the SV-M  method: 

Step 1. We choose the object of our study, that is one of the matrices of the external symmetry 

T . 

Step 2. We apply Theorem 7.3.  

Step 3. We use equation (7.13). 

Step 4. We use equation (2.13), or the equivalent equations (7.2). 

Step 5. We use the second of the set of equations (4.6). 

Step 6. We use the first of the set of equations (7.14). 

Step 7. We use the first of the set of equations (4.6). 

Step 8. We use equation (3.5). 

As an example, we apply this method on the specific matrix T : 
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0 01

01 1 21

21 2

3

0 0

0

0 0

0 0 0

T

T
T zQ

T

T



 



 
 
 
 
 
 
 

.                                                                                         (7.36) 

Here, 01 21 0   . 

From equations (7.20), and since 01 0   and 21 0  , we obtain 0 2 3 0T T T   , so that 

01

01 1 21

21

0 0 0

0

0 0 0

0 0 0 0

T
T zQ



 



 
 
 
 
 
 
 

.                                                                                            (7.37) 

For 1 0T  , we have 1 0 0T T  . According to corollary 6.2 the portion of spacetime 

occupied by the generalized particle is curved. From equation (4.10) we obtain 1 0  . 

Therefore, the second term of the second part of the second equation in the set of equations 

(4.21) does not vanish. 

In the case the portion of spactime occupied by the generalized particle is flat, we obtain 

from corollary 6.1 that 1 0T T . Therefore, 0 1 2 3 0T T T T    . In this case, and from equation 

(4.11), we obtain 0  , and the second term of the second part of equation (4.19) vanishes. 

   From equation (7.13) we take 

2 2 2

01 21 0      

21 01i   .                                                                                                                              (7.38) 

From equations (7.2) we obtain 

1 01

0 01 1 1 2 21

1 21

0

0

0

J

J J T J

J



 





   



  

and since 01 21 0   , we have that 

1

01
2 0

21

0J

J J






 
.                                                                                                                          (7.39) 

From the second of the set of equations (4.6), and for the indices    , , 3,0,1i k  we have 
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3 01 1 30 0 13 0J J J      

and since 

01 30 03 130, 0, 0         

we obtain 

3 0J  .                                                                                                                                     (7.40) 

From equations (7.39) and (7.40), and from equation (2.4), we have for the four-vector J  

0 001

21

1
1

0
0

0
0

J J J
i





 
  
  
   

   
  
   

.                                                                                               (7.41) 

For the second equality in equation (7.41) we applied the second equation of the set of equations 

(7.38). 

From equations (4.29) and (7.37) we take 

01

01 21

21

0 0 0

0 0

0 0 0

0 0 0 0

M



 



 
 
 
 
 
 
 

                                                                                           (7.42) 

 

2

01 01 21

2

2

01 21 21

0 0

0 0 0 0

0 0

0 0 0 0

M

  

  

  
 
 
  
 
 

.                                                                                   (7.43) 

From the first of the set of equations (7.14) we see that 

2 0M C   

and with equations (3.5) and (7.43) we obtain 

2

01 0 01 21 2

2

01 21 0 21 2

0

0

a c a a c

a a c a c

  

  
  

and taking into account that 01 21 0   , we obtain  
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01
2 0

21

c c



  .                                                                                                                        (7.44) 

From the first equation from the system of equations (4.6), and for  the indices 

         , , 0,1,2 0,1,3 0,2,3 1,2,3i k     we also obtain 

0 12 2 01 1 20

0 13 3 01 1 30

0 23 3 02 2 30

1 23 3 12 2 31

0

0

0

0

c c c

c c c

c c c

c c c

  

  

  

  

  

  

  

  

 

and taking into account the vanishing elements of the matrix T we have 

0 21 2 01

3 01

3 12

0

0

0

c c

c

c

 





 





 

and since 

0 12 2 01

3 01

3 12

0

0

0

j j

j

j

 





 





 

we obtain 

21
2 0

01

3 0

c c

c








.                                                                                                                   (7.45) 

The first equation of the couple of equations (7.45) is equation (7.44), because of equation 

(7.38). 

  From equations  (3.5) and (7.45) we obtain the four-vector C  

0

0

1

1

21
0 0

01
0

0

c
c

c
c

C
c ic





 
  
  
   
  
  
   

.                                                                                               (7.46) 

Combining equation (3.5) 

P C J   

with equations (7.41) and (7.46) we obtain the four-vector P  
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 

0 0

1

0 0

0

c J

c
P

i c J

 
 
 
 
 
 

.                                                                                                  (7.47) 

After having determined the four-vectors , ,J P C , we can calculate the rest masses 

0
0 02
, ,
E

m M
c

. From equations (2.7) and (7.41) we take 

0 0m  .                                                                                                                                   (7.48) 

From equations (2.8) and (7.47) we have 

1
0

ic
E

c
  .                                                                                                                                (7.49) 

From equations (3.6) and (7.46) we also have 

1
0

ic
M

c
  .                                                                                                                                

(7.50) 

The calculation of the four-vector j  of the current density of the conserved physical 

quantities q  is accomplished with the help of corollary 7.2. This method is applied for 0M  , 

and is performed in two steps. We shall refer to this method as the 
qSV  -method. 

The steps of the qSV  - method: 

Step 1. We use equation (7.17), or the equivalent equations: 

  
0

, , , , , k 0,1, 2,3

i k k i kij j j

i k k i i

    

  

  

   
                                                                                    (7.51) 

Step 2. We use equation (7.16). 

   We apply the 
qSV  -method on the matrix T  given by equation (7.37). From equation (7.51), 

and for          , , 0,1,2 0,1,3 0,2,3 1,2,3i k      , we obtain 

0 12 2 01 1 20

0 13 3 01 1 30

0 23 3 02 2 30

1 23 3 12 2 31

0

0

0

0

j j j

j j j

j j j

j j j

  

  

  

  

  

  

  

  

 

and taking into account the elements of the matrix T we have 
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0 12 2 01

3 01

3 12

0

0

0

j j

j

j

 





 





 

and since 01 30 03 130, 0, 0        , we also obtain 

21
2 0

01

3 0

j j

j








.                                                                                                                  (7.52) 

The matrix M is given by equation (7.42). Thus, from equations (4.27) and (7.16) we have 

1 01

0 01 2 21

1 21

0

0

0

j

j j

j



 





  



 

and since 01 0  and 21 0  , we take 

1

01
2 0

21

0j

j j






 
.                                                                                                                   (7.53) 

The first equation of the couple of equations (7.52) and the second equation of the couple of 

equations (7.53) are identical due to equations (7.38). From equations (7.52) and (7.53) we 

obtain the four-vector j  

0 021

01

1
1

0
0

0
0

j j j
i





 
  
  
   
  
  
   

.                                                                                                  (7.54) 

We summarize the obtained information for the generalized particle of the matrix T of equation 

(7.36): 

 

0

1

0

0

J J
i

 
 
 
 
 
 

        
 

0 0

1

0 0

0

c J

c
P

i c J

 
 
 
 
 
 

      

0

1

0

0

c

c
C

c

 
 
 
 
 
 

     
0

1

0

0

j j
i

 
 
 
 
 
 
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0 0m  , 1
0

ic
E

c
  , 1

0

ic
M

c
   

1 0T  curved spacetime. 

Flat spacetime  1 0T  . 

From equations  (5.7) and (7.41), (7.47) and (7.54) we have
2 2

0 1 01 1 21

c b i c b
j c c

 
                                                                                   (7.57) 

for the chosen specific matrix T . Also, from equations (5.17) and (7.54) we obtain 

2 20
01 21

1

0 0

2 0

0

3

2
2

2

0

0

j
c F i c F

x

j j
i

x x

j

x

F
x

   


   


 
 

 






 
   



.                                                                                            (7.58) 

Equations (7.57) and (7.58) correlate the function  with the four-vector j  of the current 

density of the conserved physical quantities q . These equations hold for the chosen matrix T

defined in equation (7.37). 

The presented method about the study of the generalized particle is possibly the simplest, 

but surely not the only one. The TSV stems from one equation, which generates an extremely 

complex network of equations. We present one method, which serves as a test for the self-

consistency of the TSV. By using the same method we can also test the validity of the obtained 

equations, as we proceed from one set of equations of the TSV into another set of equations. We 

shall refer to this method as the SV T -method. 

The internal structure of every generalized particle depends on the matrix T , to which it 

corresponds. The SV T method can by analyzed according to the following steps: 

The Steps of the SV T  - Method: 

We choose an equation  1E , which holds for the matrix T , and for which there exist at 

least two different components of the four-vector J , or one component and the rest mass 0m . By 

differentiating  equation  1E with respect to , 0,1,2,3kx k  we obtain a second equation  2E .  

With the help of equation (2.10) 
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, 0,1,2,3

i
k i ki k i ki

k

J b b
P J P J zQ

x

k i

 


   




 

the constants , , 0,1,2,3ki k i  are introduced into equation  2E . Equation  2E has to be 

compatible with the elements of the matrix T . In the case equation  1E contains the term of the 

rest mass 0m  we apply equation (2.6) 

0
0 , 0,1, 2,3k i

k

m b
P J m k

x


 


. 

We apply this method for the specific matrix T of equation (7.37). From equation (7.41) we 

obtain 

2 0J iJ  .                                                                                                                 (7.59) 

In this equation there appear the components 0 2,J J of the four-vector J . We differentiate 

equation (7.59) with respect to  , 0,1,2,3kx k  , obtaining 

2 2 0 0k k k k

b b
P J zQ i P J zQ 

 
    

 
 

and using equation (7.59) we have  

2 0k kzQ izQ    

and since 0zQ  we take 

2 0 , 0,1,2,3k ki k    .                                                                                               (7.60) 

In equation (7.60) we insert successively the indices 0,1,2,3k   

For 0k  we obtain 

02 00 0i iT      

which holds, since 02 00, 0T   . 

For 1k  we obtain 

12 10i     

and since 10 01   , we take 
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12 01

2 2

01 21 0

i 

 

 

 
 

which are equations (7.38). 

For 2k  we obtain 

22 20

2 20

a ia

T ia

 

 
 

which holds for the matrix T , since 02 20, 0a T  . 

For 3k  we have 

32 30

03

i

i

 

 

 


 

which holds for the matrix T , since 32 030, 0   . 

    For the chosen matrix it holds that τ 0  and n 0and    τ n 0 ,  therefore plane   is 

defined. From equations (7.32) we have 

 

1

2

3

0

1

0

0

0

0

0

i

i

 
 

  
 
 

 
 

  
 
 

 
 

  
 
 

ε

ε

ε

.                                                                                                                         (7.61) 

From equations (7.46) and (7.61) we have 

1

0 1 20 1

0

c

c ci ic

 
 

    
 
 

C ε ε .                                                                                     (7.62) 

In equations (7.62) the components  0 1,ic c of the vector C with respect to the vectorial basis 

 1 2,ε ε of the  -plane are given. Considering that the vectors 1 2,ε ε  are perpendicular to each 

other, we obtain from equation (7.62) 
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1 0

2 1

ic

ic

  

 

ε C

ε C
 

and from equations (7.49) and (7.50) we have 

1 0

0
2 0

ic

E
M

c

  

   

ε C

ε C
.                                                                                                        (7.63) 

    From the first equation of the set of equations (7.63) we obtain the equivalence 

1 00 0c   ε C .                                                                                                        (7.64) 

The total amount of energy 0ic of the generalized particle vanishes, if and only if the vector  C  

of the generalized particle is perpendicular to the vector 1ε , therefore also parallel to the vector 

2ε . Similarly, from the second of the set of equations (7.63) we also obtain the equivalence 

2 0 00 0 0M E     ε C .                                                                                  (7.65) 

The rest masses 0M and 0

2

E

c
vanish, if and only if the vector C  of the total momentum of the 

generalized particle is parallel to the vector 1ε . 

    As a consequence of theorem 7.3, and for a large set of matrixes of the external symmetry, 

which contain many non-vanishing elements 0, , 0,1,2,3ki k i   , it holds that 

0 1 2 3 0T T T T    . 

For these matrices we prove theorem 7.5:  

Theorem 7.5.  ‘’In the matrices T of the external symmetry, for which all of the elements of the 

main diagonal vanish, the four-vectors J and j are parallel to each other.’’ 

Proof. From equations (2.12) and (4.4),(4.10) we have 

0 01 02 03

01 1 21 13

02 21 2 32

03 13 32 3

T

T
T zQ

T

T

  

  

  

  

 
 
 
 
  
 
  

.                                                                             (7.66) 

In the case of  

0 1 2 3 0T T T T     

from equations (4.28) and (7.66) we obtain 
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T zQM .                                                                                                                                 (7.67) 

Combining equations (2.13), (7.17), and since 0zQ  , we have 

0MJ   

and taking into account the second equation of the set of equations (7.4) we take 

0

0

MJ

NJ




.                                                                                                                                    (7.68)  

Since equations (7.68) and (7.16) hold simultaneously, the four-vectors J and j are parallel to 

each other.  

   An immediate consequence of theorem 7.5 is corollary 7.4 :  

Corollary 7.4. ‘’For the cases of the symmetries, for which the matrix T has all of its elements 

of the main diagonal equal to zero, there exists a function 

 0 1 2 3, , , 0V V x x x x   

satisfying the continuity equation 

0
W

V t V

   
      

   

J
.’’                                                                                                           (7.69) 

Proof. From theorem 7.5 there exists a function 

 0 1 2 3, , , 0V V x x x x   

so that 

J Vj .                                                                                                                                  (7.70) 

Equation (7.69) results by the combination of equations (4.27), (5.6) and (7.70), since 

0

iW
J

c
 .  

We shall not present in the present work the physical content of equation (7.69). 

    Theorem 7.6 correlates the four-vector  J  with the elements of the main diagonal of the 

matrix of external symmetry T . 

Theorem 7.6.  ‘’For every matrix of external symmetry T it holds that 

2 2 2 2

0 0 1 1 2 2 3 3 0T J T J T J T J    .’’                                                                                                 (7.71) 
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Proof. Since the material particle exists, at least one component of the four-vector J does not 

vanish. We prove the theorem for  0 0J  . The proof for 0, 1,2,3iJ i   follows similar lines. 

For 0 0J  , we obtain from equations (7.2) 

 

 

 

0 0 1 01 2 02 3 03

01 1 1 2 21 3 13

0

02 1 21 2 2 3 32

0

03 1 13 2 32 3

0

0

1

1

1

J T J J J

J T J J
J

J J T J
J

J J J T
J

  

  

  

  

   

  

  

   

 

and replacing the terms 01 02 03, ,a a  in the first equation we obtain 

   

   

 

1 2
0 0 1 1 2 21 3 13 1 21 2 2 3 32

0 0

3
1 13 2 32 3 3

0

0

J J
J T J T J J J J T J

J J

J
J J J T

J

   

 

     

    

 

2 2 2

0 0 1 1 1 2 21 1 3 13 2 1 21 2 2

2

2 3 32 3 1 13 3 2 32 3 3 0

J T J T J J J J J J J T

J J J J J J J T

  

  

    

    
 

2 2 2 2

0 0 1 1 2 2 3 3 0T J T J T J T J     .  

   An immediate consequence of theorem 7.6 is corollary 7.5. 

Corollary 7.5. ‘’For every matrix T of the external symmetry the following hold: 

1.
0 1 2 3 00 0T T T T m                                                                                             (7.72) 

2.  
0 1 2 3

0 1 2 3

0

0
0

T T T T
T T T T

m

   
    

 
’’                                                                (7.73) 

Proof. For 0 1 2 3T T T T    we obtain from equation (7.71) 

 2 2 2 3

0 0 1 2 3 0T J J J J     

and with equation (2.7) we have 

2

0 0 0T m c   .                                                                                                                            (7.74) 

1. Since 0 0T  , from equation (7.74) we have  0 0m  . 
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2.Since  0 0m  , from equation (7.74) we have 0 0T  . Since 0 1 2 3T T T T   , we obtain  

0 1 2 3 0T T T T    .  

We calculate the number of the matrices of the external symmetry. This number is 

determined by theorem 7.3 and corollarys 7.1 and 7.4. Also, the matrices of the external 

symmetry are non-vanishing. Applying simple combinatorial rules, we see that altogether there 

exist 

1 14N   

matrices of external symmetry, with 0ki   for every , , 0,1,2,3k i k i  . These matrices 

contain non-vanishing elements only on their main diagonal. The number '

2N of the matrices with 

two elements, for which it holds that 0, , , 0,1,2,3ki k i k i    is 

'

2 27N   

With three elements, this number is 

'

3 23N   

With four elements, this number is 

'

4 15N   

With five elements, this number is 

5 6N   

With six elements, this number is 

6 1N  . 

From equation (2.13) and the second of the set of equations (4.6) we can prove that some 

matrices belonging to aforementioned set of matrices give the four-vector 0J  , thus they are 

rejected. Therefore, we obtain 

 

1

'

2 2

'

3 3

'

4 4

5

6

14

3 24

17 6

12 3

6

1

N

N N

N N

N N

N

N



  

  

  





 

Thus, the total number TN  of the set of matrices of external symmetry is 
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1 2 3 4 5 6 54TN N N N N N N                                                                            (7.75) 

    The matrix  0T  is unique 

1ON   

and according to theorem 3.3 this matrix expresses the internal symmetry. Therefore, the total 

number of the matrices of the internal and external symmetry predicted by the Law of 

Selfvariations is 

 55OT O TN N N                                                                                                         (7.76) 

    There are 14 matrices among the 55TN  matrices which differ only in one element of their 

main diagonal, while they share the same four-vectors , , ,J P C j . Thus, there exist 

 14 40J TN N                                                                                                             (7.77) 

matrices of the external symmetry with different eigenvectors , , ,J P C j .  

We indicatively prove that the following matrix, given as 

 

0 01 03

01 1 21 13

21 2

03 13 3

0

0 0

0

T

T
T zQ

T

T

 

  



 

 
 
 
 
 
 
  

 

is not a matrix of the external symmetry.  

    Applying theorem 7.3 for the above matrix we see that 

T Q   

and therefore it takes the form 

 

01 03

01 21 13

21

03 13

0 0

0

0 0 0

0 0

T zQ

 

  



 

 
 
 
 
 
 
  

 

and with equation (2.13) we obtain 
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1 01 3 03

0 01 2 21 3 13

1 21

0 03 1 13

0

0

0

0

J J

J J J

J

J J

 

  



 

 

   



  

 

and since 

01 03 13 21 0      

we take that 

0 1 2 3 0J J J J     

and from theorem 3.1 we obtain that 0ki   for every set of indices , , 0,1,2,3k i k i  , which 

is impossible.  In the case of 0 1 2 3 0J J J J     the material particle does not exist. 

We present now a notation for the matrices of the external symmetry.  In every matrix T

we use an upper and a lower index. As lower indices we use the couples 

 , , , , 0,1,2,3k i k i k i  of the constants 0ki  , which do not vanish. These indices, which 

appear always in couples, are placed in the following order of the constants: 

01 02 03 32 13 21, , , , ,      , which are not equal to zero. As upper indices we use the indices of the 

elements of the main diagonal, which are different from zero, in the following order: 0 1 2 3, , ,T T T T . 

For example, the matrix T given in equation (7.37) is denoted as 1

0121T .  

With this notation, the  54TN   matrices of external symmetry are given from the six 

following sets : 
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 



0 1 2 3 01 02 03 12 13 23 012 013 023 123

1

0 0 0 3 2 1

2 0102 0103 0103 0203 0203 3213 3213 3221 3221 1321 13210102

1 1 2 2 3

0113 0113 0121 0121 0232 0232 0221 0221 0332 0

, , , , , , , , , , , , ,

, , , , , , , , , , , ,

, , , , , , , , ,

T T T T T T T T T T T T T T

T T T T T T T T T T T T

T T T T T T T T T T

 

 



 

 

 

 

3

332 0313 0313

0 3

3 010203 010203 010232 010221 033213 033213

4 01023213 01033221 02031321

5 0102033221 0102033213 0102031321 0102321321 0103321321 0203321321

6 010203321321

, ,

, , , , ,

, ,

, , , , ,

T T

T T T T T T

T T T

T T T T T T

T

 

 



 

                (7.78) 

 

The study of the matrix of external symmetry  010203321321T   with elements 

0, , , 0,1,2,3ki k i k i     is algebraically demanding.  

We shall finish this paragraph by stating the elements of the specific matrix we have chosen: 

 

01 02 03

01 03 02

010203321321

02 03 01

03 02 01

01 02 03 32 13 21

0

0

0

0

0

T T zQ

  

  

  

  

     

 
 
 
  
  
 
  



                                                     (7.79) 

 

  τ n 0                                                                                                                   (7.80) 

 

2 2 2 2 2 2

01 02 03 32 13 21 0                                                                                       (7.81) 
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03 02

01 01

02 03

2 3

01 01

1 0

0 1

a a

a a

a a
J J J

a a

   
   

   
   
     
   
   
   
   

                                                                                       (7.82) 

 

   0 0m  .                                                                                                                    (7.83) 

 

 

The USVI of this symmetry is given by equation 

    

1
01 02 03

01 02 03

2
02 03 010 0

03 02 01
3

1

0

0

0

0

iu

cidJ dQ
J zQ iu

idx Qdx
c

i
iu

c

  

  

  

  

 
 

   
    
    
    
       

 
 

.                                            (7.84) 

 

Based on the theorems of the TSV we can study the whole set of the matrices of external 

symmetry. In the following paragraphs we present the study of two other matrices belonging to 

this set of matrices.  

 

8. The Symmetry T=QΛ  

    In this paragraph we study the  T  matrices, with all of their elements are equal to zero, except 

of the elements on their main diagonal. These matrices are of the form 

0

1

2

3

0 0 0

0 0 0

0 0 0

0 0 0

T

T
T Q zQ

T

T

 
 
   
 
 
 

                                                                                           (8.1) 

using the notation of equation (4.11). From equations (4.28) ,(7.3) and (8.1) we take 
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0

0

M

N




.                                                                                                                                        (8.2) 

The matrices M and N vanish; as a consequence the matrices of the symmetries T Q   share 

common properties, which we shall study in the following. 

According to corollary 7.4 ,the diagonal elements of the matrices defined in equation(8.1) 

cannot all be different from zero simultaneously. Also, all of them cannot vanish simultaneously, 

since in the case of the external symmetry it holds that 0T  . Therefore, there is a number of 

1

4 4 4
14

1 2 3
N

     
        
     

 

different matrices for which the relation T Q   holds. 

In the symmetry T Q  at least one element of the matrix Q is different from zero, 

that is 0Q  . Furthermore, it holds that 0ki   for every set of indices . , 0,1,2,3k i k i  , 

therefore we obtain that , α 0 β 0 , with the help of equations (4.14) and (4.15). Therefore, the 

USVI in the case of the symmetry T Q  is given by the set of equations 

 

0 0

0 0

dJ dQ i
J Q u

dx Qdx c

dP dQ i
J Q u

dx Qdx c

  

   

                                                                                                   (8.3) 

 

This is a consequence of equations (4.19) and (4.20). 

Another characteristic for the 14 in number kinds of the symmetry T Q   is the 

equality τ 0 , therefore the plane   is not defined. Similarly, the vectors 1 2 3, ,ε ε ε  defined in 

the set of equations (7.32) are also not defined. 

One fundamental characteristic of the symmetries  T Q  is that the four-vector  j  of 

the conserved physical quantites q  vanishes. Combining the first of the set of equations (8.2) 

with equation (5.7) we obtain 

0j  .                                                                                                                              (8.4) 

Therefore, in the part of spacetime occupied by the generalized particle, there does not exist any 

flow of conserved physical quantities q . 
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Another common characteristic is that the rest mass  0m of the material particle can be 

also diferent from zero, that is 

0 00 0m m                                                                                                             (8.5) 

for all of the 14 in number matrices of the symmetry. The form of the four-vector J is different, 

according to each particular matrix of the symmetry.  

We calculate the four-vector of momentum J of the matrix 12T . According to our 

notation we have 

112

2

1 2

0 0 0 0

0 0 0

0 0 0

0 0 0 0

0

T
T zQ

T

TT

 
 
 
 
 
 



.                                                                                            (8.6) 

From equation (2.13), and since 1 2 0TT  ,  0 3 0T T   , we obtain for the four-vector J  

0

3

0

0

J

J

J

 
 
 
 
 
 

.                                                                                                                          (8.7) 

Combining equations (2.7) and (8.7), we obtain for the rest mass 0m the equation that 

2 2 2 2

0 0 3m c J J   .                                                                                                              (8.8) 

We apply now the SV T  method : 

We differentiate equation (8.8) with respect to , 0,1,2,3kx k   and taking into account 

equations (2.6), (2.10) and (4.4) we obtain 

2 2

0 0 0 0 3 3 3k k k k k

b b b
P m c J P J zQ J P J zQ 

   
       

   
 

and from equation (8.8) we have 

0 0 3 3 0k kzQJ zQJ    

and sincce 0zQ  , we take 

0 0 3 3 0, 0,1,2,3k kJ J k    .                                                                                  (8.9) 

We insert successively the indices 0,1,2,3k  into equation (8.9): 
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For 0k  we have 

0 0 3 03 0J T J    

which holds, since for the matrix 12T  it holds that 0 03 0T   . 

For 1k  we have 

0 10 3 13 0J J    

which also holds, since for the matrix 12T we have that 10 13 0   . 

For 2k  we obtain 

0 20 3 23 0J J    

which also holds, since for the matrix 12T we have that 20 32 0   . 

For 3k   we also take 

0 30 3 3 0J J T    

which holds, since for the matrix 12T we have 30 3 0T   . 

According to equation 8.7, in 12T symmetry it holds that 0 0J   or 3 0J  , but it cannot 

hold that 0 3 0J J  , since in this case the material particle cannot exist. Therefore, from 

equation (8.8) we conclude that 

 0 0 3 00 0m m J iJ      .                                                                                           (8.10) 

Simirarly, we can prove that other relations, corresponding to relation (8.10), hold for all 

matrices of symmetry T Q  . 

For the matrix 12T it holds that  1 0 0T T  . Therefore, the part of spacetime occupied by 

the generalized particle of the symmetry 12T is curved, according to corollary 6.2. 

Because of equation (8.4) the wave equation (5.17) holds identically  0 0 . Therefore, 

in the case of the symmetries  T Q   we cannot extract any information about the wave 

behavior of matter. The only information we can obtain comes through the set of equations (8.3). 

    From equation (4.11) we obtain 
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1

2

1 2

0 0 0 0

0 0 0

0 0 0

0 0 0 0

0

T
z

T

T T

 
 
  
 
 
 



                                                                                           (8.11) 

about the symmetry matrix 12T . From equations (8.7) and (8.11), and by the first of the set of 

equations (8.3), we obtain 

  
0 0

dJ dQ
J

dx Qdx
  

and with equation (8.7) we have 

0
0

0 0

3
3

0 0

dJ dQ
J

dx Qdx

dJ dQ
J

dx Qdx





 

abd finally, we obtain 

0 0

3 3

0 3

0 3

0,

, tan

J Q

J Q

cons ts





 

 






.                                                                                                                    (8.12) 

Thus, the four-vector J is given by equation 

0

3

0 3

0 3

0

0

0,

, tan

J Q

cons ts





 

 

 
 
 
 
 
 

                                                                                                                    (8.13) 

as derived from equation (8.7). Therefore, for the symmetry 12T the momentum of the material 

particle is proportional to the charge  Q . This feature is a common characteristic for all of the set 

of matrices of the symmetryT Q  . 

For  0Q m , and from equation (8.13) we take 
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0 0 0

3 0 3

J m

J m








 

and with equation (8.8) we obtain 

 2 2 2 2

0 0 3 0m c      

and for 0 0m  we take 

      

2 2

0 3

0 3

0 3

0

1 0

,

0

0

c c

c c

Q m

 

 

 

   
     

   





 

                                                                                             (8.14) 

In the symmetries T Q  equations (2.10) obtain the form 

  
 

, 0,1,2,3

i
k i k k i

k

J b b
P J c J J

x

k i


  





.                                                                                      (8.15) 

The solution of these differential equations gives the four-vector 

   0 1 2 3, , ,J J x x x x                                                                                                         (8.16) 

and using equation (2.7) we also obtain the rest mass of the material particle 

   0 0 0 1 2 3, , , 0m m x x x x  .                                                                                             (8.17) 

Therefore, the study of the symmetries T Q  can also be accomplished through equations 

(8.15). For the chosen symmetry 12T the equations (8.15) obtain the form 

   

 

1

2

0
0

3
3

0

0

0,1,2,3

k k

k

k k

k

J

J

J b
c J J

x

J b
c J J

x

k






 




 





.                                                                                                      (8.18) 

The study of the remaining 13 symmetries of T Q  is accomplished similarly to the 

study of the symmetry 12T  we have presented. 
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9. The  Symmetry 0

010203T  and the Symmetry 010203
T . 

In this paragraph we study the generalized particle corresponding to the matrix 

  

0 01 02 03

01 1

02 2

03 3

01 02 03

0 0

0 0

0 0

0

T

T
T zQ

T

T

  







  

 
 

 
 
 
 



                                                                            (9.1) 

From theorem 7.3 we take have that for this matrix it holds  

1 2 3 0T T T    

and thus it is written in the form 

    

0 01 02 03

01

02

03

01 02 03

0 0 0

0 0 0

0 0 0

0

T

T zQ

  







  

 
 

 
 
 
 



                                                                      (9.2) 

From the matrix given in equation (9.2) we obtain the symmetries 

 

0 01 02 03

010

010203

02

03

01 02 03 0

0 0 0

0 0 0

0 0 0

0

T

T T zQ

T

  







  

 
 

  
 
 
 



.                                                      (9.3) 

 

 

01 02 03

01

010203

02

03

01 02 03

0

0 0 0

0 0 0

0 0 0

0

T T zQ

  







  

 
 

  
 
 
 



.                                                         (9.4) 
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First, we study the symmetry 0

010203T . For the symmetry 0

010203T  it holds that 0M   , so 

that we can apply the SV M -method. From equation (7.3) we have 

2 2 2

01 02 03 0     .                                                                                                  (9.5) 

From equations (7.2) we obtain 

0 0 1 01 2 02 3 03

0 01

0 02

0 03

0

0

0

0

J T J J J

J

J

J

  







   







 

and since 01 02 03 0     and 0 0T  we have 

0

1 01 2 02 3 03

0

0

J

J J J  



  
.                                                                                         (9.6) 

From the second equation of the set of equations (4.6), and for the indices  

         , , 0,1,2 0,1,3 0,2,3 1,2,3i        we obtain 

2 01 1 02

3 01 1 03

3 02 2 03

0

0

0

J J

J J

J J

 

 

 

 

 

 

.                                                                                                        (9.7) 

From equations (9.6),(9.7), and since it holds that 01 02 03 0a a a  , we have 

0

02
2 1

01

03
1

01

0J

J J

J J















.                                                                                                                    (9.8) 

From equations (9.8) we obtain the four-vector J  

02

1

01

03

01

0

1

J J








 
 
 
 

  
 
 
 
 

.                                                                                                                   (9.9) 
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From equations (4.28) and (9.3) we have 

01 02 03

01

02

03

0

0 0 0

0 0 0

0 0 0

M

  







 
 

 
 
 
 

                                                                                           (9.10) 

 

2 2 2

01 02 03

2

2 01 01 02 01 03

2

01 02 02 02 03

2

01 03 02 03 03

0 0 0

0

0

0

M

  

    

    

    

   
 

   
   
 

    

 

and using equation (9.5) we obtain 

2

01 01 02 01 032

2

01 02 02 02 03

2

01 03 02 03 03

0 0 0 0

0

0

0

M
    

    

    

 
 

  
 
   
 

   

.                                                                       (9.11) 

From the first equation of the set of equations (7.14) and from equation (9.11), after the 

respective calculations, we finally obtain 

1 01 2 02 3 03 0c c c     .                                                                                                    (9.12) 

From the first equation of the set of equations (4.6), and for the indices 

         , , 0,1,2 0,1,3 0,2,3 1,2,3i       we obtain 

0 01 1 02

3 01 1 03

3 02 2 03

0

0

0

c c

c c

c c

 

 

 

 

 

 

.                                                                                                                     (9.13) 

From equations (9.12) and (9.13) we also take 

01
1 0

02

2 0

03
3 0

02

c c

c c

c c















.                                                                                                                              (9.14) 

From equations (9.14) we obtain the four-vector C  
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01

02

0

03

02

1

1
C c









 
 
 
 

  
 
 
 
 

.                                                                                                                          (9.15) 

From equation (3.5) and equations (9.9) and (9.15) we obtain the four-vector P

0

01
0 1

02

02
0 1

01

03 03
0 1

02 01

c

c J

P
c J

c J









 

 

 
 
 
 
 


 
 
 
 
  

.                                                                                                           (9.16) 

    Since we know the four-vectors , ,J P C we can calculate the rest masses 0
0 02
, ,
E

m M
c

. From 

equations (2.7) and (9.9) we take 

2 2

2 2 2 02 03
0 1

01 01

1m c J
 

 

    
       
     

 

and using equation (9.5) we obtain 

0 0m  .                                                                                                                                  (9.17) 

From equations (2.8) and (9.16) we have that 

0 0E icc  .                                                                                                                             (9.18) 

For the proof of equation (9.18) we also used equation (9.5). From equations (3.6) and (9.15) we 

take 

0
0

ic
M

c
  .                                                                                                                            (9.19) 

    The vector τ vanishes 

32

13

21

0

0

0







   
   

    
   
   

τ  
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Therefore, the plane   is not defined. For the same reason, it also holds that μ 0 . On the 

contrary, the vector n does not vanish 

01

02

03

0

0

0







   
   

    
   
   

n .                                                                                                                     (9.20) 

From equations (9.9),(9.15) and (9.16) we see that the vectors , ,    J P C  are parallel to the vector 

n . We write the vectors  ,J C , as given by equations (9.9), (9.15) and (9.20), in the form of 

 1

01

   
J


J n                                                                                                                               (9.21) 

0

01

c


C n  . 

    The vector C  is a constant vector aligned to the direction of the vector n . From equivalence 

(3.4) we obtain 

  , , , 0,1,2,3
2

ki i k k i

b
c J c J k i k i           

and using equation (4.4) we also have 

    
2

ki i k k i

b
zQ c J c J         

and for the set of indices 0, 0,1,2,3k i  we obtain 

 

 

 

01 1 0 0 1

02 2 0 0 2

03 3 0 0 3

2

2

2

b
zQ c J c J

b
zQ c J c J

b
zQ c J c J







 

 

 

 

and using equations (9.9) and (9.15) we take 

0
01 1

0
02 2

0
03 3

2

2

2

bc
zQ J

bc
zQ J

bc
zQ J







 

 

 
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and solving with respect to 1 2 3, ,J J J  we obtain 

1 01

0

2 02

0

3 03

0

2

2

2

J zQ
bc

J zQ
bc

J zQ
bc







 

 

 

 

and using equation (9.20) we take 

0

2
zQ

bc
 J n  

and taking into account that 0 0J  , we have 

0

0

0

02

0

2
zQ

bc

J

zQ
J

bc

 

 
  

 





J n

n

.                                                                                                                     (9.22) 

In equation (9.22) the function z  is given by equation (4.5). Equation (9.22) expresses 

the dependence of the four-vector J on the charge Q  in the case of the external symmetry 0

010203T

. 

For the matrix 0

010203T  it holds that 0M  . We therefore apply the 
qSV  - method for 

determining the four-vector j . For the indices          , , 0,1,2 0,1,3 0,2,3 1,2,3i        

appearing in equation (7.51), and by considering the elements of the matrix 0

010203T , we obtain 

02
2 1

01

03
3 1

01

j j

j j













 .                                                                                                                             (9.23) 

From equations (4.27), (7.16) and (9.10) we take 

01 1 02 2 03 3 0j j j      .                                                                                                   (9.24) 

From equations (9.23) and (9.24) we obtain the four-vector j  
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0

1

02
1

01

03
1

01

j

j

jj

j









 
 
 
 

  
 
 
 
 

 .                                                                                                                          (9.25) 

From equations (9.25) and (9.20) we obtain the current density 

1

01

   
j


j n .                                                                                                                                 (9.26) 

Therefore, the current density j has the same direction with the direction of the vector n . 

    From the wave equation (5.17) and equations (9.25) and (9.20) we obtain 

1
0

01 0

1 1 1

01 1 02 2 03 3

2
2

2

0

2 1

1 1 1

c
j

j
x

j j j

x x x

F
x

F


 






 



  
 

  

 
   



n n

.                                                                                              (9.27) 

From the second equation of the set of equations given in (9.27) we have 

02 031 1 1
1

1 1 01 1 01

01

1
1 02

01 1

03

, ,

1

j j j
j

x x x

j
j

x

 

 








   
   

   

 
  

     
 

 

and using equation (9.20) we take 

  1
1

01 1

1 j
j

x


 


n  .                                                                                                                  (9.28) 

From equations (9.28) and (9.20) we have 

   2 2 2

01 02 032

01 1

1

x
  






    j  

and using equation (9.5) we take 

  0 j                                                                                                                                 (9.29) 
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Combining the continuity equation (5.6) with equation (9.29) we obtain 

0

0

0
j

x





 .                                                                                                                                   (9.30) 

Therefore, the charge density 0j i c  does not depend on time for this case of the chosen 

external symmetry. Finally, after combining equations (5.3), (9.9) and (9.16) we have 

   

0

0

0
1

01 02

, , , 0,0

bc

x

cb
J









  



 


 



 
    









n  .                                                                                         (9.31) 

Let us remind us that the parameters ,   appearing in equation (9.31) express the two degrees 

of freedom of the TSV. 

The portion of space-time occupied by the generalized particle is curved, since 0 1 0T T 

, according to corollary 6.2. Also, from the combination of equations (9.9), (4.19), and relations 

1 2 3 0T T T   , we obtain 

 

0

0 0

0

0

0

T
i

dJ dQ i
zQ Q c

dx Qdx c

 
  
    
  
 

 





u α

α

                                                                            (9.32)                                                                                            

for the USVI of the external symmetry 0

010203T . 

    In symmetry 010203T  it holds that 0 1 2 3 0T T T T    . From theorem 7.6 we could obtain that 

0 0J  , and the four-vector J could take the form 

0

1

02
1

01

03
1

01

0 0

J

J

JJ

j

J









 
 
 
 

  
 
 
 
 



                                                                                                                            (9.33) 
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in  the case of the symmetry 010203T . However, equation (9.33) is rejected. Following the same 

procedure, as the one for proving equation (9.17), from equation (9.33) we obtain 
2 2 2

0 0 0m c J   .                                                                                                                     (9.34) 

On the other hand, by applying the SV T method, we conclude that equation (9.34) cannot 

hold. Therefore, the symmetries 0

010203T and 010203T have the same four-vectors  , ,J P C  and j . 

Therefore, the symmetries 0

010203T and 010203T are identical. Their only difference lies in the 

vanishing or non-vanishing of the physical quantity  0T .   As derived from equation (9.32) this 

differences bears consequences on the USVI of the two symmetries. The symmetry  010203T

symmetry belongs to the set of the 14T JN N  symmetries, according to the classification of 

the matrices of external symmetry, as we have presented it in paragraph 7. 

 

 

10. The Generalized Particle of the Field  ,α β and the Confinement Equation. 

In this paragraph we study the generalized particle of the field  ,α β , for which the 

function   is known. This shall allow us to perform a concrete application of theorem (5.1). 

    For  
1

2
     in equation (5.3) we obtain 

    , 0,1, 2,3
2

k
k k

k

b
J P k

x


    


 

and using equation (3.5) we take 

, 0,1, 2,3
2

k k

k

bc
k

x


   


 

and using the notation of equation (4.9) we have 

 0 1 1 2 2 3 3exp
2

b
z c x c x c x c x

 
       

 
.                                                                        (10.1) 

From equation (10.1) and equations (5.1), (5.2) and (4.14), (4.15), we obtain 
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01

02

03

32

13

21

icz icz

z z













 
 

  
 
 

 
 

   
 






ξ α n

ω β τ

.                                                                                                           (10.2) 

The field   ,α β  is a special case of the field   ,  ξ ω  for 
1

2
     . 

The fact that the function  of  the field  ,α β is known allows us to derive two impotant 

results about the total rest mass 0M  of the generalized partcle. From equation (10.1) we obtain 

 
2 2 2

2 2 2 2 2 2

0 1 1 12 2 2 2

0 4

b
c c c c

x c t

   
          

 
 

and with equation (3.6) we take 

2 2 2
2 2 2 2

02 2 2 2

0 4

b
M c

x c t

   
         

 
 .                                                                 (10.3) 

According to equation (10.3) and theorem 5.2 the generalized photon in the field  ,α β exists, if 

and only if  

0 0M  ,                                                                                                                             (10.4) 

that is in the case the total rest mass of the generalized particle vanishes.  For 0 0M   the 

generalized particle appears. 

Setting 
1

2
     in the equations of paragraph 5, we arrive at the equations of the 

field  ,α β . For example, by setting 
1

2
     into equation (5.7) we obtain 

2

2

c bz
j MC


 . 

This is equation (4.9), as we have proved in paragraph 4, for the field  ,α β . On the other hand, 

equation (10.3) results only because the function   is known, as given by equation (10.1) for 

the field  ,α β . 
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By knowing the function  we can study the consequences for a material particle when it 

is confined within a constant volume V . The physical quantity q  is conserved, therefore it 

remains constant within the volume V occupied by the generalized particle. Therefore, it holds 

that 

0

0

tan

dq icdq

dt dx

V cons t

 



.                                                                                                                       (10.5) 

    The total conserved physical quantity q contained within the volume V occupied by the 

generalized particle is 

Vq dV                                                                                                                              (10.6) 

Equation (10.6) holds independently, whether the volume V varies or not. The density   for the 

field   ,α β is given by the first of the system of equations (4.25) 

 1 01 2 02 3 03
2

icbz
c c c        .                                                                                       (10.7) 

In the case of 

1 01 2 02 3 03 0c c c     , 

that is in the case of 

0 n C  , 

as derived from equations (3.5) and (7.24), we obtain from equation (10.7) that 0  . That is, 

for the field  ,α β the following equivalence hold 

1 01 2 02 3 030 00 c c c         n C .                                                         (10.8) 

In the case of 0  , and from the combination of equations (10.6) and (10.7), we also have

 
2

V

icb
q zdV


  

n C
.                                                                                                (10.9) 

The integration in the second part of equation (10.9) is performed within the total volume V

occupied by the generalized particle. Therefore, in the case the volume V is constant, the integral 

in the second part of equation (10.9) is independent of the quantiites  1 2 3, ,x x x y x z   . 

Therefore, in the case volume V is constant, the physical quantity  q  in equation (10.9) depends 

only on time.  

Thus, by combining equations (10.5) and (10.9) for a constant volume V , we obtain 
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0

tan

V zdV
t

V cons t


 





.                                                                                                                       (10.10) 

The analysis of equation (10.10) for the general case is complicated. Therefore, in the 

present work, we shall refrain on the study only a simpler case. We shall study the case for which 

the total momentum C of the generalized particle is aligned on the direction of the x  - axis, that 

is for the case of 1 2 30, 0c c c   . In this case we obtain from equation (3.6) that 

2 2 2 2

0 0 1M c c c   . Furthermore, it must also hold that 0  , that is 1 01 0c  , according to  

equivalence (10.8) Since it also holds that 1 0c  , it must also hold that 01 0  . Therefore, the 

study of this particular case refers to the situation, where 

     

1

2 3

01

2 2 2 2

0 0 1

0

0

0

c

c c

M c c c





 



  

.                                                                                                             (10.11) 

We suppose that the generalized particle occupies the constant volume V defined by the 

relations (10.12) in the chosen frame of reference  1 2 3, , ,O t x x x y x z   .   

    

1

2 2

3 3

2 3 2 3

0

0

0

, 0, , tants

x

x L

x L

L

L L L L cons

 

 

 

 

 

 



  



                                                                                             (10.12) 

For the quantities ,  it holds that 

       
d d

u c
dt dt

 
                                                                                                  (10.13) 

Here,  u  is the velocity of the volume V in the chosen frame of reference. 

From equation (10.1), relations (10.11), and since 0x ict , we have 

0 1exp exp
2 2

icbc bc
z t x

   
    

  
 

2 3 0 1 1

1

2
exp exp exp

2 2 2
V

L L icbc bc bc
zdV

bc

       
            

      
.                              (10.14) 

From equation (10.14) we see that equation equation(10.10) holds, if and only if  
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 

1 1

1

exp exp 0
2 2

exp 1
2

bc bc

bc

 

 

   
      
   

 
  
 

       

1exp 1
2

bc L 
 

 
.                                                                                                                 (10.15) 

Equation (10.15) holds only in the case the constant b of the Law of Selfvariations is an 

imaginary number, b i b . Therefore, we obtain 

1

1

cos 1
2

sin 0
2

bc L

bc L

b i b

 
 

 

 
 

 



  

and finally, we get 

1

4
, 1, 2, 3,...c n n

L b


                                                                                          (10.16) 

Combining equation (10.16) with the last of the set of equations (10.11) we take 

2 2
2 2 2 2

0 0 2 2

16
, 1,2,3...M c c n n

L b


                                                                            (10.17) 

Therefore, the momentum 1c and the rest mass 0M of the confined generalized particle is 

quantized. 

In the case of the generalized photon, that is for  0 0M  , and according to equation 

(10.17) we take 

0

0

4
, 1, 2, 3,...

0

i
c n n

L b

M


    



                                                                                       (10.18). 

Combining equations (10.1),(10.16) and (10.18) we have 
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 

0

4
exp

1, 2, 3,...

0

i
z n ct x

L

n

M

 
    

 

   



.                                                                                        (10.19) 

The function  expresses a harmonic wave of wavelenght  
2

L

n
   propagating along the x  -

axis. 

We now calculate the equation corresponding to the equation (10.10) for the field  ,  ξ ω , 

in general.  The reason of not having calculated the general equation (in the case of the one 

spatial dimension) already in paragraph 5 is that the confinement relation of the generalized 

particle with the appearance of the quantization would not have become obvious. 

From equations (4.27), (4.28) and (5.7), and since it holds that 0j i c , we obtain: 

   01 1 02 2 03 3 01 1 02 2 03 3

icb
J J J P P P                  

Together with equations (5.8), (5.9) and (7.24) we also have 

 
icb

      J n P n .                                                                                             (10.20) 

From equations (10.5), (10.20) for the generalized particle occupying a constant volume V we 

obtain 

  0V dV
t

 



   J n P n .                                                                                     (10.21) 

For 
1

2
     equation (10.21) gives equation (10.10), after considering equations 

(3.5) and (10.1). 

For the internal symmetry 0T  it holds that  0M  , and from equation (5.7) we obtain 

0j  . Equation (10.5) degenerates into identity, 0 0 , therefore the confinement equation 

(10.21) does not hold. The same holds also in the case of all of the external symmetries T   , 

as a result of equation (8.4). Hence, the confinement equation (10.21) holds for the generalized 

particle of the 1 26JN N   in number external symmetries. 

 

11. The Cosmological Data as a Consequence of the Theorem of Internal Symmetry  

The theorem 3.3., that is the theorem of internal symmetry, predicts and justifies the 

cosmological data. We present the relevant study in this paragraph.  
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The emission of the electromagnetic spectrum of the far-distant astronomical objects we 

observe today has taken place a long time interval ago. At the moment of the emission the rest 

mass and the electric charge of the material particles had smaller values than the corresponding 

ones measured in the laboratory, “now”, on Earth, due to the manifestation of the Selfvariations. 

These consequences, resulting from this difference, are recorded in the cosmological data. The 

cosmological data have a microscopic, and not a macroscopic, cause. 

Due to the Selfvariations of the rest masses of the material particles the gravitational 

interaction cannot play the role attributed to it by the Standard Cosmological Model (SCM). The 

gravitational interaction cannot cause neither the collapse, nor the expansion of the Universe, 

since it decreases on a cosmological scale according to the factor 
1

1 z
. The gravitational 

interaction exercised on our galaxy by a far-distant astronomical object with redshift 9z   is 

only the 
1

10
 of the expected one. The Universe is static and flat, according to the law of 

Selfvariations. 

For a non- moving particle, that is for  1 2 3 0J J J   , from equation (3.12) we get that

1 2 3 0c c c    and from equation (3.9) we obtain 

0 0exp
b

K c x
 

   
 

 

and since 0x ict , we take 

0exp
icc

K t
 

   
 

 

and from equation (3.10) we obtain 

  0
0 0

01 exp

M
m m t

icc
K t

  
 

  
 

  .                                                                                      (11.1) 

The rest mass 0m  of the material particle is a function of time  t  . 

    We now denote by k  the constant  

0icc
k                                                                                                                                 (11.2) 

We also denote by A the time-dependent function 

   expA A t K kt     .                                                                                               (11.3) 

Following this notation, equation (11.1) is written as 
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  0
0 0

1

M
m m t

A
  


 .                                                                                                           (11.4) 

    From equation (11.3) we have 

dA
A kA

dt



   .                                                                                                                        (11.5) 

for the expression of the parameter  A A t . Similarly, using the above notation equation (3.11) 

is written as 

 
2

0
0 0

1

M c A
E E t

A
 


 .                                                                                                      (11.6) 

We consider an astronomical object at distance  r  from Earth. The emission of the 

electromagnetic spectrum of the far-distant astronomical objects we observe “now”on Earth has 

taken place before a time interval 
r

t t
c

    . From equation (11.3) we have that the parameter 

A  obtained the value 

   
r

A A r A t exp k
c

 
   

 
 

and from equation (11.4) we have 

  0
0

1 exp

M
m r

r
A k

c

 
 

  
 

 .                                                                                             (11.7) 

Similarrly, from equation (11.6) we take 

 

2

0

0

exp

1 exp

r
M c A k

c
E r

r
A k

c

 
 
 
 

  
 

 .                                                                                            (11.8) 

From equations (11.4) and (11.7) we also have 

 0 0

1

1 exp

A
m r m

r
A k

c




 
  

 

 .                                                                                           (11.9) 

    We can prove that for the electric charge q  of the material particles a similar equation holds, 

analogous to equation (11.7). From equation (4.2) it can be shown that for the electric charge q of 

the material particles, an equation corresponding to equation (11.9) holds, that is the following 

equation 
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 

1

1

1 exp

B
q r q

r
B k

c




 
  

 

 .                                                                                             (11.10) 

    The fine structure constant   is defined as 

2

4

q

c



  .                                                                                                                      (11.11) 

and using equation (11.10) we obtain 

 

2

1

1

1 exp

B
r

r
B k

c

 

 
 
 

     
  

 .                                                                                       (11.12) 

The wave length  of the linear spectrum is inversely proportional to the factor 4

0m q , 

where 0m  is the rest mass and q is the electric charge of the electron. If we denote by 0 the 

wavelength of a photon emitted by an atom “now”on Earth, and by  the same wavelength of the 

same atom received “now” on Earth from the far-distant astronomical object, the following 

relation holds:  

   

4

0

4

0 0

m q

m r q r




  

and from equations (11.9) and (11.10) we obtain 
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c c
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       

    
  

 
 

.                                                                  (11.13) 

For the redshift  

0

0 0

1z
  

 


  

 

the redshift of the astronomical object from equation (11.13) is given as  

 

4

11 exp 1 exp

1
1 1

r r
A k B k

c c
z

A B

    
       

     
  

 
 

.                                                                (11.14) 
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Equation (11.14) can also be written as 

 
21
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r
Aexp k

rc
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



 
     

  
  

.                                                                                   (11.15) 

after considering equation (11.12). 

From the cosmological data, and from measurements conducted on Earth, we know that 

the variation of the fine structure constant is extremely small. Therefore, from equation (11.15), 

we obtain with extremely accurate approximation 

1 exp

1
1

r
A k

c
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A

 
  

 
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
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c
A

z e
A

 
  

  
.                                                                                                      (11.16) 

 Equation (11.16) holds with great accuracy. The variation of the fine structure constant is so 

small, so that any of its contribution into the redshift is overlapped by the same contributions 

from the far-distant astronomical objects, due to Doppler’s effect. 

For small distances r , we obtain from equation (11.16) 

 

1 1
1

1

A kr
z

A c

kA
z r

c A

 
   

  




       

and comparing this with Hubble’s law 

cz Hr     

we take 

1

kA
H

A



                                                                                                                      (11.17) 

where H is Hubble’s parameter. 

    From equation (11.17) we have 

 

 
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1
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
  



99 
 

 
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1

k A
H

A


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


   

and with equation (11.5) we obtain 

 

2

2
1

k A
H

A






  

and from equation (11.17) we take 

H
H

A



   .                                                                                                                       (11.18) 

    Also, from equation (11.17) we have that  

 0
1

kA

A



 

From these equations we list three possible combinations among the constant k and the 

parameter A : 

 

0 0 1

0 0

0 1

k A

k A

k A

   

  

  

   .                                                                                                        (11.19)                                                                                                    

The cosmological data are justified from all of these three combinations. Some 

differences are predicted for some rates of change, and for the case of the extremely large 

distances, in the very ealry Universe, which stay beyond the detection limits of our current 

observational instruments. In the following, we shall conduct our study for the first of these 

cases. At the end of the paragraph we shall present a comparison among these. 

From equations (2.4), (2.5), (3.5) and (11.2) we obtain 

W E
k


 . 

Therefore, the sign of the constant k depends on the sign of the constant sum W E . For 0k  , 

we take from equation (11.16) 

  lim
1r

A
z

A



                                                                                                                        (11.20) 

The redshift takes an upper limit, depending on the value of the parameter A . 

    From equations  (11.16) and  (11.5), after the calculations, we finally obtain 
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 
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z e
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  
   
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and with equation (11.17) we have 
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  
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  
 .                                                                                                             (11.21) 

From equation (11.21) we obtain for the first and the third of the cases listed in (11.19) that it 

holds that 0z


 , whereas for the second we have 0z


 . According to equation (11.18), the same 

also holds for the rate of change of Hubble’s parameter H  

In the first case of equations (11.19) redshift has an upper limit, according to equation 

(11.20), hence we obtain 

  
1

A
z

A



 

and since it holds that 1 0A   , we take 

  
1

z
A

z



 

and since 1A   , it holds that 

  1
1

z
A

z
 


.                                                                                                                      (11.22) 

From inequality (11.22) we take 

 1A   .                                                                                                                              (11.23) 

We prove that, as 1A    , equation (11.16) tends to the familiar expression of Hubble’s law

cz Hr . 

We set 
1 A

x
A


  , hence 0x    for 1A  ,  while from equation (11.17) we obtain 

k xH . Then, equation (11.6) can be written in the form 

 
1

1 exp
Hr

z
x c

  
    

  
. 

Thus, we have 

1 0

1
lim lim 1 exp
A x

Hr Hr
z x

x c c  

  
     

  
. 



101 
 

From relation (11.5) we also take that 

 0
dA

kA
dt

   

for the first of the cases listed in (11.19). Therefore, the parameter A  increases with the passage 

of time. According to the previous proof, equation (11.16) tends in the limit to the expression of 

Hubble’s law.  

Combining equations (11.9) and (11.16) we obtain 

   0
0

1

m
m z

z



 .                                                                                                                      (11.24) 

Equation (11.24) bears many consequences for distances at a cosmological scale. 

According to equation (11.24) , the gravitational interaction among two astronomical 

objects is lower than expected by a factor of 
1

1 z
. Redshift z is defined by their relative 

distance  r , as given by equation (11.16), that is the redshift an observer would measure on an 

astronomical object as observing another astronomical object.  

In the case of the solar system, or for a galaxy, or for a cluster of galaxies, equation 

(11.24) bears no consequences. At these scales of distances it holds that 0z  . But, we can 

search for the consequences at these scales from another equation.  

From equation (11.4) we have 

  
 

0
0 2

1

odm M A
m

dt A




  


 

and with quation (11.4) we take 

 0 0
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A
m m

A





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and from equation (11.5) we have 

 0

0 1

m kA

m A






 

and finally, from equation (11.17) we obtain 

 0

0

m
H

m



 .                                                                                                                          (11.25) 
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Equation (11.25) refers to the mass  0 0m m t . Therefore, its consequences can be searched 

within the region of our galaxy, or within the limits of our solar system. We note that probably 

the value of Hubble’s parameter H is smaller than the corresponding one used today. We shall 

not present this analysis in the present work. In every case, the experimental confirmation of 

equation (11.25) can be performed by very sensitive observational instruments. Also, during the 

process of the measurements, equation (4.19) of the USVI should also be considered. 

Equation (11.24) has important consequences for the distances at the cosmological scale. 

At these distances, the gravitational interaction decreases rapidly, and after a particular distance, 

practically vanishes. Furthermore, this interaction played a crucial role for the creation of all of 

the large scale structures in the Universe. 

As we shall see, the state of the very early Universe differs only slightly from the state of 

the vacuum. The gravitational interaction strengthens with the passage of time, as the rest masses 

of the material particles increase. Furthermore, its strength depends on distance, as given both 

from the law of  universal attraction, and from equation (11.24), for distances at the cosmological 

scale. These two factors, which are not considered in the evaluation of the cosmological data 

based on the SCM, played a decisive role in the creation of the large scale structures in the 

Universe we observe it today. 

From the equations 
2E mc and (11.24) we obtain 

  
1

E
E z

z



                                                                                                                       (11.26) 

in every case of the transformation of mass into energy. The production of energy in the 

Universe is mainly accomplished by the fusion of hydrogen, and by the nuclear reactions. 

Therefore, the energy produced in the past, in the far-distant astronomical objects, acquired 

smaller values than the corresponding ones produced today in our galaxy, and by the same 

physical pocesses. This fact has two immediate cosnequences. 

The first consequence is that equation (11.16) holds also for the redshift z  of the 

radiation   ,given as 

1
1

kr

c
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z e
A



 
 

  
.                                                                                                            (11.27) 

The other consequence refers to the luminosity distance D of the far-distant astronomical 

objects. The general decrease of the quantity of the produced energy in the past, due to equation 

(11.26), has as a consequence an also general decrease of the luminosity of the far-distant 

astronomical objects. From the defintion of the luminosity distance  D  we can easily prove that 

 1D r z                                                                                                                      (11.28) 

This relation gives the dependence between the real distance r of the astronomical object and the 

distance D  measured based on its luminosity. The luminosity distance D is measured to be 
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always much larger than the real distance of the astronomical object. The real distance r  of the 

far distant astronomical object is given by equation 

 
 

ln
1 1

c A
r

k z A

 
     

                                                                                                   (11.29) 

as obtained from equation  (11.16). The measurement of the distance according to equation 

(11.29) can be accomplished, as far as we know the values of the constant k and the parameter 

A . Generally, because of equation (11.17), it suffices to know two out of the set of the 

parameters , ,k A H . 

The atomic ionization energy, as well as the atomic excitation energies nX  is 

proportional to the factor 4

0m q , where 0m  denotes the rest mass of the electron, and q  its 

electric charge. We have that 
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and since  
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1
r


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we obtain 
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X r m r
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and from equation (11.24) we have 
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1

n
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X
X r X z

z
 


 .                                                                                                       (11.30) 

From equation (11.30) we conclude that the atomic ionization and excitation energies decrease 

with the increase of the redshift. This fact bears some consequences about the ionization degree 

of the atoms in the far distant astronomical objects. 

The number of the excited atoms of a gas in a state of thermodynamic equilibrium is 

given by Boltzmann’s equation 
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1 1

expn n nN g X

X g KT

 
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 
                                                                                                         (11.31)    

Here, nN   denotes the number of the atoms being at the energy level with quantum number    n    

, nX  stands for the ionization energy, as measured from the ground state to the energy level of 

quantum number    n     , and 23 11.38 10K JK     is Boltzmann’s constant. Also, T denotes the 

temperature given in Kelvin degrees, and ng
 is the multiplicity degree of the energy level of 

number  n  , that is, the number of energy levels into which level n  splits in the presence of a 

magnetic field. 

    Combining equations (11.30) and (11.31) we have 
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exp
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n n nN g X

N g KT z

 
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.                                                                                                  

(11.32) 

For the hydrogen atom, and for  19

2 1 22, 10.5 16.4 10 , 2, 8n X eV J g g      , on the surface of 

the Sun, where 6000T K  , equation (11.32) states that only one out of 810  hydrogen atoms is 

in the  2n   state. Analogously, from equation (11.33) we have that, for 1z  , 42

1

2.2 10
N

N

  , 

for 2z  , 32

1

5.8 10
N

N

  , and for 5z  ,  2

1

0.15
N

N
 . 

Considering equation (11.20), we obtain from equation (11.30) 

    1n nX r X A   .                                                                                                    (11.33) 

Considering relations (11.22) and (11.23), we conclude that the atomic ionization and excitation 

energies tend to vanish in the state of the very early Universe. The Universe underwent from an 

ionization phase during the initial steps of its evolution.  

The laboratory value for Thomson’s scattering coefficient is given by equation 

 

4

2 4

0

8

3

q

m c


                                                                                                                      (11.34) 

Here, 0m  denotes the rest mass of the electron, and q denotes its electric charge. Thus, we obtain 
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and since  z   , we take 
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From equation (11.24) we also obtain 
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  .                                                                                                                  (11.35) 

The Thomson’s scattering coefficient refers to the scattering of photons with small 

energies E . In the case of photons with large values of energy E , the scattering of the photons is 

determined by the Klein-Nishina scattering coefficient, given by 
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                                                                                                (11.36) 

for the laboratory value, “now”, on Earth and  by 
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                                                                  (11.37) 

for an astronomical object with redshift z . 

From equations (11.24) and (11.26) we take 
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Thus, from equation (11.37) we obtain 
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and with equation (11.35) we have 
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(11.38) 

From equation (11.38) we conclude that the Thomson and Klein-Nishina coefficients 

incease in the same manner with the increase of the redshift . Considering equation (11.20), we 

have 

 
   

 
2

1

1

T

T

r r

A

 

 

 
 


.                                                                              (11.39) 
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Considering equations (11.22) and (11.23) we conclude that the Thomson and Klein-Nishina 

scattering coefficients acquired enormous values in the very early Universe. In this initial state 

the Universe was completely opaque. From this initial phase of the Universe originates the 

detected Cosmic Microwave Background Radiation (CMBR) observed today. 

The theorem of the internal symmetry predicts that the initial state of the Universe was a 

state described as the “state of a vacuum”, being at a temperature of 0T K . Because of the 

Selfvariations the Universe evolved into the current state. This evolution stays in accordance 

with the fact that the CMRB corresponds to a black-body temperature of 2.73T K . 

Combining equations  (3.11) and (11.3), we take for the laboratory value 

 
, 0,1,2,3
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i
i

c
J i

A t
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We also take for the value at the astronomical object located at a distance r  
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. 

Combining these equations with equation (11.9) we obtain 
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and with equation (11.24) we have 
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J
J z i

z
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
.                                                                                                (11.40) 

    From Heisenberg’s Uncertainty Principle, and for the 1x x   axis, we take for the laboratory 

value 

  1J x  

and for the corresponding value of a far-distant astronomical object 

     1J z x z  

From these relations, we obtain 

     1 1J z x z J x    
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and from equation (11.40) we also have 

    1x z z x    .                                                                                                          (11.41) 

From equation (11.41) we conclude that the uncertainty  x z  of the position of the 

material particle increases with the increase of the redshift. Furthermore, as the redshift 

decreases, that is as the Universe evolved towards its current state, the uncertainty of the postion 

of the material particles decreased.  

From equations (11.41) and (11.20) we obtain 

  
1

x
x r

A


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
.                                                                                                        (11.42) 

Considering equations (11.22) and (11.23) we conclude that in the very early stage of the 

Universe there existed an enormous degree of uncertainty for the positions of the material 

particles. The same holds also for the Bohr radius. The TSV stays in accordance with the 

Uncertainty Principle. In the forthcoming paragraph we shall see that the uncertainty in the 

positions of the material particles is another consequence of theorem (3.3).  

    From equation (11.30) we obtain that, as the Universe evolved towards its current state, the 

ionization energies increased. This prediction is of general validity, for the negative potential 

energies of all kind, which are responsible for holding together the composite material particles. 

From equation (11.24) we obtain 

 
2

2 0
0

1

m c
m z c

z


 


                                                                                                        (11.43) 

for the amount of energy 2

0m c , that is for the mass deficit, resposible for holding together the 

particles constituting the atomic nuclei. Equations (11.30) and (11.43) obtain the same form. 

Therefore, the energy 2

0m c increased during the evolution of the Universe towards its present 

state. 

Material particles, such as the electron, which are considered to be elementary, can in 

reality be composed by other, more fundamental particles. Our inability to decompose them into 

their constituting particles could arise from the strengthening of the binding energies of the 

particles composing them. The mass 0M of equation (3.10) might very probably be the only true 

elementary rest mass, out of which the masses of all the other material particles are composed of.  

From equations (11.24) and (11.20) we obtain 

    0 0 1 0m r m A    .                                                                                        (11.44) 

Considering relations (11.22) and (11.23), we conclude that in the initial state of the 

Universe the rest masses of the material particles tend to zero 
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   0 0 1 0m r m A    .                                                                                         (11.45) 

From equation (11.8) we have 

  0 0E r   .                                                                                                             (11.46) 

From equations (11.7) and (11.8) we obtain 

    2 2

0 0 0m r c E r M c                                                                                                 (11.47) 

and from equations (11.44) and (11.46) we take 

  0 01m A M  .                                                                                                             (11.48) 

Working simirarly, we obtain from equations (11.7) and (11.8), in the case of 0k   
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Equation (11.48), which results from equation (11.47), and holds for 0k  , is equation (11.4). If 

we assume that r R   for the cases where 0k  , then equation (11.47) holds identically. 

From equation (11.16), and for 0k  , we obtain 

   1 exp
1

A kR
z R

A c

  
    

   
.                                                                                        (11.50) 

lim

0

r
z

k


 


                                                                                                                           (11.51) 

These relations hold indepedently on the case of 0A  or of  1A  . One difference already 

determined about these two cases is expressed by the relations: 

0

0

0 0

1

0

0 0

A

k

z H

A

k

z H

 

 





  





  

                                                                                                                      (11.52) 

   Using the notation   
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1 A

x
A


                                                                                                                            (11.53) 

from equations (11.16) and (11.17) we obtain 

 
1

1 exp
Hr

z x
x c

  
    

  
.                                                                                                  (11.54) 

If 0, 0k A  , we obtain from equation (11.5) 

 0
dA

kA
dt

   

Therefore, with the passage of time, the parameter A increases, tending to zero 

 

0

0

0

A

A

k







.                                                                                                                       (11.55) 

In that case, we obtain from equation (11.53) 

0

lim
A

x


   

and from equation (11.54) we also have 

 
1

lim lim 1 exp 0
x x

Hr
z x

x c 

  
     

  
.                                                                            (11.56) 

Therefore, in the case of 0, 0k A  , the redshift shall become unobservable in a theoretically 

infinite time. 

In the case of 0, 1k A  , we obtain from equation (11.5) 

 0
dA

kA
dt

   

and hence, with the passage of time the parameter A  decreases, tending to become one 

 

1

0

0

A

A

k







.                                                                                                                                   

(11.57) 

In this case, we derive from equation (11.53) 

 
1

lim 0
A

x






  
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and from equation (11.54) we also have 

 
0 0

1
lim lim 1 exp
x x

Hr Hr
z x

x c c  

  
     

  
.                                                                        (11.58) 

Therefore, in the case of 0, 1k A  . With the passage of time equation (11.16) becomes 

eventually  the Hubble’s law. Finally, in the cases where 0k  equation (11.29) can be written in 

the form 

    
ln

1 1

0

c A
r

k z A



 
      



.                                                                                                (11.59) 

We have studied the case of  1 2 3 0J J J   in equation (3.12) in order to bypass the 

consequences on the redshift produced by the proper motion of the electron. Thus, from equation 

(3.6) we obtain 

 0 0M ic   

From equation (11.2) we also have 

 0 2

k
M

c
  .                                                                                                                           (11.60) 

From equation (11.17) we obtain that the constant k obtains an extremely small value. Therefore, 

the same holds and for the rest mass 0M , as a resu lt of equation (11.60). 

From equation (11.5) we conclude that the parameter A varies only very slightly with the 

passage of time. The age of the Universe is correlated at a greater degree with the value of the 

parameter A  we measure today, and less with Hubble’s parameter H . 

All of the presented consequences of theorem (3.3) are recorded within the cosmological 

data [16-26]. For the confirmation of the predictions of the theorem for the initial state of the 

Universe the improvement of our observational instruments is demanded.  

In the observations conducted for distances of cosmological scales, we observe the 

Universe as it was in the past. That is, we observe directly the consequences of the 

Selfvariations. We do not possess this possibility for the distances of smaller scales. The 

cosmological data are the result of the immediate observation of the Selfvariations and their 

consequences. 

 

12. Other Consequences of the Theorem of the Internal Symmetry  

The consequences of the theorem of the internal symmetry cover a wider spectrum, than 

the one already stated for the cosmological data. In these, the consequences of the dependence of 
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the function  on time 0x ict  are recorded. The function  , according to equation (3.9), is a 

function of the set of the coordinates and also of the constants { 0 1 2 3 0 1 2 3, , , , , , ,x x x x c c c c }, and 

given as 

    0 1 2 3 0 1 2 3 0 0 1 1 2 2 3 3, , , , , , , exp
b

x x x x c c c c K c x c x c x c x
 

       
 

.                     (12.1) 

As in the previous paragraph, we refrain our study in the case of  1   , as included in theorem 

3.3.. This case is equivalent with the relation: 0C  . 

quations (3.10) and (3.13) express the rest mass 0m of the material particle and the rest 

energy 0E  as a function of   

 0
0

1

M
m  


.                                                                                                                         (12.2) 

 
2

0
0

1

M c
E 


.                                                                                                                        (12.3)    

 2 2

0 0 0E m c M c  .                                                                                                                 (12.4) 

 In these equations the only constant is the rest mass  0M    of the generalized particle. 

The rest mass 0m  of the generalized particle depends on the position  0 1 2 3, , ,A x x x x of 

the generalized particle in the chosen system of coordinates  0 1 2 3, , ,O x x x x .  Also, the rest mass 

0m   of the material particle depends on the set of constants { 0 1 2 3, , ,c c c c }, by regarding the 

following argument: A generalized particle with rest mass 0M  can be at point  0 1 2 3, , ,A x x x x  in 

many different states, depending on the values of the constants  0 1 2 3, , ,c c c c . There is an infinite 

number of four-vectors C , hence an infinite nuber of the generalized particle states at point 

 0 1 2 3, , ,A x x x x , for which equation (3.6) holds 

 2 2 2 2 2 2

0 1 2 3 0c c c c M c     .                                                                                                   (12.5) 

We now deduce corollary 12.1 of theorem 3.3. 

Corollary 12.1. ‘’ The only constant physical quantity for a material particle is its total rest mass 

0M . The evolution of the Universe, or of a system of particles, or of one particle, does not 

depend only on time. Its evolution is determined by the Selfvariations, as this manifestation is 

expressed through the function .’’ 

Proof. Corollary 12.1 is an immediate consequence of theorem 3.3.  



112 
 

According to corollary 12.1, each material particle is uniquely defined from the rest mass 0M of 

equations (12.2) and (12.3). 

    From equations (2.4), (2.5) and (3.5) , and since it holds that 0x ict , we can write the 

function  in the form 

    1 2 3 1 1 2 2 3 3, , , exp
b

t x x x K W E t c x c x c x
 

           
 

                                 (12.6) 

with the sum 0W E icc    being constant. This equation gives   as a function of time t  , 

instead of the variable 0x ict . 

In the afterword we present the reasons, according to which the TSV strenghtens at an 

important degree the Theory of Special Relativity [27-28]. In contrast, the theorem of internal 

symmerty highlights a fundamental difference between the TSV and the Theory of General 

Relativity. According to equations (12.1) and (12.2), the physical quantity, which is being 

introduced into the equations of the TSV and remains invariant in repsect to all of the systems of 

reference, is the quantity given by 

   0 0 1 1 2 2 3 3

b
c x c x c x c x       .                                                                                    (12.7) 

Therefore, the TSV studies the physical quantity   , and not, the also invariant with respect to 

all systems of reference, physical quantity of the four-dimensional arc length 

       
2 2 2 22

0 1 2 3dS dx dx dx dx     .                                                                                 (12.8) 

This arc length is studied by the Theory of General Relativity. The study of 
2dS  can be 

interpreted in the manner that the Theory of General Relativity is a macroscopic theory. On the 

contrary, in the TSV a differentiation between the levels of the macrocosm and the microcosm 

does not exist. In equations (3.12), and for the energy and the momentum of the material particle,  

, 0,1,2,3
1

i
i

c
J i 


                                                                                                             (12.9) 

the concept of velocity does not exist. With the exception of equations (4.19) and (4.20), within 

the totality of the equations of the TSV we already presented, the concept of velocity does not 

enter. As we will see in the following, theorem 3.3 which justifies the cosmological data predicts 

the the uncertainty of the postion-momentum of the material particles. The difference among 

these two theories is highlighted in a concrete manner by the comparison of equations (12.7) and 

(12.8). In the first, spacetime appers together with the four-vector C . The second equation refers 

only to spacetime. 

We present an example which highlights the diffrences among these two theories. It is the 

famous Twin Paradox. We consider that the reader is familiar with this thought experiment, as 

well as the result of the Theory of General Relativity [29]. The Theory of General Relativity 
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predicts correctly the time difference in the time duration counted by the two twins. On the other 

hand, according to corollary 12.1, this time difference does not suffice for providing a difference 

in the evolution of the twins. The twins have the same generalized particles, which acquire the 

same rest masses 0M , at the time they meet together. At the beginning and at the end of the 

travel the two twins are identical. Einstein drives the wrong conclusion, not because the Theory 

of General Relativity is wrong, but because he regards that this time difference implies and a 

different evolution of the twins. But, this is not a characteristic of the Theory of General 

Relativity. This is a common characteristic of all the physical theories preceding the TSV. 

At this point let me commentate. Einstein refers to this thought experiment as the “Twin 

Paradox”, and not as a consequence of the Theory of General Relativity. According to my 

opinion, Einstein understood that something was missing from the Theory of General Relativity. 

To this pont advocates and his peristance for determining the cause of the quantum phenomena. 

We consider a generalized particle with rest mass 0M  at a particular point 

 0 1 2 3, , ,A x x x x  of spacetime. According to equations (12.1), (12.2) and (12.9), the material 

particle of the generalized particle can be found in an infinite number of different states, as these 

are defined by the four-vector C . If we consider that the four-vector varies, and that equation 

(12.5) holds always, since we refer to a concrete generalized particle, we obtain from equation 

(12.9) 

 
 

2

1

1 1

i i

k k

J c

c c

 
 

  
 

and with equation (12.1) we have 

 
 

2

1
,k,i 0,1,2,3

1 1

i i
k

k

J cb
x

c

 
  

  
.                                                                            (12.10) 

 Equation (12.10) gives the variation of the four-vector J , as the four-vector C  varies, with the 

generalized particle being positioned at the same point   0 1 2 3, , ,A x x x x of spacetime. For  i k  , 

and from equation (12.10) we obtain 

 
 

2

1
, 0,1,2,3

1 1

k k
k

k

J cb
x k

c

 
  

  
.                                                                            (12.11) 

From equation (12.6) we have that if ,K b  , then  . In this case, we can derive 

the consequences for the material particle, according to if the rates of change of the quantities 

 ,i k

k k

J J

c c

 

 
 

are positive, negative, or zero, respectively. We prove corollary 12.2 of theorem 3.3.  
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Corollary 12.2.  “For ,K b  , the following hold: 

1.  0 0 , 0,1,2,3k k
k k k k

k k

J P
x J x P k

c c b b

 
       

  
                              (12.12)  

2.  0 0 , 0,1,2,3k k
k k k k

k k

J P
x J x P k

c c b b

 
       

  
                             (12.13) 

3.  0 0 , 0,1, 2,3k k
k k k k

k k

J P
x J x P k

c c b b

 
       

  
                              (12.14) 

4.  0 0 , , 0, , 0,1, 2,3i i
k i k i

k k

J P
x J x P k i ki k i

c c b b

 
         

  
      (12.15)                            

5.  0 0 , , 0, , 0,1, 2,3i i
k i k i

k k

J P
x J x P k i ki k i

c c b b

 
         

  
       (12.16) 

6.  0 0 , , , 0,1, 2,3i i
k i k i

k k

J P
x J x P k i k i

c c b b

 
        

  
’’                  (12.17)  

Proof. We first consider that 0 , hence 0
1





 .These relations do not constraint the study 

of the general case. We just suppose positive momentum , 0,1,2,3i iJ P i  , as resulting from 

equations (3.12) and (3.13). From equation (12.11) we obtain   

  0 1 0
1

k k

k

J cb

c

 
   

 
 

and with equations (3.12) and (1.13) we obtain the set of equivalences given in (12.12). 

Equivalence 

  0 0k k

k k

J P

c c

 
  

 
 

results from equation (3.5). The proof of the other equivalences is performed similarly, by 

considering also equation (12.10). In the equivalences (12.15) and (12.16) the relation among the 

indices 0ki  is equivalent to relations 

              , 0,1 , 1,0 , 0,2 , 2,0 , 0,3 , 3,0k i  . 

In these cases it holds that 

 i

k

J

c


 


 

As a consequence, equivalences (12.15) and  (12.16) become meaningless.  
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AS the four-vector C  varies in such a way, so that the four-dimensional momentum of 

the material particle decreases, and equivalently the four dimensional momentum of the material 

particle increases in the surrounding spacetime of the material particle, there exists an 

uncertainty in its position and momentum. This uncertainty is expressed by Heisenberg’s 

Uncertainty Principle [30]. On the other hand, when the four-vector C  varies in such a way, so 

that its four dimensional momentum decreases in the surrounding part of spacetime, 

equevalences (12.12) hold. In the case the four-vector C  varies in such a way, so that the four 

dimensional momentum of the material particle remains unchanged, or equivalently the same 

holds also for the four dimensional momentum in the surrounding part of spacetime, then 

equivalences (12.14) hold. Relationships (12.12)-(12.17) are the only constraints that the 

equations of TSV impose on the position of the material particle. This relationships relate to the 

position-momentum product.  

In every measurement that we perfom in the laboratory, we alter the state of the material 

particle, that is the four-vector C . For that reason, the consequences of the position-momentum 

uncertainty are very intense in the laboratory.  

We observe that the equivalences (12.15)-(12.17) do not correspond to a principle of the physical 

theories of the former century. The theorem of internal symmetry, as well as the two degrees of 

freedom appearing in equations (5.3) and (5.7), foundain on a novel basis the manipulation of 

quantum information. 

From equations (3.12) and (3.13) we obtain 

 , 0,1,2,3k k kJ P c k    

hence, we obtain 

 1, 0,1,2,3k k

k k

J P
k

c c

 
  

 
.                                                                                                    (12.18) 

Finally, we note that within the TSV the equivalences (12.12)-(12.17) are not considered as a 

hypothetical principle, but as a consequence of the theorem (3.3) of the internal symmetry. 

      

 13. Afterword  

As an afterword we make some general comments about the TSV. Having concluded our 

study, it is clear that the whole network of the equations of the TSV stems from combination of 

the axiom of  Selfvariations, as given in equation (4.2) with the principle of conservation of the 

four-vector of momentum, and equation (2.7).  The principle of conservation of the four-vector 

of momentum has been derived and tested empirically, from the experimental data. Equation 

(2.7) is probably derived by the other two axioms. The TSV bases axiomatically the science of 

theoretical Physics with only three axioms. As far as I know, this is a minimum number of 

axioms, including the axiomatization of many mathematical or physical theories. Equation (2.7) 
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is derived by the Theory of Special Relativity. For this reason, we begin our comments from the 

relation between the TSV and the Theory of Special Relativity. 

The Theory of Special Relativity imposes constraints on the mathematical formulation of 

the physical laws. All mathematical expressions of the physical laws must remain invariant with 

respect to the Lorentz-Einstein transformations. The TSV imposes further constraints on the 

mathematical formulation of the physical laws. If we denote by L the set of equations remaining 

invariant according to the Lorentz-Einstein transformations, and by S the set of equations 

compatible with the Law of Selfvariations, it holds that S L , with S L .  

One indicative example refers to the Lienard-Wiechert electromagnetic potentials. These 

potentials were proposed by Lienard and Wiechert in 1899 and give the correct form of the 

electromagnetic field and the electromagnetic radiation for an arbitrarily moving electric charge. 

After the formulation of the Theory of Special Relativity by Einstein in 1905, it has been proved 

that the Lienard-Wiechert potentials remain invariant under the Lorentz-Einstein 

transformations. After the formulation of the TSV it has been proved that they are not compatible 

with the Selfvariations. The TSV replaces the Lienard-Wiechert electromagnatic potentials with 

the macroscopic potentials of the TSV, which give exactly the same field, as the one produced by 

the  Lienard-Wiechert potentials. The macroscopic potentials of the TSV are compatible with the 

Selfvariations, and with the Lorentz-Einstein transformations ( S L ). Another characteristic of 

the macroscopic potentials of the TSV is the following:  

“We can consider that the Selfvariations are manifested, or that the electric charge is constant, 

and obtain exactly the same field. This is another expression of the “internality of the Universe 

during the process of measurement”. ” 

For the derivation of the Lorentz-Einstein transformations we consider two observers 

exchanging signals with velocity c . If the observers move with equal velocities to each other, the 

Lorentz-Einstein transformations result. If the observes exhange signals with a velocity different 

than c , for example acoustic signals, we derive another set of transformations, which are wrong. 

Einsten’s answer was that, generally, we choose the exchange of signals propagating with c  by 

the obtained result, that is because in this way we derive the correct form of transformations.  

At this point, the TSV reinforces greatly the Theory of Special Relativity. Among the 

material particles one constant exchange of generalized photons exists, which propagates in the 

macrocosm with velocity c . According to the TSV, the exchange of signals with velocity c is not 

just an assumption undertaken in order to derive the Lorentz-Einstein transformations, but 

constitutes a continuous physical reality.  

The Selfvariations of the rest masses are realized if and only if they are balanced by a 

corresponding emission of negative energy (STEM) in the surrounding space of the material 

particle, so that the conservation of energy-momentum holds. This energetic content of 

spacetime is expressed by the four-vector P given in equation (2.5). Microscopically, the energy 

of STEM is expressed by equation (11.9), which is a result of equation (3.12), that is of the 

theorem of internal symmetry. This is expected, since the internal symmetry expresses exactly 

the spontaneous realization of the Selfvariations. An analogous situation occurs and for the 
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electric charge, and also for every self-variating charge Q . The spontaneous emmision of 

negative energy (STEM) in spacetime bears two fundamental consequences. 

STEM has as a consequence the continuous exhange of information among the material 

particles. If the Universe is finite, with finite age, there still exist regions which have not 

exchanged information, as a result of the finite speed of propagation of STEM. This shall be 

accomplished in the future time. With the passage of time every region of the Universe interacts 

with an even increasing part of the rest of the Universe. Now, acccording to equation (11.43), 

and going back in time, the uncertainty of the position of the material particles shall tend to 

infinity. Regions of the Universe, which shall interact through the STEM in the future time, have 

already interacted through the material particles in the past time. The aforementioned argument 

holds also in the case the Universe is infinite, and has an infinite age. The only diffrence is that 

all of its points have interacted throught the STEM, as well. Thus, we infer the following 

fundamental conclusion of the TSV: “The Universe acts as one object”.  

The second consequence of STEM is the indirect dynamical interaction of the material 

particles (USVI). When I performed the differentiation for calculating the rate of change of the 

momentum of a material particle, there were some concrete data: The Law of Selfvariations 

predicts a cohesive mechanism for all of the interactions. Therefore, after the differentiation 

somehow the Lorentz force should be derived, and, in some way, the relation between the USVI 

with the curavature of spacetime, according to the work of Einstein on the theory of the 

gravitational interaction. Now we know that these two terms are contained within equation 

(4.19). We also know that the USVI is accompanied always by a particle, corresponding to the 

matrix of the external symmetry of the interaction.     

For every selfvariating charge Q  there exist 40JN   matrices of external symmetry with 

different four-vectors , , ,J P C j . Therefore, there exist 54TN  channels of interaction for each 

charge Q , and each one of these is accompanied by its own particle. In paragraph 8 we proved 

that in the 1 14N  symmetries of  T Q  it can hold that 0 0m  .  The rest 1 40TN N   

external symmetries have a rest mass of 0 0m  .  

We can also remark some features of the equations (2.10), (2.13) and (4.6). Equation 

(2.10) cannot be derived without the axiom of Selfvariations. The fundamental physical quantites 

, , 0.1,2,3ki k i  cannot be derived from the theories of Physics of the former century. That is, if 

we assumed that the Selfvariations were not manifested, then there would be no possible way for 

these quantities to be defined. From these equations comes the whole network of the equations of 

the TSV, including equations (2.13) and (4.6).  

Equations (2.13) and  (4.6) express the USVI, and furthermore correlate the corpuscular 

and the wave behavior of matter. The propeties of the wave function  , as well as of the four-

vector  j  of the conserved physical quantities, are stated exactly by these equations. There exist 

the four laws of Maxwell exactly because the first equation of the set of equation (4.6) is 

decomposed into four partial equations. The theorems of paragraph 7, which define the 
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corpuscular structure of matter, are just the consequences of equation (2.10). The same holds and 

for the theorem of internal symmerty and its consequences, which also result form equations 

(2.10).  

With the  SV T  method we can inspect the self-consistency of the whole netwrok of the 

equations we presented. The TSV is a closed and self-consistent physical theory.  
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