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Abstract

This article summarizes and extends the results of a series of recent papers[1, 2,

3, 4, 5], where a microscopic structure underlying the physics of elementary parti-

cles has been proposed. The ’tetron model’ relies on the existence of an internal

isospin space, in which an independent physical dynamics takes place. This idea is

critically re-considered in the present work. As becomes evident in the course of

discussion, the model not only describes electroweak phenomena but also modifies

our understanding of other physical topics, like gravity, the big bang cosmology and

the nature of the strong interactions.
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1 Basic Ideas

The Standard Model of elementary particles is very successful on the phenomenologi-

cal level. The outcome of (almost) any particle physics experiment can be predicted

accurately within this model, and where not, by some straightforward extension.

For example, one may introduce right handed neutrinos to account for tiny neutrino

masses[6].

Nevertheless, it is widely believed that the SM is only an effective low-energy theory

valid below a certain energy scale, which is supposed to be larger than 1 TeV. This

view is based on the fact that the SM has many unknown parameters with hitherto

unexplained hierarchies. Furthermore, there is one rather mysterious component,

the so-called Higgs field, needed for the spontaneous symmetry breaking (SSB) to

take place in the model.

In recent papers a microscopic model has been developed[1, 2, 3, 4, 5], whose cen-

tral assumption is the existence of a 3-dimensional internal tetrahedral structure

attributed to each point of Minkowski space, in which an independent physical dy-

namics takes place.

Under this assumption spacetime originally is 6+1 dimensional, and at the time

when the tetrahedrons are formed, it fibers into internal space and Minkowski space

as R3 × R3,1.

The sites i = 1, 2, 3, 4 of a tetrahedron in R6+1 are populated by spinor fields ψ,

called tetrons. The tetron on site i will be denoted ψi.

The fundamental spinor representation in R6+1 is of dimension 8. It decomposes

as[38]

8 → (1, 2, 2) + (2, 1, 2) = ((1, 2) + (2, 1), 2) (1)

under the fibration SO(6, 1) → SO(3, 1)× SO(3)1.

1Here representations of SO(3, 1) × SO(3) are denoted by a set of 3 numbers (a, b, c), where

(a, b) are representations of the Lorentz group and c is the dimension of a SO(3)-representation.

For example, c=2 corresponds to a non-relativistic Pauli spinor in internal space, whose 2 spin

orientations are identified with the SU(2) flavors U and D. It should be noted that (1,2,2) and

(2,1,2) are complex conjugate with respect to each other, so one is the antiparticle representation

of the other.
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Eq. (1) means that each tetron is an isospin doublet ψ = (U,D) of 3+1 dimensional

Dirac fermions U and D. One may write it as a 2-index object ψaα, where α = 1, 2, 3, 4

is the Dirac index and a = 1, 2 the internal index. The internal spin will be called

isospin.

Using the triplet ~τ of internal Pauli matrices an isospin (pseudo)vector

~Q = ψ†~τψ (2)

may be defined for any tetron ψ. It fixes a direction in the internal space and, up

to an overall constant, can be interpreted as the internal angular momentum vector

of the tetron ψ.

Since the tetrons are Dirac fermions on Minkowski space, ~Q can be written in terms

of creation and annihilation operators of a tetron (a† and a) and an antitetron (b†

and b) as

~Q = ψ†~τψ = a†~τa− b†~τb (3)

For the calculation of the quark and lepton masses the chiral iso-vectors

~S := ~QL =
1

2
ψ†(1− γ5)~τψ ~T := ~QR =

1

2
ψ†(1 + γ5)~τψ (4)

turn out to be of particular importance. For simplicity of notation they are called

~S and ~T in the following. Obviously, they fulfill ~Q = ~S + ~T .

In fig. 1 the local ground state of the model is drawn, a configuration with 4 tetrons

on the 4 sites of a tetrahedron, their isospin vectors ~Q pointing in radial directions

away from the origin. These internal vectors fulfill the commutation relations of a

system of decoupled internal angular momenta. In other words, they play the role of

angular momentum observables corresponding to rotations of the internal R3 space.

While the coordinate symmetry is S4, the arrangement of isospin vectors in fig. 1

respects the Shubnikov symmetry[9, 11, 12]

G4 := A4 + S(S4 − A4) (5)

where A4(S4) is the (full) tetrahedral symmetry group and S the internal time rever-

sal operation that changes the direction of internal spin vectors. This is equivalent

to saying that S interchanges the role of the internal spinors in the following way

S : (U,D) → (−D∗, U∗) (6)
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Note the arrangement fig. 1 does not respect S or internal parity Pin, but only

the product SPin. Furthermore it is chiral, the configuration with opposite internal

chirality being given when the isospin vectors would point inwards instead of out-

wards. As will be shown in (2.1.20), this internal chirality is dynamically related to

the V − A nature of the q/l interactions.

In a relativistic environment containing antiparticles the definition (5) of the Shub-

nikov group has to be modified to

G4 := A4 + CPauT (S4 − A4) (7)

This will be detailed later in (2.4.20) and figs. 4 and 5. C is the charge conjugation

operator of a Dirac field and Pau the (’external’) parity transformation in physical

space. Since the elements of S4 − A4 contain an implicit factor of internal parity

Pin, the symmetry (7) actually corresponds to CPT invariance in the full of R6+1,

cf. (2.4.20). Furthermore, the concept of an internal time S is dispensible here, so

instead of S ordinary time reversal T may be used in (7).

As for the global ground state the set of all tetrahedrons forms a flat 3-dimensional

crystal structure within the original R6, similar to what is shown in fig. 2. This

structure may be called a hyper-crystal. It is our world, the space in which all

physical processes take place. Actually it will turn out to resemble an elastic or

even a fluid system, so that it may as well be called a hyper-plastics or, within

the Lorentz covariant cosmological framework to be developed later, the discrete

micro-elastic spacetime continuum, the ’DMESC’.

Contrary to what is drawn, the tetrahedrons extend into internal space alone, not

into physical space. In other words, physical space is defined to be the 3-dimensional

subspace of R6 orthogonal to the 3 dimensions spanned by the aligned tetrahedrons.

In addition to the coordinate alignment of tetrahedrons, there is also an alignment

of isospins of neighboring tetrahedrons in fig. 2. Before the appearance of this

structure the internal spins U and D, which are the building blocks of the isospin

vectors, can freely rotate, and thus there is an internal spin SU(2) symmetry group.

In ordinary magnetism this group is usually called Heisenberg’s SU(2); in sections

(2.4.16)ff it will be shown how this is related to the Standard Model SU(2)L gauge

group.
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Figure 1: The local ground state of the model, living in a 3-dimensional isospin space

called the ’fiber’. Shown are the tetron locations (open circles) and the 4 ground state

isospin vectors 〈 ~Qi〉, whose excitations will be identified with the spectrum of quarks

and leptons. The origin of coordinates is taken to be the center of the tetrahedron,

and is identical to the base point of the fiber in Minkowski space. The tetrahedron

itself has the tetrahedral group S4 as point group symmetry. However, due to the

pseudovector property of the isospin vectors the whole system has the Shubnikov

point symmetry (5). The Shubnikov group is chiral, the configuration with opposite

chirality being given when the 4 isospin vectors would point inwards instead of

outwards. Before the formation of the chiral tetrahedron, the internal spins U and D,

which according to (2) are the building blocks of the isospin vectors, can freely rotate

and thus there is an internal spin SU(2) symmetry group, which however is broken

to G4 when the chiral tetrahedron is formed. Note there are actually 2 tetrahedrons

in this figure, one with respect to the internal coordinates (tetron locations) and

the other one with respect to isospin vectors, and both tetrahedrons are ’aligned’,

in the sense that the coordinate vectors and the isospin vectors point into the same

(radial) direction. This ’alignment’ of coordinate and isospin vectors within one fiber

has to be distinguished from the alignment of isospin vectors with respect to the

isospins of neighboring tetrahedrons, as shown in fig. 2. The latter forms the basis

for the electroweak phase transition, while the coordinate alignment of neighboring

tetrahedrons is relevant for crystal formation at big bang temperatures.
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Figure 2: The global ground state of the model after the electroweak SSB consists of

an aligned system of chiral tetrahedrons over physical space (the latter represented

by the long arrow). R is the internal magnitude of one tetrahedron and r the distance

between two of them. The figure is a bit misleading, not only because the tetrahe-

drons do not have an extension into physical space, but also the relative magnitudes

are not correctly drawn. While r and R are tiny (of the order of the Planck length),

the tetrahedrons formed by the isospin vectors are much larger, of the order of the

Fermi scale (in inverse energy units). Actually there are 2 kinds of alignment in this

figure: the alignment of neighboring coordinate tetrahedrons and the alignment of

isospin vectors in neighboring tetrahedrons. The isospin vector alignment is asso-

ciated to the electroweak symmetry breaking, because at temperatures above the

Fermi scale (before the SSB) the isospins in each tetrahedron are oriented randomly

(not shown) and there is a corresponding local SU(2) symmetry which gets broken

when the isospin vectors align. The figure also shows how the universe looks like in

the tetron model. It is a 3-dimensional ’monolayer’ of internal tetrahedrons whose

average distances are given by the Planck length 〈r〉 = LP . Gravity is due to the

elasticity of the coordinate bonds between neighboring tetrahedrons and corresponds

to tiny deviations from this average in the vertical or horizontal direction. Finally,

the coordinate alignment of the tetrahedrons is related to crystal formation at the

big bang. Cosmic inflation is due to the sudden release of crystallization energy.

These latter issues will be discussed in detail on pages 14-28 and in section 2.5.
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An important point is that the SU(2) transformations are local symmetries in the

sense that the isospin vectors can be rotated independently over each point of

Minkowski space. The group gets broken to G4 when the internal arrangement

fig. 1 is formed. It may be given the index L, because this arrangement is chiral

and because there is a dynamical relation between internal and external chirality,

as explained in (2.1.20).

The mixing with the electromagnetic U(1) symmetry has not been introduced at

this point. This omission will be clarified later in (2.1.7) and (2.1.11), together with

the tetron model interpretation of the electroweak mixing angle.

One wants to interpret the 3 generations of quarks and leptons as isospin wave exci-

tations of the internal isospin structure. These excitations will be called mignons.

They behave as quasi-particles while they travel through Minkowski space and can

be classified according to representations of G4, as shown below.

G4 is a finite group which remains intact to the lowest energies. As shown in [9] it

has only 1- and 3-dimensional representations. To generate all possible excitations

describing the quarks and leptons one has to consider the vibrations of ~S = ~QL and

~T = ~QR for each of the 4 tetrons separately, cf. (2.3.1) and (2.4.16).

The isospin vibrational excitations are described by deviations δ from the ground

state fig. 1, i.e.

~Si = 〈~Si〉+ δ~Si ~Ti = 〈~Ti〉+ δ ~Ti (8)

or, more precisely, by certain linear combinations of them – the eigenmodes of the

isospin Hamiltonian to be discussed later in (14) and (19).

The resulting 24 mignon states can be arranged in six singlet and six triplet rep-

resentations A↑,↓ and T↑,↓ of G4 to yield precisely the multiplet structure of the 24

fermion states of the 3 generations, not less and not more[1]:

A↑(νe) + A↑(νµ) + A↑(ντ ) + T↑(u) + T↑(c) + T↑(t) +

A↓(e) + A↓(µ) + A↓(τ) + T↓(d) + T↓(s) + T↓(b) (9)

Details about this arrangement will be given in (2.4.18). The SM quantum numbers

can be recovered from this spectrum in the following way:

–the ↑ representations can be obtained from the ↓ ones by the transformation
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δ~S ↔ δ ~T for any of the tetrons, i.e. by interchanging left and right. As shown

in (2.4.16) this is precisely what is needed for a weak isospin transition on the level

of mignons.

–singlet and triplet Shubnikov states have a different U(1) charge. The correspond-

ing symmetry can be interpreted as gauged tetron or B − L number. Details will

be given in (2.1.7) and (2.2.3). The mixture with the photon and the appearance of

the Weinberg angle will be discussed in (2.1.11).

–the 3 states within each triplet T in (9) are always degenerate, because G4 remains

unbroken. The relation between those triplets and the QCD color triplets of quarks

will be further discussed in (2.3.28).

Actually, to obtain the quark and lepton spectrum (9) a discrete structure is com-

pelling only in internal space, not in physical space. Looking at fig. 2, one could

try to come along with a continuous model of Minkowski space, i.e. with r → 0.

However, it is tempting to assume r 6= 0, i.e. that there is a sort of lattice underlying

spacetime, with spacings so small that Lorentz symmetry is effectively maintained

for all available energies.

Details of this idea will be discussed after (23) and in section 2.5, where it will

be shown that the lattice must be (i) elastic and (ii) a Planck lattice, otherwise

it would contradict (i) cosmological observations and (ii) Einstein’s principle of

equivalence[15, 16]. Due to quantum fluctuations it may be a foam[7] or a spin

network[8] – although in the tetron model there is no a priori necessity to quantize

gravity, cf. (2.5.39).

Can the aligned structure fig. 2 be understood heuristically? The answer is yes, if

one assumes that the arrangement of isospin vectors follows similar rules than that

of spin vectors in a magnetic environment, cf. (2.2.9). What matters are value and

sign of (internal) exchange integrals J of tetron wave functions as a function of the

distance between 2 tetrons, because these integrals will appear as couplings in the

Heisenberg isospin Hamiltonian (14).

The behavior of isospins in fig. 2 can then be understood via the so-called Bethe-

Slater curve shown in fig. 3. If the tetrons are part of one tetrahedron, their distance

is small ∼ R and according to the figure J is negative. This corresponds to anti-

ferromagnetic behavior and leads to the formation of the frustrated structure fig. 1
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with symmetry A4 + S(S4 − A4), because the spin vectors try to avoid each other

as far as possible.

In contrast, if the internal spin vectors belong to different tetrahedrons, the dis-

tance of the corresponding tetrons is somewhat larger, of order r, and J is positive.

This corresponds to ferromagnetic behavior and leads to the isospin alignment of

neighboring tetrahedrons fig. 2.

Due to the tetrahedral ’star’ structure fig. 1 it is appropriate to change the notion of

isospin. Usually in an (anti)ferromagnetic environment, the spin vectors align into

the + or - orientation of the z(=magnetization) direction, and the corresponding

Pauli spinors are given by U = (1, 0) and D = (0, 1). In the present case the

(iso)magnetic structure is defined by isospin vectors either pointing outwards or

inwards in the radial direction. Correspondingly, the isospinors U and D are to be

understood as ’radial’ spinors[22]

U⋆ =

√
1

3
Y 0
1 U −

√
2

3
Y 1
1 D = cos

ϑ

2
U + sin

ϑ

2
ei

ϕ

2 D (10)

D⋆ =

√
2

3
Y −1
1 U −

√
1

3
Y 0
1 D = sin

ϑ

2
e−i

ϕ

2 U − cos
ϑ

2
D

where Y m
l denote the sperical harmonics and ϑ and ϕ are the angles of the radial

vector w.r.t. some cartesian coordinate system. These new spinors are radial in the

sense that they reproduce the unit vector in polar coordinates

~er = U †
⋆~τU⋆ = −D†

⋆~τD⋆ (11)

Furthermore they are normalized in such a way that

U †
⋆U⋆ +D†

⋆D⋆ = U †U +D†D (12)

The iso-spinor state corresponding to an isospin vector pointing outwards is denoted

by U⋆. According to figs. 1 and 2 it is the building block of the hyper-crystal in its

ground state. As shown in sections 2.1 and (2.2.6) it is unpolarized and its electric

charge vanishes.

Note that this presentation is equivalent to the ’universal’ z-axis approach[70, 71]

used in the actual mass calculations[2]. Although according to (11) D⋆ has as much

to do with U as it has with D, I will often leave out the star index in the following
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Figure 3: Qualitative behavior of the exchange integral coupling J as a function of

the distance between 2 tetrons. In ordinary magnetism this is called the Bethe-Slater

curve. One has anti-ferromagnetism (J < 0) at small, ferromagnetism (J > 0) at

large distances.

for reasons of simplicity and understand that always U⋆ and D⋆ are meant. I will

include the star only when this is needed for clarity, e.g. in (2.1.8).

In the tetron model the SM SSB arises from the ’ferromagnetic’ alignment of isospin

vectors in neighboring tetrahedrons. As shown in (2.1.8) and (2.3.11), the corre-

sponding order parameter is given by a non-vanishing vacuum expectation value

〈Ū⋆U⋆〉 6= 0 (13)

In other words, there is a pairing active comparable to the formation of Cooper pairs

in a superconductor, and excitations of this tetron-antitetron pairing will appear as

the physical Higgs field and the electroweak bosons. This is the way the SM Higgs

mechanism is realized on the microscopic level.

In [2] the masses of the mignons (9) have been calculated, and the observed hierarchy

in the quark and lepton spectrum as well as the hierarchy in the CKM and non-

hierarchy in the PMNS matrix elements has been reproduced. As described above,

mignon masses can be identified with the eigenfrequencies of the vibrations of the

isospin vectors ~S and ~T . These eigenfrequencies get contributions both from inner-
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and from inter-tetrahedral interactions.

Firstly, the inner-tetrahedral interactions are responsible for the frustrated tetrahe-

dral configuration fig. 1, i.e. for the structure of the local vacuum. They are small

distance contributions and relatively simple to treat because they can be described

by an internal Heisenberg Hamiltonian for one tetrahedron alone, with correspond-

ing internal spin vector excitations. The most general form of this Hamiltonian

is

HH = −JSS
4∑

i 6=j=1

~Si~Sj − JTT

4∑

i 6=j=1

~Ti ~Tj − JST

4∑

i,j=1

[~Si ~Tj + ~Ti~Sj]−KST

4∑

i=1

~Si ~Ti (14)

where the couplings J are internal exchange energy densities characteristic for the

internal Heisenberg interactions. By introducing KST , I have allowed that the cou-

pling ~Si ~Tj is different within a site (i = j) than outside of it (i 6= j).

Using (14) and (8) one is led to e.o.m. for δ~Si and δ ~Ti which can be solved in

a similar way as the e.o.m. for magnons in solid state physics. On this basis the

contributions from (14) to the eigenfrequencies of the 24 eigenmodes were calculated

in [2].

Using JSS = JTT (an approximation which can be justified via the generalized NJL

model discussed above[2]) the following masses/eigenfrequencies are obtained

±mµ = 6JST + 2KST (15)

±mc = 4JSS + 4JST (16)

±ms = 4JSS + 2JST + 2KST (17)

for the second family. Using the measured values of mµ, ms and mc[80], the internal

exchange couplings may be determined:

JST ≈ −0.12 GeV JTT = JSS ≈ −0.12 GeV KST ≈ 0.32 GeV (18)

One concludes that the inner-tetrahedral isomagnetic coupling strengths are smaller

than 1 GeV, and that one has ferromagnetic coupling KST > 0 of adjacent spin vec-

tors ~Si and ~Ti, while the interactions with i 6= j are somewhat smaller in magnitude

and anti-ferromagnetic. This is in accord with the heuristic expectations discussed

before.
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Secondly, the inter-tetrahedral interactions: these lead to the mass of the top and

bottom quark and are based on the parallel (=’ferromagnetic’) alignment of isospins

between different tetrahedrons fig. 2. Their leading effect turns out to be a contribu-

tion of order O(ΛF ) to the top quark mass[2]. Physically speaking, this interaction

handicaps the specific eigenmode describing the top quark, because this mode dis-

turbs the SSB alignment in the strongest possible way.

Mathematically, the effect can be described by adding terms to the inner-tetrahedral

Heisenberg interaction with a normal ferromagnetic plus a Dzyaloshinskii-Moriya

(DM) component[24]. The sum of the 2 components will yield a quasi-democratic

mass matrix[21] which in leading order only contributes a term of order ΛF to the

top-quark mass and nothing to the masses of the other quarks and leptons.

More in detail, the Hamiltonian for the SSB interactions of neighboring tetrahedrons

can be derived from the W-mass term of the SM Lagrangian. By considering a

SU(2)L gauge transformation, which removes the longitudinal components of the

W-bosons from the Higgs part of the SM Lagrangian, one obtains

HSSB = Jinter

4∑

i,j=1

[~Si~S
′
j + i (~Si × ~Dij) ~S

′
j ] (19)

to be added to the Heisenberg Hamiltonian (14). One has

Jinter =
µ2

4ΛF
(20)

with µ the mass parameter of the SM Higgs potential and ΛF =
√

µ2

λ
= 246GeV

the Fermi scale (vacuum expectation value). Only terms involving the left handed

isospin vectors ~S = ~QL appear, as follows from (2.1.20) in accordance with the

V − A structure of the weak interactions. In (19) the factor ~S ′
j denotes the left

handed isospin vector of an adjacent tetrahedron. The precise relationship between

(14) and (19) on one side and the SM Lagrangian terms on the other are worked

out in (2.1.14) and [2].

Eq. (19) contains a ferromagnetic interaction plus the additional DM term which

is due to the non-abelian nature of the W-bosons. The overall normalization of the

DM term is dictated by SU(2)L gauge invariance, while the relative values of the

DM couplings ~Dij are fixed by the internal A4 + S(S4 −A4) symmetry[2].
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Quite in general, a DM component stands for a tendency to form a rotational struc-

ture (instead of the ordinary ferromagnetic alignment of neighboring tetrahedrons

depicted in fig. 2) simply because the DM term tends to rotate the spin vectors

instead of aligning them. In the present case it appears as a consequence of the non-

abelian nature of SU(2). Therefore the DM term can be interpreted quite naturally,

namely by the fact that a non-vanishing SU(2)L gauge field induces a curvature of

the fiber bundle formed by the system of all tetrahedrons, and the DM term simply

takes care of this curvature effect to effectively maintain the aligned structure.

This argument is supported by the fact that the gauge transformation inherent in

(19) leads to the SM Lagrangian in the so-called ’unitary gauge’. This point is

analyzed in detail in (2.3.15).

Using (14) and (19) one can derive the e.o.m. for the isospin vectors. With the

usual ansatz ∼ exp(iωt) one obtains a 24×24 eigenvalue problem. The eigenvalues

ω correspond to the quark and lepton masses and were calculated in [2] as a function

of the exchange couplings JSS, JTT etc. In that paper it was explicitly verified that

the corresponding 24 eigenstates can be arranged into 6 singlets and 6 triplets as

predicted by the Shubnikov symmetry analysis (9), i.e. as 6 leptons and 6×3 quarks.

Each triplet (quark flavor) consists of 3 states with degenerate eigenvalues, because

the Shubnikov symmetry A4 + S(S4 − A4) is unbroken at low energies.

The dominant contribution from (19) gives the top quark a mass of the order of the

Fermi scale while leaving the other quark and lepton masses unchanged. As detailed

in (2.4.21), (2.4.22) and [2], b, c, s and τ get their masses mainly from (14).

In contrast, there are no contributions from (14) and (19) to u, d, e and neutrino

masses. These 10 excitations remain massless on this level. To obtain their masses

one has to include additional small torsional interactions[2].

The masses of the neutrinos are particularly suppressed because the 3 neutrino

modes correspond to the vibrations of the 3 components of the total internal angular

momentum vector

~Σ :=

4∑

i=1

(~Si + ~Ti) =

4∑

i=1

~Qi =

4∑

i=1

ψ†
i~τψi (21)
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Whenever this quantity is conserved

d~Σ/dt = 0 (22)

the neutrino masses will strictly vanish (ω = 0). In fact, the interactions considered

so far, i.e. (14) and (19), conserve total internal angular momentum. Therefore,

they fulfill (22) and give no contribution to the neutrino masses. Further details can

be found in (2.4.12)-(2.4.15) and in [2].

The general solution to the eigenproblem given above does not only yield the energy

eigenvalues but (via the corresponding eigenvectors) can also be used to accommo-

date the CKM and PMNS mixing matrices[2]. The mass eigenstates are the states

corresponding to the energy eigenvalues, while the interaction eigenstates naturally

correspond to the original vectors ~Si and ~Ti, cf. (2.4.10).

Within this framework one can understand[2] why the CKM elements turn out to be

small, whereas the PMNS matrix elements are naturally large: the lepton eigenstates

(roughly given by ~S± ~T ) are ’far away’ from ~S and ~T , while the up- and down-type

quark eigenstates are relatively small deformations of ~S and ~T , respectively. Due

to the dominant contribution from (19) the top quark triplet state has the smallest

mixing matrix elements with other quarks, because it corresponds to the vibration

of ~ΣL :=
∑

i
~Si to an accuracy of less than 1%.

In summary, the present model describes the physical world as a huge ordered crystal

of internal ’molecules’, each molecule of tetrahedral form and arranged in such a

way that the internal Heisenberg spin symmetry is spontaneously broken. As shown

below, this approach not only provides a nice microscopic understanding of particle

physics phenomena but in addition substantially supplements our understanding of

the inflationary big bang cosmology. In effect, it gives the phase transitions in the

early universe a microscopic meaning.

To comprehend this fact, it is appropriate to redevelop the full history of the early

universe within the assumptions of the tetron model: before the ’big bang’ there

were the free tetrons ψ floating around as a Fermi gas in R6+1 space at extremely

high pressure and temperature. While the universe was cooling down, 3 fundamental

transitions occurred:

I. the formation of tetrahedral ’molecules’ from tetrons at very high tem-
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perature of order ΛR, where the scale R is roughly given by the extension of one

molecule. Although this process is not a phase transition in the strict sense it has

certainly released a large amount of energy which has amplified the initial tem-

perature of the universe.

Note that with 4 molecular sites each molecule ’fills’ only 3 of the 6 spatial dimen-

sions.

II. the formation of the ’hyper-crystal’ from tetrahedrons takes place at

somewhat lower temperatures T ∼ Λr, where r is the ’lattice spacing’, i.e. is

roughly given by the distance between 2 tetrahedrons. This alignment of all tetra-

hedral structures is a coordinate alignment and to be distinguished from the isospin

vector alignment (item III) describing the electroweak phase transition. It puts

all 3-dimensional molecular structures in parallel thus separating an internal 3-

dimensional space from the rest. In other words, the crystal expands into a 3+1-

dimensional subspace of R6+1, while the tetrahedrons extend into what becomes

the 3 internal dimensions.

Since II corresponds to the process, in which our 3+1 dimensional universe was

born, it may rightfully be called the big bang. As a crystallization process it is a

first order phase transition associated with the sudden release of a large amount

of energy. As will be explained later, the coordinate interactions among the tetra-

hedrons are of elastic type. Under this condition the outcome of phase transition

II is not a crystal in the strict sense, and one may as well call it a condensation

of a hyper-plastics instead of a crystallization, cf. (2.5.9). In any case the release

of crystallization/condensation energy naturally drives an inflationary expansion

of the system and the corresponding metric. Therefore, within the framework of

the tetron model, the big bang and the beginning of inflation are more or less

identical. As argued in (2.5.9) and further below in this section, the characteristic

scale Λr can be identified to be of the order of the Planck scale ΛP .

III. the arrangement of isospins at temperatures of order ΛF . Above those

temperatures the isospin vectors fluctuate randomly with an associated internal

’Heisenberg’ SU(2) symmetry, but at ΛF they arrange into the chiral isomagnetic

structure figs. 1 and 2. At that point the so far freely rotatable internal spins get

ordered and the SU(2) is broken to the Shubnikov group (5). Note that it is a
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local symmetry group, because isospins can be rotated separately over each point

of the Minkowski base space.2

It could happen that there is no internal coordinate order right after the crystal-

lization, in the sense that the coordinates of tetrons in neighboring tetrahedrons are

aligned.3 In that case there is no global internal tetrahedral symmetry of the hyper-

crystal right after the condensation. However, since internal coordinate alignment

is a prerequisite for the isomagnetic alignment (= electroweak transition) III, this

has to be catched up later at the Fermi temperature, i.e. it takes place at about the

same time as the isospin alignment.

This possibility will be called scenario C in later discussions, and in fact it has several

benefits. For example, III automatically becomes a first order phase transition (cf.

2.3.16) with an associated second inflationary process that removes domain walls (cf.

2.3.24) from the visible parts of the universe. Furthermore, it is easier to understand

that the electroweak phase transition is really spontaneous (cf. 2.3.15) and that the

ground state fig. 1 is assumed by both the left- and the right-handed isospin vectors

~QLi and ~QRi (cf. 2.4.16).

Since II happens after I, i.e. at lower temperature, one naturally expects ΛR larger

than Λr (i.e. R < r) in agreement with fig. 2 and the Bethe-Slater curve fig. 3. As

argued in (2.3.17) both scales are > ΛP and much larger than the scale ΛF where the

isospins align. Note that while ΛF approximately corresponds to the critical point of

transition III, the values of the exchange integrals J and therefore the iso-magnetic

behavior are determined at distances r and R, cf. (2.3.19).

To describe II in the framework of the Landau approach to phase transitions one

should consider density fluctuationsD exp(i~p~x) within the gaseous assembly of tetra-

hedral ’molecules’ and use D as the order parameter of the phase transition.

2The relation between the internal Heisenberg SU(2) and weak isospin SUL(2) is clarified in

sections (2.4.16)ff. A more detailed description of phase transition III is given in (2.3.15) and

(2.3.11). The mixing with the electromagnetic U(1) symmetry will be included in (2.1.7) and

(2.1.11).
3I am not talking about a regular crystal structure in physical space, which for an elastic system

is missing anyhow. Instead I am talking about the alignment of the tetron coordinates as depicted

in fig. 2. See also the discussion at the end of (2.3.15) where the assumption of internal coordinate

order is completely given up.
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For an ordinary crystal these fluctuations can be identified with phonons; in the

general relativistic (GR) framework of a spacetime continuum at least some of them

correspond to gravitational waves. This will become clearer below in this section,

where elastic deformations of the crystal will be identified with metrical changes.

More information about gravitons in the microscopic model can be found in (2.5.39)

and (2.5.40).

Since the density perturbation adds to the uniform density of the tetrahedron gas,

there is no symmetry under changing sign of the density wave, and so the Landau

free energy expansion allows for a cubic term

∆F = α(T − Tc)D
2 + βD3 + γD4 (23)

where Tc ∼ Λr is the critical temperature for phase transition II.

Accepting the idea of an elastic spacetime continuum, the coordinate phase transi-

tion resembles a gas→liquid transition rather than a crystallization process. This

even more, because the tetron particle density D is an order parameter characteris-

tic for a condensation. While during a crystallization process the lattice symmetry

plays an important role, in the hyper-crystal the bonds are elastic and there is no

lattice symmetry at all in the Minkowski base space. When calling our universe a

hyper-’crystal’ and identifying the big bang with its ’crystallization’, it should there-

fore be kept in mind that it shares more properties with a liquid or a deformable

plastics than with a real crystal. This topic will be taken up in (2.5.10).

The appearance of the cubic term in (23) is characteristic for a first order phase

transition where a second minimum, which develops in the potential when the tem-

perature is lowered, for some time remains higher than the minimum at D = 0 of

the gas phase, and furthermore the two minima are separated by a potential wall.

When the temperature drops below the critical value, there is a discontinuity which

is not present in second order transitions.

The latent heat associated with this discontinuity is released very suddenly and can

be used to explain the extreme acceleration needed for cosmic inflation[13, 14]. As

shown in (2.5.23) it provides all the necessary ingredients for the inflationary process

to start and to eventually stop, once the condensation of tetrahedrons is completed

and the energy is exhausted. Most of the initial molecular energy has then been
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transferred to the elastic energy of the crystal. However, some of it survives in the

form of tetron-antitetron excitations (gauge bosons) and is converted into mignons

(quarks and leptons), as the temperature decreases further.

In place of quarks and leptons, whose existence is tied to the isospin ordering fig. 2,

shortly after crystallization other excitations are more important, like the internal

coordinate vibrations discussed in (2.3.25) and [3], or excitations of the tetron-

antitetron bonds discussed in (2.1.8) and (2.1.9). Most prominent among the latter

are the gauge bosons and the visible and dark scalars of the 2HDM sector as de-

scribed in (2.1.14) and (2.5.35).

Because of the dominance of the electroweak bosons this cosmological era is often

called ’radiation dominated’ or ’electroweak’. At temperatures far above the Fermi

scale all these excitations are effectively massless states transforming under the local

SU(2) × U(1) symmetry, and they dominate the universe all the way down to the

electroweak SSB (=isospin vector alignment). More details about the tetron model

view on this era can be found in (2.1.12), (2.1.13), (2.3.8) and (2.3.9).

As well known, in general relativity a non-vanishing energy momentum tensor leads

to a curvature of the spacetime continuum. Many authors have interpreted this on

the basis of metric elasticity[86, 92, 93, 95, 94], and some of them have speculated

that gravity forces might be explainable from a microscopic structure which in some

sense is analogous to the atomic structures responsible for material elasticity in low-

energy physics. In such a framework, GR is equivalent to an elastic continuum and

the Einstein equations are not a fundamental but merely an effective description

of the microscopic dynamics, only valid at distances much larger than the Planck

length.

Taking this point of view one avoids the main two problems of general relativity:

(i) the problems of quantization - as discussed in (2.5.39) and

(ii) the existence of singular solutions - because in the micro-elastic interpretation

a solution to the Einstein equation makes no sense at distances of the order of one

lattice spacing LP , where the discrete nature of the hyper-crystal become apparent.

In the following I will describe some details of this approach and adapt it to the

requirements of the tetron model. The fundamental dynamical quantity in general

relativity is the metric which defines the distance between 2 spacetime points (or
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between 2 adjacent tetrahedrons). It can be calculated e.g. from the transition

function between arbitrary local coordinates xµ on the manifold and local Lorentz

coordinates ξα of an inertial system via

gµν = ηαβ
∂ξα

∂xµ
∂ξα

∂xν
(24)

where ηαβ is the Minkowski metric valid in the inertial frame. One may then use

the resulting line element (ds)2 = gµνdx
µdxν to go further ahead and write down

the curvature/field strength and the Einstein equations.

In the micro-elastic interpretation a gravitational field induces a deformation in the

medium, i.e. a displacement of the internal tetrahedrons within physical space from

xµ to x′µ. This corresponds to a modification of the metric

g′ρσ = gµν
∂xµ

∂x′ρ
∂xν

∂x′σ
(25)

and corresponding changes in the curvature tensor.

Since GR is locally Lorentz invariant, the reader may wonder, what the physical

meaning of deformations in the time direction is. In the spatial directions it is

rather clear that the distances ∼ LP between neighboring tetrahedrons get modified

when a gravitational field is applied. In the time direction it is the ’hopping time’,

which gets modified, i.e. the time a photon or some other quasi-particle needs to

travel(=be emitted, run, get absorbed) from one tetrahedron to its neighbor. This

modification occurs, because the presence of massive mignons and in general of any

kind of mass/energy modifies the microscopic processes behind the hopping of any

’test excitation’.

Gauge invariance, i.e. the freedom to change the local Lorentz coordinate system,

mixes these concepts. It implies, for example, that from inside the hyper-crystal

there is no possibility to distinguish ’longitudinal’ from ’transversal’ curvature, cf.

fig. 6. This point is further discussed in (2.5.27).

Using these ideas one can understand many features of the Einstein theory. For ex-

ample, the energy released during crystallization immediately blows up the distance

between the tetrahedrons thus inflating the volume of the DMESC in accordance

with inflationary cosmology. The initial crystallization energy is also responsible for

the subsequent FLRW expansion of the universe. More details about these issues
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are given in section 2.5, in particular (2.5.23) and (2.5.27). The tetron model view

on inflation can be found in (2.5.23)ff, while the interpretation of dark energy is

given in (2.5.36).

Another example is the Newtonian limit. For a spherically symmetric configuration

the metric can be given via the line element

ds2 = (1 +
2φ

c2
)(cdt)2 − (1− 2φ

c2
)(d~x)2 (26)

and the Newtonian limit is defined by |φ| ≪ c2 and |~x| ≪ c t. For a point mass M

the gravitional potential far away from the source is given by

φ = −GM|~x| (27)

The square root of the coefficients

√
g00 = 1 +

φ

c2
√
gxx = 1− φ

c2
(28)

give the general relativistic time dilation and length contraction, respectively. In

the tetron model these effects are interpreted in the following way:

-The gravitational potential of the point source M modifies the average distance LP

between 2 neighboring tetrahedrons by a factor 1 + φ/c2. As a consequence, any

measured length of a physical object is modified by this factor.

-The gravitational potential of the point source M modifies the average hopping

time that is needed by a hyper-crystal excitation to move from one tetrahedron to

the next by a factor 1− φ/c2. This applies in particular to the hopping time TP of

a photon defined in (31). As a consequence, any measured time interval between

physical events is modified by this factor.

Strictly speaking, since the Newton limit is defined via an expansion in powers of

1/c, only the modification of the time coordinate (g00) is relevant for Newtonian

gravity. This point will be further elucidated in (2.5.27).

More details on the status of GR in the tetron model, as well as on FLRW, grav-

itational waves and the interpretation of the Newton limit will be given in section

2.5. In general one has to use the ADM formalism[46] or the approach by Carter et

al.[47, 48] to describe a general relativistic elastic system which includes arbitrary

transformations of the time coordinate. I have chosen to restrict myself to the spe-

cial cases (26) and (104), because it makes the presentation much simpler and the

arguments more transparent.
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Furthermore, I have been intentionally vague about which version of GR must ac-

tually be chosen. There are generalizations like teleparallel, Poincare or Einstein-

Cartan gravity where in addition to Lorentz transformations 4-dimensional trans-

lations are gauged. This leads to torsion in addition to curvature as dynamical

quantity[88, 99, 100]. Due to lack of experimental information on torsion and

of full knowledge of the tetron dynamics it is difficult to say whether one needs

a model which describes dislocations or disclinations[94] of tetrahedrons in a flat

hyper-crystal or whether ’true’ curvature effects are involved, in the sense that the

tetrahedrons in fig. 2 are not only shifted by tiny amounts in the horizontal but also

in the internal, i.e. vertical direction.

Personally, I give preference to the latter interpretation, because it complements

Einstein’s original idea of a Riemannian curvature by a physically intuitive micro-

picture. One simply has to assume that there are elastic inter-tetrahedral coor-

dinate interactions in addition to the isomagnetism describing the phenomena of

particle physics. These elastic interactions can lead to a buckling and bulging of

the 3-dimensional DMESC within the full R6+1 and can therefore be described by a

curvature tensor. Curvature in the time coordinate is included as described above

and then patched with the spatial curvature in a Lorentz covariant way a la [47, 48]

by considering a matter manifold which is orthogonal to space-time. More details

about this can be found in (2.5.27). Note that while the inter-tetrahedral coordinate

interactions are elastic, the tetrahedral ’molecules’ are rigid bodies which align in

their internal spaces.

In any case, the behavior of the gravitational field is determined by the form of the

gravitational action SG. Since the equations of motion should be of second order in

field derivatives, SG must be at most quadratic in torsion and curvature

SG = − c4

16πG

∫
d4x

√
det(g)[R+O(R2,T2)] (29)

where G is the Newton constant and R the curvature scalar. The explicit structure

of SG[62] is not given here because it is rather complicated, containing the leading

term (formally identical to R appearing in the Einstein-Hilbert action) plus 3 inde-

pendent terms quadratic in torsion and 6 quadratic in curvature, plus possibly the

cosmological constant. It can be derived from an analysis which demands consis-

tency with the principle of equivalence and the existence of second order e.o.m. and
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is an example of a generalized ’f(R,T)’ gravity theory[89, 91].

All in all 11 independent coupling constants[62] appear in (29). This large number

of free parameters is in accord with the idea that the complete description of gravity

must be quite complicated, because it is not more than an effective theory for an

elastic system of microscopic entities (the internal tetrahedrons) that fill Minkowski

space.

The tetron model allows to extend the view beyond this effective theory, to yield

a new picture of material existence. According to this model, the world falls apart

into 2 rather disparate pieces:

-firstly, the realm of quasi-particles like quarks, leptons, Higgs bosons and gauge

fields. Since all these excitations fulfill Lorentz invariant wave equations, any phe-

nomenon and signal propagation in this sphere is necessarily limited by the speed

of light.

-secondly, the realm of tetron matter, i.e. of aligned tetrahedrons and of the hyper-

crystal with its elastic/metrical structure.

Since the relevant scales ΛP ≫ ΛF are so vastly different, these two spheres do not

have much in common. We ourselves exist in the sphere of quasi-particles and can

perceive anything coming from the tetron sector only if suitable devices of ordinary

matter are patched in between. Gravity, for example, which originally corresponds

to a shift of tetrahedron locations on the DMESC, becomes visible in our physical

world only due to the reaction with suitable conglomerations of quasi-particles. This

is discussed in more detail in (2.5.40), where also the role of gravitational waves is

elucidated.

Since they are an independent form of matter, tetrons and tetrahedrons can propa-

gate with velocities larger than c. Usually, this is not relevant because they are fixed

by bindings within the hyper-crystal. However, the appearance of superluminal met-

rical velocities shortly after the big bang can be interpreted as bound tetrahedrons

moving at larger than the speed of light, cf. (2.5.41).

If the DMESC was an ordinary crystal, one could speculate about the existence

of an absolute rest system. Since it is elastic, there will only be an approximate

rest system at any given cosmic time, which according to the arguments in (2.5.16)

can be identified with the comoving coordinates used in cosmology to describe the
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Hubble flow of galaxies.

At first sight the existence of such a system seems to contradict special relativity -

a well established concept which I do not want to question. Indeed, in the tetron

model all normal material objects are quasi-particle waves fulfilling Lorentz covariant

wave equations. As such they cannot distinguish an absolute rest system, i.e. they

naturally fulfill Einstein’s principle of equivalence. On the other hand, the rest

system fig. 2 is made of tetrons, and since it is merely the carrier of those quasi-

particles, it is impossible to experimentally perceive it in Michelson Morley type of

experiments. More details about this issue are given in (2.5.14)ff.

A particular consequence of tetron cosmology is that the lattice spacing r in fig. 2

is not fixed, but corresponds to an average distance between the tetrahedrons. In

addition it varies with time (temperature) during cosmic expansion, simply because

the properties of an elastic continuum depend on thermodynamic variables like tem-

perature, pressure etc. The temperature dependence of c and G will be moderate,

because most of it is contained in the energy momentum dependence of the Einstein

equations.

For reasons explained in (2.5.6), r is to be identified with a time dependent Planck

length, i.e. one has

LP (t) = 〈r〉 (30)

with r defined in fig. 2 and 1.6 × 10−35 m being its present average value. There

is clearly a relation of this quantity to the scale factor a(t) of the FLRW universe

(104) because cosmic expansion is connected to a timely increase in LP .

By definition, the Planck length is constructed from c, G and h as one of 3 dimen-

sionful quantities which - in the absence of SM interactions - describe all the basic

properties of space[m], time[s] and matter[kg]

LP =

√
~G

c3
TP =

√
~G

c5
MP =

√
~c

G
(31)

One may invert these relations to obtain

c =
LP
TP

(32)

~ = ΛPTP (33)

κ =
LP
ΛP

(34)
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where ΛP =MP c
2 is the Planck energy and κ = G/c4 the Einstein constant.

According to (29), κ is the coupling of choice in GR. As shown below, it has a rather

intuitive meaning in the micro-elastic approach, and this statement actually is true

for all 3 quantities (32)-(34):

(i) since LP is the average distance between 2 tetrahedrons, then c = LP/TP makes

TP the ’hopping’ time it takes for a photon quasi-particle to hop from one tetra-

hedron to the next. The question why TP is the characteristic time for the whole

physical system of quasi-particles and valid even for gravitational waves is answered

in (2.5.40).

(ii) since ΛP ∼ Λr is the binding energy of a tetrahedron in the DMESC, Planck’s

constant ~ = ΛPTP reflects the action of the binding energy during the characteris-

tic time, cf. (2.5.6).

(iii) finally κ = LP/ΛP gives the disclination of a tetrahedron in the DMESC per

unit energy, i.e. applying an energy ΛP to the tetrahedron will displace it by an

amount LP . In other words, the gravitational coupling quantifies the elasticity of

the ground state tetrahedron material, i.e. its reaction to any kind of mass/energy

influx, as described by the Einstein equations.

Formally, one may associate a Lame constant (shear modulus) ζ to the tetrahedral

material[63] and relate it to Einstein’s constant via

ζ =
1

L2
Pκ

≈ 10112
kg

ms2
(35)

The weakness of gravity (κ) thus corresponds to an extremely large stiffness (ζ) of

the DMESC, which in turn is related to the high density and the rather strong forces

among tetrahedrons, cf. (2.3.19) and (2.3.21). The point is that using the value of ζ

it is possible to calculate the average present-day tetrahedral density in the universe

ρT =
ζ

c2
≈ 1095

kg

m3
(36)

This is 121 orders of magnitude larger than the density of ordinary (=quasi-particle

mignon) matter ρM ≈ 10−26kg/m3. Although it is a very large value, it should not

be taken as a big surprise, because after all tetrons are the omnipresent fundamental

building blocks of the hyper-crystal.

It may be noted that (36) corresponds to the equation for the speed of sound in

an ordinary elastic medium (see e.g. [48]) and that the tetronic c2 according to
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(42) appears in the energy momentum relation for all kinds of excitations on the

hyper-crystal, elastic as well as isomagnetic ones, cf. (2.5.40).

Furthermore, (35) may be re-expressed as

ζ =
ΛP
L3
P

(37)

According to this formula, the Lame parameter can be interpreted as an energy

density, whose numerical value is of the order of the energy density of the vacuum

arising in quantum field theories, if instead of renormalization one applies the Planck

scale as a cutoff for divergent integrals[64]. This result is no accident, because the

vacuum of quantum field theories is the zero point energy of all quantum oscillators,

and in the framework of the tetron model is determined by the vacuum state of

aligned tetrahedrons fig. 2, cf. (2.5.29).

According to the tetron model, h, c and G are derived and (moderately) temperature

dependent4 material properties of the DMESC, not valid outside of it, the only

fundamental force (valid over full R6+1) being the unknown interaction (2.2.10)

among the tetrons. According to the above h, c and G are determined by the

-average ’lattice spacing’ LP between tetrahedrons,

-the tetrahedral density ρT

-and by the elastic modulus ζ .

Therefore they are in principle calculable from the fundamental force among tetrons.

The same is true for the constants of particle physics appearing in the SM lagrangian,

i.e. for the Higgs parameters, the fine structure constant α (electric charge e) and

the weak mixing angle. While the latter will be derived in (2.1.12) and (2.1.6) from

the fact that the photon is of D⋆-tetron content only, α can be interpreted on a

similar level as h, c and G, simply because the photon - whose coupling defines α -

in the tetron model is not a fundamental but a quasi-particle confined to the hyper-

crystal. Finally, the Higgs parameters can be traced back to isomagnetic exchange

interactions of tetrons, as described in the first half of this section.

4It has been claimed that specifying the timely evolution of these dimensional ’constants’ is

meaningless[53], because the standard rulers also change with time, and that the only thing that

counts in the definition of worlds are the values of the dimensionless constants. This claim has

been rightfully refuted for various reasons by many authors, see [54].
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More details of the tetron model meaning of these quantities will be given in sections

(2.5.6) for h, (2.5.40) for c, (2.3.21) for α, (2.1.13) for the Higgs potential parameters

and (2.4.10) and (2.4.21) for the Yukawa couplings. Some rudimentary ideas about

the form of the fundamental tetron interaction can be found in (2.2.10).

The known particles [quarks, leptons and gauge bosons, cf. (2.5.32), (2.1.2) and

(2.1.3)] are interpreted as intrinsic excitations of the hyper-crystal and as such will

extend over at least one lattice spacing r. Therefore measurements involving physical

particles can never be more accurate than LP = 〈r〉. As discussed in (2.5.6), this

corresponds to Heisenberg’s uncertainty principle and can be used to fix the value

of h as

~ =
c3

G
〈r〉2 (38)

Similar for the speed of light: since the photon is an excitation of the hyper-crystal, a

temperature dependence as well as a dispersion of c is to be expected and calculable

from crystalline parameters, like that of the speed of sound in an everyday elastic

medium. A simple argument will now be given why this is not detectable in present

day experiments. The point is that photons on a lattice with spacing LP have a

dispersion

c(k) =
2c(0)

LPk
| sin kLP

2
| ≈ c(0) +O(kLP )

2 (39)

i.e. for wavelengths λ = 2π/k much larger than LP the speed of light is constant to

a very good approximation. Even with the hardest and ’oldest’ cosmic gamma rays

observed so far deviations from c(0) = c cannot be tested.

Note that (39) relies on the existence of an equilibrium state and therefore does

not control the behavior of c at the time of inflation when the hyper-crystal was

formed under non-equilibrium circumstances. Furthermore, it should be mentioned

that (39) is not only valid for isomagnetic excitations like the photon but also for

density fluctuations of tetrons like phinons, gravitons etc, cf. (2.5.40).

Actually, it can be used as a starting point to understand the dynamical background

of the special-relativistic energy-momentum relation

E2 = m2c(0)4 + ~p2c(0)2 (40)

within the tetron model. As well known, (40) is equivalent to the Klein-Gordon

equation in momentum space, and since the mignons are massive isospin waves
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fulfilling a d’Alembert type of wave property, they clearly must respect it. Dividing

by ~
2 one obtains the dispersion relation

ω(k)2 = ω(0)2 + ~k2c(0)2 (41)

with a low-frequency cutoff ω(0)2 = m2c(0)4/~2.

Writing ω(k) = kc(k), the second term on the rhs of (41) is obtained from (39).

In other words, the propagation part ∼ ~k2 in the dispersion relation for mignons is

completely fixed by the coordinate interactions of the DMESC, or more precisely

by the value of c = c(0), which according to (36) is determined by the stiffness and

density of tetrons in the hyper-crystal.

In this respect mignons are distinguished from magnons of ordinary magnetism

whose dispersion relation ~ω = J [1 − cos(kLP )] involves the exchange coupling J

even in the propagation term. In the present case, the isomagnetic exchange coupling

enters the dispersion only through the mignon rest mass m which according to the

calculations in [2] is proportional to J.5

In summary the relativistic energy momentum relation (40) can be rewritten in

terms of tetron matter properties

E2 = J2 + ~k2
ζ

ρT
(42)

Note that the low frequency cutoff makes sense. The tetron operators want to

oscillate at their natural frequency ω(0) ∼ J , and cannot be compelled to oscillate

any slower. Such a behavior is generic in any system that has some kind of internal

oscillation. The group velocity

vg =
dω

dk
=

c(0)√
1 + ω(0)2

c(0)2k2

(43)

vanishes in the long wavelength limit while at high energies, the physics of a nondis-

persive medium with constant group velocity vg = c(0) is recovered.

Finally, it may be noted that there is also a high frequency cutoff. This corresponds

to the Planck scale and to the appearance of the sine in (39). The internal isomag-

netic couplings J do not play a role in that regime. As the frequency of the wave is

5J is used here as a wildcard for the various internal exchange couplings introduced in that

paper and assumed to be given in units of energy.
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increased, one is probing the physics of an infinite system of tetrahedrons coupled

with spring like forces. As it is further increased to still higher values (kLP ∼ 1)

towards the Brillioun zone, the effects of the sine (the high energy cutoff) is seen.

This issue is further discussed at the end of (2.5.6).

2 Questions and Answers

In this section a list of questions and answers is presented which arise in connection

with the tetron model. Open problems will be specially marked and the more

important ones reviewed in the summary section 3.

2.1 Questions about the Gauge Sector

According to section 1 the universe is interpreted as a discrete fiber bundle over

Minkowski space R3+1 with fibers given by the iso-magnetic tetrahedrons fig. 1.

The electroweak gauge fields are to be interpreted as connections in that fiber space,

i.e. they help to define what parallel alignment in between different fibers means.

2.1.1 How can such a model lead to a local gauge theory?

The internal 3-dimensional space which hosts the tetrahedrons is naturally endowed

with a SU(2)L × U(1)F symmetry:

–the SU(2) factor arises from the rotational symmetry of the internal spin vectors

before their alignment. Some details have already been explained in section 1. The

question how this symmetry is related to the weak isospin of quarks and leptons will

be analyzed in (2.4.16)ff. The reason for why it receives the index L in the tetron

model is explained in (2.1.20).

–the U(1) factor corresponds to tetron number conservation, which on the level of

quarks and leptons translates into the B − L quantum number, cf. (2.1.7).

These groups act as local symmetries, because their elements can be chosen different

for different points of the Minkowski base space. Connections can be defined for the

SU(2)L × U(1)F bundle, which are to be interpreted as gauge bosons. As shown in

(2.1.11), there is a mixing of the U(1)F field with Wz, with mixing angle equal to
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the Weinberg angle. After the mixing the corresponding local gauge fields are given

by the observed W±, Z and γ.

2.1.2 Are the electroweak bosons and the Higgs field composite?

The answer is yes, but one should specify how this works out in detail.

–The most straightforward possibility is that they are composites of mignon an-

timignon pairs. However, as will be seen in (2.3.28), such a pairing is more appropri-

ate to describe chiral symmetry breaking in QCD. Furthermore, such a construction

would make the top-quark content dominate the boson sector of the SM, similar to

top condensate models. Since mt ≫ mW , this is usually not considered a convincing

scenario.

–Secondly, one could be tempted to insist they are fundamental objects, because

they are connections of the basic SU(2)×U(1) fiber bundle in the sense of differen-

tial geometry. As such they could have been induced by curvature dynamics of the

full R6+1 geometry. I do not think this is a very attractive option, because the flat

R6+1 knows nothing about the dynamics within the ’curved’ hyper-crystal bundle.

Furthermore, the Higgs field as a necessary add-on to account for the SSB does not

have a simple interpretation in the pure differential geometric framework.

–Thirdly, they could be tetron-antitetron bound states traveling freely through the

hyper-crystal. However, according to the picture developed in (2.2.4) and (2.2.5),

tetrons are so strongly bound within the hyper-crystal with binding energies ∼ ΛP ,

that they cannot be split off, not even in pairs. This requirement is also dictated

by the no-dissipation concept, cf. (2.5.32). Namely, one has to take care that such

pairs do not leave the hyper-crystal and dissipate into R6+1, because otherwise en-

ergy would not be conserved inside of it.

–I adhere to the idea that they must be excitations of tetron-antitetron bonds, i.e.

arise from the tetron interactions in the crystal. While mignons are defined on one

tetrahedral fiber, the gauge bosons involve a system of 2 neighboring tetrahedrons.

As excitations they thus consist in a global precession of the isospin 3-bein of one

fiber with respect to the 3-bein of the neighboring fiber. There are 3 types of such

precessions corresponding to the 3 internal Euler angles defining the d.o.f. of the

differential geometric SU(2) connection among the fibers and thus to the 3 weak
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gauge bosons.

As a consequence, the gauge bosons form and travel solely inside the hyper-crystal

and cannot exist outside of it. ’Traveling’ of such a pairing excitation is meant in the

sense of a quasi-particle, i.e. the excitation hops from one tetron-antitetron pair to

another, while the tetrons themselves stick to their place in the crystal. It is possible

to imagine it as a density wave bilinear in ψ̄ and ψ that travels through the crystal.

This must be distinguished, however, from the density fluctuations involving ψ† and

ψ of a single tetrahedron which are coined phinons in (2.3.25) and (2.1.14).

2.1.3 Can a stable and massless particle like the photon be an excita-

tion?

First of all, note that masslessness of the photon is protected by the U(1) gauge

symmetry. As long as this symmetry holds, the photon remains massless, whether

composite or not.

Furthermore, the masslessness of the photon implies its stability.

The answer to the question is ’no’ in the QED7 model advocated in [1], where

the ordinary photon is part of a ’6+1-dimensional’ photon, responsible for the iso-

magnetic interactions. But yes within the ’no-dissipation’ hypothesis advocated in

this article, cf. (2.5.32). The latter has the advantage that energy is conserved for

all processes inside the crystal, so no compactification of internal spaces is needed.

The only objects which are not excitations are the tetrons, the building blocks of

the crystal. These, however, are bound with energies > 1010 GeV.

The photon being an internal excitation cannot be scattered away from the hyper-

crystal. Since according to (2.2.3) one has Q(U) = 0, the photon is a D̄ − D

excitation of D-tetrons, conveniently abbreviated as

Aµ ∼ e Q(D)D̄γµD (44)

As discussed after (11), in the SSB phase actually radial isospinors should be used

Aµ ∼ e Q(D⋆)D̄⋆γµD⋆ (45)

Furthermore, it must be noted that the no-dissipation hypothesis (2.5.32) has rather

challenging consequences. If the photon is not a fundamental particle, it is difficult
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to believe that the Lorentz symmetry, valid inside the hyper-crystal with the known

value of c, is a fundamental property of the original full R6+1 spacetime. The Lorentz

structure as we know it, comes into being only when the crystal is formed and holds

only inside of it. This point is further elucidated in (2.5.3), (2.5.14)ff and (2.5.40).

2.1.4 What happens on the microscopic level when a mignon and an

antimignon annihilate into an electroweak gauge boson?

Assume the 2 mignons are located on 2 neighboring tetrahedrons. When the gauge

bosons are formed, the mignons cease to exist and are replaced by an internal exci-

tation of a bound ψ̄-ψ pair involving 2 tetrons from the neighboring tetrahedrons.

This is in contrast to [1] where these pairs were assumed to be made from free

tetrons floating around. The latter idea has been abandoned because the binding

energy of a tetron in the crystal is too large, of order ΛP , and it would furthermore

allow energy in the form of ψ̄-ψ pairs to dissipate away from the hyper-crystal.

The excitations of bound pairs of tetrons behave trivially under A4 + S(S4 − A4)

Shubnikov transformations, i.e. the information about the discrete tetrahedral struc-

ture is washed out, because mignon and antimignon compensate each other in that

respect. What remains is the transformation property under SU(2)L×U(1)F . Since
ψ = (U,D) is an isospin doublet, the product of ψ and ψ̄ leads to 2⊗ 2 = 3+ 1, i.e.

a triplet (the weak bosons) and a singlet (the B-L photon).

These serve as connections in the fiber space. As such they are useful to define,

what alignment of adjacent tetrahedrons means, cf. the discussion after (19).

2.1.5 Why can mignon couplings be understood as gauge couplings?

The mignons are dynamical sections in the SU(2)L × U(1)F fiber bundle described

above. In order to keep up gauge invariance they are naturally endowed with gauge

couplings to the connections. As for the couplings of the fundamental tetron fields

ψ = (U,D) one may consult (2.2.3).

2.1.6 What is the meaning of the initial U(1)F symmetry?

On the tetron level F is tetron number, on the mignon level it is B − L.
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2.1.7 How do the electric charges of mignons arise?

According to (2.1.20) parity violation of the weak interaction follows from the inter-

nal chirality of the tetrahedral ’star’ configuration fig. 1. This implies that there are

no separate WR bosons and that all V +A couplings to mignons necessarily vanish,

cf. (2.1.18). Still it is possible to formally introduce a right handed isospin quantum

number via I3 = I3R + I3L (with vanishing coupling gR due to the parity violating

effect).

Furthermore, F = B − L = B + L̄ is the appropriate fermion number to choose for

mignons (9), with F (l) = −1 for leptons and F (q) = 1/3 for quarks. The mixing

among the neutral gauge bosons can then be described by introducing the unbroken

generator Q as

Q = I3 +
F

2
(46)

so that

Q(u) =
1

2
+
F (q)

2
Q(d) = −1

2
+
F (q)

2
(47)

Q(ν) =
1

2
+
F (l)

2
Q(e) = −1

2
+
F (l)

2
(48)

2.1.8 What is the tetron content of the Higgs field and of the SM vev?

To answer this question, the same idea is used which has led to the photon equation

(44), namely that all observed scalars and vector bosons arise from correlations

between tetrons and antitetrons of neighboring tetrahedrons, cf. questions (2.1.2)

and (2.1.4).

One of these correlations is directly related to the electroweak SSB and is called

the Higgs particle. Since it is to support the radial alignment of isospinors in fig. 2

responsible for the SSB, it can be identified as

H ∼ Ū⋆U⋆ (49)

where U⋆ is the ’radial’ iso-spinor introduced in (11) corresponding to an isospin

vector ~Q = U †
⋆~τU⋆ pointing outward as in fig. 1. The point is that the content of

the Higgs particle is in one-to-one correspondence with the vev needed to stabilize
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the alignment of isospins in fig. 2, and isospin vectors pointing outward correspond

to radial spinors U⋆ while those pointing inwards correspond to D⋆.

According to these considerations the SM Higgs doublet Φ must be of the form

Φ ∼ τ2(ŪR⋆QL⋆)
†T ∼

(
−D̄⋆(1 + γ5)U⋆

Ū⋆(1 + γ5)U⋆

)
(50)

i.e. not as in ordinary SU(2)L × SU(2)R symmetric Nambu-Jona-Lasinio (NJL)

theories[32, 33] but formally similar to top-color models[26] – provided the use of

radial isospinors is understood.

The implication of (50) on the vev and on the NJL structure inherent in the SM will

be discussed in (2.1.14), (2.1.15) and (2.3.11). For use in those sections I include

here the definition

Φ̃ := iτ2Φ
⋆ ∼ ŪR⋆QL⋆ (51)

2.1.9 What is the tetron content of the weak gauge bosons?

The answer to this question depends on whether one is talking about the ordered or

about the symmetric phase. In the symmetric phase, e.g. shortly after the hyper-

crystal was formed, there is only the coordinate tetrahedron but no tetrahedral

’star’-configuration of isospin vectors as in fig. 1. Therefore radial spinors (11)

should play no role. The photon is given by (44) and the U(1)F tetron number

gauge boson by

Bµ ∼ g′ F (ψ) [ ŪγµU + D̄γµD ] (52)

where g′ is the U(1)F gauge coupling. Similar formulas hold for the SU(2) gauge

bosons, cf. (2.1.11).

2.1.10 How does the transition between (U⋆, D⋆) and (U,D) work? (frage

evtl wegl, weil es kein wichtiger punkt ist und auch die antwort

ist nicht so toll)

or in other words, what happens to the gauge bosons at the electroweak phase

transition?

In the ordered phase, i.e. at temperatures below ΛF , equations like (44) and (52)
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formally keep their validity, U and D naturally being replaced by U⋆ and D⋆. The

phase transition is the point, at which Higgs and W bosons attain their non-zero

masses, and this is accompanied by a redefinition of what is meant by the isospins

U and D. While in the symmetric phase U and D are defined by spanning the SU(2)

isospin space, in the ordered phase one switches to an effective coordinate system

spanned by U⋆ and D⋆.

2.1.11 γ-Z mixing and the value of the Weinberg angle in the tetron

model

In (2.2.3) it is shown that F (ψ) = −1 and Q(D) = −1. Using this input one

can directly infer from (44) and (52) that the weak mixing angle at the unifica-

tion/crystallization point Λr must be 45 degrees, i.e. sin2(θw) = 1/2. The form of

the Z-boson is

Zµ ∼ − e

sin(θw) cos(θw)
[I3(U)ŪγµU + I3(D)D̄γµD +Q(D) sin2(θw)D̄γµD ] (53)

which at Λr reduces to Z ∼ ŪγµU , i.e. at the unification point the Z consists only

of U-tetrons. Left- and right-handed tetrons are not distinguished in these relations,

because the SU(2) gauge bosons a priori contain lefthanded as well as righthanded

tetrons. It is only the internal chirality of the configuration fig. 1 that prevents the

V + A component to become active, cf. (2.1.17), (2.1.20), (46) and [1].

In the next subsection (2.1.12) the prediction sin2(θw) = 1/2 at Λr will be shown to

agree with the present experimental value provided one uses 3 ingredients: (i) the

evolution of the SM beta function as given in [65], (ii) eq. (54) and (iii) a value of

the unification scale relatively close to the Planck scale.

2.1.12 A ’unification scale’ in the framework of the tetron model

In the tetron model the natural electroweak unification scale is given by the energy

Λr at which the hyper-crystal is formed from tetrahedral ’molecules’ via the phase

transition II. As argued in sections 1 and (2.5.6) this scale corresponds to the average

distance between 2 tetrahedrons in fig. 2 and is naturally of the order of the Planck

scale. As shown in (2.1.11), at Λr the value of the Weinberg angle must be 45 degrees.
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This corresponds to a relation between the U(1) and SU(2)L gauge couplings

g′(Λr) = g(Λr) (54)

Note that (54) goes beyond the SM because the gauge group SU(2)L×U(1)F , even in

the form of a U(2) group, is not simply connected and therefore no relation between

the values of g and g′ is predicted within the SM. In contrast, in the tetron model a

prediction is possible and given by (54). This is based on the observation that the

original U(1) gauge symmetry is tetron number and that the photon according to

(44) should be of D-content only.

Using the SM beta funtions[65] one can extrapolate g and g′ from their measured

values at mZ to ultrahigh energies in order to see for which values of Λr eq. (54)

can be satisfied. Since there is no diminishing factor 3/5 in (54) like in typical

GUT models[102], Λr comes out to be nearly equal to the Planck scale instead of

ΛGUT ≈ 1015GeV. Within the present model, this is a rather convenient result, be-

cause it allows to identify the electroweak unification scale with the crystallization

temperature.

It must be stressed that this is merely an order of magnitude result for the elec-

troweak unification scale, because one may rightfully ask, whether the SM beta

functions are really applicable up to such high energies, or whether they get ap-

preciable corrections from other crystal excitations like the 2HDM Higgs partners

discussed in (2.1.14), or from phinons and isospin density waves which appear at

higher energies, cf. (2.3.25). Furthermore, as discussed in sections 1 and 2.5, the

Planck scale is expected to be moderately cosmic time dependent in the tetron

model.

2.1.13 Connection between the tetron model unification scale and the

scales relevant for the standard cosmological model

In the usual cosmological terminology there is the scale at which inflation ends, and

this scale is usually identified as the temperature below which the radiation domi-

nated epoque starts. This era can be described as an equilibrium state of effectively

massless electroweak gauge bosons.

In the tetron model, inflation is associated with the release of latent heat at crystal
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formation time. The end of inflation is the time when crystallization(=the inflation

period) has finished, and the unification of the electromagnetic and the weak inter-

actions is naturally interpreted as happening at this point. It is the time at which

our 3+1 dimensional universe started to exist. According to the analysis in (2.1.12)

and (2.5.6) this roughly corresponds to Planck scale energies, and therefore in the

present model the electroweak era starts already at the Planck scale.

2.1.14 Is there a relation between the isospin interactions (14)+(19) of

the tetron model and the SM Lagrangian

Yes, there is. To explain this in detail, one first has to notice that while the mignon

vibrators are supposed to ’live’ within one tetrahedron, the Higgs excitations ac-

cording to the philosophy discussed in (2.1.2) extend over two of them.

In accordance with this observation, two types of internal vectors should be distin-

guished:

(i) isospin vectors ~Q of type (2) and (4) which are the carriers of the isospin waves

(mignons). They correspond to the internal angular momentum of tetrons within

one tetrahedron and are the ’charges’ of the internal Noether currents. Their excita-

tion spectrum leads to quark and lepton color and flavor. The smallness of neutrino

masses is associated to the conservation of these currents, cf. the discussion after

(21).

(ii) fields like the gauge bosons or the ~π component of the Higgs doublet, which

involve ψ̄ instead of ψ†. Together with the vev 〈ψ̄ψ〉 6= 0 and the Higgs particle

H = ψ̄ψ - more precisely given by (49) - they are important for the pairing process

between tetrons and antitetrons of neighboring tetrahedrons which in the tetron

model is responsible for the electroweak SSB.

To understand this in more detail consider the SM Higgs potential with one doublet

VSM(Φ) = −µ2Φ+Φ + λ(Φ+Φ)2 = −1

2
µ2(σ2 + ~π2) +

1

4
λ(σ2 + ~π2)2 (55)

where σ = ΛF +H . This potential naturally describes the alignment of neighboring

tetrahedrons and anti-tetrahedrons in fig. 2, although in that figure not the ~πi are

drawn but the ~Qi. The point to note is that two of the ~πi are in parallel iff all

the corresponding ~Qi are. Therefore the pairing force ∼ −µ2~πi~πj implied by (55)
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exactly corresponds to a ’ferromagnetic exchange coupling’ of strength µ2 in the

SSB interaction (19).

There is one drawback in this argument, and this concerns the number of d.o.f.

While the SM Higgs doublet only has 4 real d.o.f., the isospin vibrators in the form

of ~QL and ~QR contain 8. According to (4) these can be given as

ψ†ψ ψ†iγ5~τψ ψ†iγ5ψ ψ†~τψ (56)

I have included ψ†ψ and ψ†iγ5ψ in this list albeit their vibrations do not correspond

to mignons, but to phinons, cf. (2.3.25).

The expressions (56) are adapted to the SU(2)L×SU(2)R symmetric limit. In more

general cases, when this symmetry does not hold, the listing reads

U †U D†D U †D D†U U †γ5U D†γ5D U †γ5D D†γ5U (57)

By comparing with the Higgs doublet (50) one sees that half of the d.o.f. are missing

in (50). To account for the other half one should add a second scalar doublet to the

dynamics, e.g. in the form6

Φ′ ∼ D̄RQL ∼
(
D̄(1− γ5)U

D̄(1− γ5)D

)
(58)

This corresponds to adding a pseudo-scalar iso-scalar particle η and a scalar iso-

vector triplet ~v to the theory.

Together, Φ and Φ′ form the basis for an extended SM with 2 Higgs doublets. Such

models are usually abbreviated as 2HDM, and have been extensively discussed in

the literature[67, 68, 69].

The argument about the ’ferromagnetic’ alignment induced by the negative mass

term −µ2~π~π in the potential can be extended to the 2HDM model where the po-

tential contains a term ∼ ~v~v in addition. This term, however, must not give an

appreciable contribution to the SSB interaction (19), because otherwise the b-quark

mass would come out to be of order ΛF . In other words, Φ′ must not take part in

the SSB; the ’mass term’ ∼ ~v~v has to have a positive coefficient and correspondingly

〈Φ′〉 = 0 (59)

6The radial star indices (11) in these expressions are left out for simplicity.
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for the second Higgs doublet and therefore no q/l mass contributions from Φ′.

This feature smartly agrees with the property of the inert version[68, 69] of the

2HDM model. It is interesting to note that in that model the η or the vz (depending

on which mass is smaller) is a serious dark matter candidate. For further details see

(2.1.15) and (2.5.35).

2.1.15 What precisely is the argument in favor of the inert version of

the 2HDM model?

The most general quark Yukawa Lagrangian in a 2HDM model is given by

−LY = q̄L(ΓΦ + Γ′Φ′)dR + q̄L(∆Φ̃ + ∆′Φ̃′)uR + c.c. (60)

where 3x3 matrices of Yukawa couplings Γ, Γ′, ∆ and ∆′ in family space have been

introduced. The resulting quark mass matrices are then given by

Md = Γ〈Φ〉+ Γ′〈Φ′〉 Mu = ∆〈Φ〉⋆ +∆′〈Φ′〉⋆ (61)

Unfortunately, the diagonalization ofMu andMd does not in general diagonalize the

quark Higgs Yukawa interactions implied by (60), and this leads to the problem that

unwanted FCNCs are present in the most general 2HDM model[67]. This is usually

handled by the ad hoc introduction of an additional Z2 symmetry. For example, one

may demand the 2HDM Lagrangian to be invariant under the transformation

Φ′ → −Φ′ (62)

In this case all Yukawa couplings involving Φ′ drop out, and all quarks and leptons

couple solely to Φ. Furthermore, symmetry under (62) forbids mixing terms ∼
Φ†Φ′ + c.c. in the 2HDM Higgs potential so that the Higgs field with vanishing vev

can be unambiguously taken to be Φ′ in accordance with the representation (58).

In the tetron model one has explicit representations (50) and (58) for Φ and Φ′ and

may therefore ask whether the physical origin of the Z2 symmetry can be understood.

It is easily seen from (50) and (58) that (62) corresponds to the transformation

DR → −DR (63)

among tetrons DR. This kind of symmetry naturally arises in the tetron model,

because mignon interactions with the DR field in the effective tetron Lagrangian
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do not appear. The point is that according to fig. 1 the system’s ground state is

composed of tetrons U alone, and not of D. Since quarks and leptons are excitations

of the ground state, it is thus understandable that their couplings to D are strongly

suppressed. This reasoning applies only to DR and not to DL, because parity is

broken in the tetron model and DL couplings are present because DL appears in an

isodoublet with UL.

Note in this and the previous question one is always talking about the radial

isospinors U⋆ and D⋆ instead of U and D.

2.1.16 What is the tetron content of the additional scalar particles in

the 2HDM?

This question is most easily answered in the SU(2)L × SU(2)R symmetric limit of

the model. There are 5 observable Higgs scalars in the 2HDM model which are then

given by

H ∼ ψ̄ψ η ∼ ψ̄iγ5ψ ~v ∼ ψ̄~τψ (64)

leading to a quadratic part of the potential[33]

−µ2Φ†Φ− µ′2Φ′†Φ′ ∼ G[(ψ̄ψ)2 + (ψ̄iγ5~τψ)
2] +G′[(ψ̄iγ5ψ)

2 + (ψ̄~τψ)2] (65)

where the terms with coupling G correspond to the quadratic term ∼ µ2 in the SM

Higgs potential (55) and the terms with coupling G′ to a quadratic term for the

second Higgs doublet.

Although it is true that the vibrators ~QL,R are chosen in a SU(2)L×SU(2)R manner

(4) in accordance with the discussion in (2.4.7), it is better to calculate (65) based

on the representations (50) and (58) for the doublets Φ and Φ′. Anyway, due to

the possibility of mixing, e.g. between η, H and vz, the actually observed scalar

excitations will in general be linear combinations of these states.

2.1.17 How can the chiral nature of the weak bosons be ensured?

The iso-magnetic tetrahedral structure in fig. 1 violates internal parity, the state

with opposite internal parity being given by a system where the 4 internal spin
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vectors show inwards instead of outwards. In [1] and (2.1.20) it has been proven

that this internal parity violation triggers the violation of external parity as required

for the V-A nature of the weak interactions, provided the interaction among tetrons

stems from a common interaction in the full R6+1 space, cf. (66) and (67).

2.1.18 Are there SU(2)R gauge fields ~WR in addition to SU(2)L?

No. Z and W are originally connections of an SU(2) bundle. According to the

discussion in (2.1.20) it is only the formation of the chiral structure fig. 1 together

with the R6+1 origin of the interaction which forces them to couple to left-handed

mignons only. Without the internal chirality fig. 1 the weak interactions would be

vectorlike.

2.1.19 If there is no ~WR, why is there η?

The 2HDM model (2.1.14) naturally accompanies the vibrations of ~QL and ~QR.

2HDM models do not need a ~WR-field[67].

2.1.20 Is there a tetron interaction which gives rise to such iso-magnetic

structures? Can the parity violation of the weak interactions be

explained from first principles?

Before I start to discuss this question, note it is not about the fundamental coordi-

nate forces which are responsible for the formation of (tetrahedral molecules and)

the hyper-crystal at scale Λr, but only about the isomagnetic forces relevant for the

isospin vector alignment at the Fermi scale. Of course, there is a connection between

the 2 issues - to be explained in (2.2.10) and (2.2.9).

The model advocated in this paper consists of 6+1 dimensional spinor fields ψ

(’tetrons’), which form tetrahedral structures and a hyper-crystal a la fig. 2. In this

world quarks and leptons propagate through spacetime as quasi-particles made of

isospin precessions. The Higgs field and the observed vector bosons are excitations

of tetron-antitetron bonds, and the system as a whole naturally gives rise to the

SU(2)L × U(1)F gauge symmetric SM.
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The isomagnetic tetron interactions are claimed to derive from the octonion struc-

ture which is naturally inherent in a 6+1 dimensional space. The octonions form

the unique non-associative, non-commutative and normed division algebra in 8 di-

mensions, and their imaginary units provide for 7 of the 21 generators of SO(6,1).

They are closely related to the Dirac matrices Γµ in 6+1 dimensions[102]. A 6+1

dimensional vector current ψ̄Γµψ arises more or less directly from the product of

two octonions corresponding to the spinors ψ̄ and ψ.

When the hyper-crystal is formed and R6+1 decomposes into Minkowski and inter-

nal space, the Γµ split into SO(3,1) Dirac matrices γµ and a remainder according

to[102, 40]

Γ1−7 = (γ1−4, γ5τx,y,z) (66)

where x, y and z denote the internal coordinates. This splitting has its physical

origin in the coordinate interactions of the tetrons, which lead to the formation of

the hyper-crystal, and mathematically it parallels the splitting of an octonion into

2 quaternions.

Starting from (66) one can try to derive the parity violation of the weak interaction.

The important point to note is the appearance of the product γ5~τ in the internal

part of (66). In principle, the presence of such a coupling corresponds already to a

parity violating behavior, both in internal and Minkowski space, because γ5 signals

axial behavior in Minkowski space and ~τ does the same job for the non-relativistic

internal fiber.

According to (66), any 6+1 dimensional vector coupling ψ̄Γµψ reduced to internal

space will induce such a term. However, for this to actually become perceivable, an

additional appropriate ’chiral situation’ has to be provided, again both in internal

and Minkowski space. In Minkowski space this can be achieved, for example, by us-

ing polarized beams or if there is a second vertex with a γ5-coupling in the Feynman

diagram of the process.

An analogous requirement must be met in the internal space. In other words, a con-

figuration with a handedness must be present, in order to pick up a non-vanishing

contribution from the axial coupling, and this in the case at hand is given by the

local chiral ground state structure fig. 1.

As a matter of fact, the non-relativistic circumstances of the internal R3 space make
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it a similar situation as one has in optical activity of molecules, where in addition to

a circularly polarized photon there must be a handed molecule in order to produce a

non-vanishing effect. According to (66) a 4-tetron interaction of two vector currents

will induce among others a term

~π~π ∼ [ψ̄~τγ5ψ][ψ̄~τγ5ψ] (67)

which agrees with the quadratic term of the Higgs potential (55) responsible for

the alignment of isospin vectors and on the level of isospin vectors reproduces the

Heisenberg ansatz (14). As discussed in connection with fig. 3 and in (2.2.9), the

sign of the coupling must be anti-ferromagnetic for inner- and ferromagnetic for

inter-tetrahedral distances. The latter is in accord with the negative mass term of

the Higgs potential.

An important question is whether there is a renormalizable interaction in 6+1 di-

mensions which can accommodate the iso-magnetic properties described here. This

will partly be answered in (2.2.10).

2.2 Questions about the fundamental Fermion ψ

According to (1) the tetron matter fields ψ which form the sites of the ground state

fig. 2 transform as a spinor 8 under SO(6,1) and decompose into an isospin doublet

when the hyper-crystal is formed. In this section some further properties of the

tetrons are elucidated.

2.2.1 What is the use of introducing an additional level of matter?

There are several good reasons to do so:

1. the existence of 3 families of quarks and leptons with altogether 24 states (plus

the corresponding mass and mixing values) strongly suggests that they are not truly

elementary objects.

2. a material origin for the observed internal symmetry groups is highly desirable.

Traditionally, they are pasted into the theory as purely abstract groups, represent-

ing a rather static behavior of the internal spaces. This line of thinking started

with Heisenberg’s invention of isospin SU(2), included color SU(3) and ended with
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the (SUSY) GUT groups. The present model works differently, color and isospin

being obtained by extending spacetime by 3 internal spatial dimensions in which an

independent dynamics takes place.

3. spontaneous symmetry breaking is introduced in the SM in a more or less ad

hoc way by adding a scalar field to a system which otherwise is made up solely of

fermions and gauge bosons. This is similar in spirit to the Ginzburg-Landau model

for superconductors, extending it to a relativistic and local non-abelian symmetry.

However, as well known from many branches of physics, a material background is

required for a phase transition and SSB to occur. For example, in superconductivity

the scalar field is provided by electrons bound as Cooper pairs.

In the tetron model the breaking of SU(2)L is associated to the alignment of the

(material) internal spins over Minkowski space as shown in fig. 2[1]. For the inter-

pretation of the Higgs field as a tetron-antitetron correlation see (2.1.8).

2.2.2 What is so interesting about the 8 of SO(6,1)?

This question is discussed in (2.1.20) and (2.5.11).

2.2.3 What are the couplings / charges of the tetrons?

After the hyper-crystal is formed, a tetron ψ decomposes into its isospin components

U and D. This fact fixes the weak charges

I3(U) = +
1

2
I3(D) = −1

2
(68)

Using (46) one finds

Q(U)−Q(D) = 1 F (ψ) = Q(U) +Q(D) (69)

where F is a U(1) charge and given by tetron(=fermion) number. Therefore it must

be the same for both types of tetrons, i.e.

F (ψ) = F (U) = F (D) (70)

Tetrons do not have a color charge because they are not involved in interactions

of triplets of the Shubnikov group, cf. (2.3.28). Therefore, it is appropriate to
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normalize F in analogy with leptons instead of quarks, i.e. to put

F (ψ) = −1 (71)

Eq. (69) then leads to

Q(U) = 0 Q(D) = −1 (72)

In other words, the normalization (71) is equivalent to defining the U direction in

iso-spinor space to be the one which is electrically neutral. This is in accord with

the fact that there is no U component in the representation (44) of the photon and

that the symmetry breaking ground state and the Higgs vev (2.3.11) are composed

of U tetrons only (or actually U⋆).

Looking at (71) one may suspect that the result (72) is just a question of normal-

ization and therefore cannot have much physical impact. However, there are only 2

possibilities for the tetron number of one tetrons, +1 or -1. The first choice leads to

Q(D)=0, the other one to Q(U)=0. This means the only freedom one has is which

tetron one wants to call U and which one is called D. In this paper the electrically

neutral tetron is called U and gives the dominant contribution to the Higgs particle

(49).

2.2.4 How large is the mass/binding energy of a tetrahedron within the

hyper-crystal. Can it be ionized?

Not with experimental means. The binding energies are extremely large, of the order

of Λr ∼ ΛP , cf. (2.5.6) and the discussion after (23).

2.2.5 How large is the mass of a single tetron?

Difficult to say. If gauge bosons and Higgs scalars would be ψ̄-ψ bound states, the

natural guess for mψ would be in the range of 40 to 60 GeV. However, in truth the

bosons of the SM are not bound states but correlations of the ψ̄-ψ bonds within the

hyper-crystal. Tetrons are even more tightly bound within the tetrahedrons than

the tetrahedrons are within the hyper-crystal, cf. (2.2.4).
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2.2.6 What is the spin/helicity of a single tetron within the internal

tetrahedral ground state fig. 1?

Figures 1 and 2 contain all necessary isospin information for the hyper-crystal ground

state. Since the tetrons U and D are ordinary Dirac fermion in 3+1 dimensions, one

may also ask what their spin direction within the hyper-crystal is.

First of all, the total spin of all tetrons within one tetrahedron should add up to

zero, because otherwise the vacuum state (i.e. the unexcited hyper-crystal) would

be polarized. I do not know exactly how strong the limits are, but I am quite sure

that a polarized vacuum is not a desirable option.

Now assuming the spins add up to zero, there are 2 options:

–they do so in a similar fashion as isospins do in fig. 1, i.e. because the sum of spin

vectors over all tetrahedral sites vanishes.

–the spins from the left-handed and the right-handed isospin vectors 〈 ~QL〉 and 〈 ~QR〉
compensate each other on each site separately.

As a byproduct of the considerations in (2.4.16), it can be shown that the second

option is fulfilled, because the spins from the tetron and the antitetron contributions

in fig. 4 compensate each other.

2.2.7 Are there γ5 anomalies in the tetron model, which could possibly

make it inconsistent?

There are no anomalies in the fundamental theory of tetrons, because there are no

γ5 couplings. Such couplings arise only in the effective description (the Standard

Model) due to the existence of the iso-chiral tetrahedron fig. 1, cf. (2.1.20). On the

level of the effective theory the familiar anomaly cancellations among the quarks

and leptons apply.

2.2.8 *How can a crystal system out of tetrons and anti-tetrons be sta-

ble?*

In other words: why is there no annihilation between its particle and antiparticle

components?

One observation is that according to (44) the tetrons U⋆ making up the ground state
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of the hyper-crystal have vanishing electric charge and therefore cannot annihilate

into a photon.

Actually, this is not really a fair argument, since we are talking here about tetrons

and not about their excitations. Being the fundamental form of matter, tetrons

anyhow are not expected to annihilate into quasi-particles like the photon or the

weak gauge bosons. Writing down (44), (49) and (53) refers to excitations of tetron-

antitetron pairs rather than the tetrons themselves.

Apart from this argument, I see two further alternatives to answer the question:

–the hyper-crystal in its ground state consists only of tetrons and not of antitetrons,

i.e. the vacuum expectations values discussed in (2.1.8) and (2.3.11) do not have an

antitetron contribution. Antiparticles would then only arise within the hyper-crystal

on the level of excitations. Although at the moment I do not completely understand

all the implications, this could modify our understanding of baryogenesis, an issue

to be discussed in (2.2.17). However, because of the way weak isospin is constructed

in (2.4.16), with the necessity of a tetron-antitetron pair on each tetrahedral site, I

do not consider this a reasonable option.

–I adhere to the possibility that no field exists into which tetrons and antitetrons

annihilate. This can happen because in the original SO(6,1) there is no notion of an

antiparticle, because tetron and antitetron comprise into one single representation 8

according to (1).

Within the scenario developed in sections (2.5.14)ff, where the hyper-crystal in-

cluding its constitutive tetron matter is a non-relativistic object with a privileged

rest system, while only the quasi-particles are of relativistic nature and the familiar

SO(3,1) Lorentz structure emerges but on the level of excitations, one should start

with a non-relativistic spinor representation 4 of SO(6). Although antitetrons 4̄ exist

in addition to this 4, annihilation processes usually do not occur in a non-relativistic

environment , cf. (2.2.10) or [44, 45].

Both tetrons and antitetrons decompose into a spin and an isospin doublet according

to 4 → (2, 2), i.e.

ψ = (U↑, U↓, D↑, D↓) (73)
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when the hyper-crystal is formed. In other words, the crystallization induces a

symmetry breaking

SU(4) → SU(2)× SU(2) (74)

in 6 dimensions where SU(4) is the covering group of SO(6) and the two SU(2) factors

correspond to 3-dimensional rotations in internal and physical space, respectively.

2.2.9 An intuitive understanding of the isomagnetic interactions in the

hyper-crystal

In section 1/fig. 3 some heuristic arguments were given as how to understand the

isospin vector configurations figs. 1 and 2 in a similar way as magnetically ordered

states in solid state physics. In (2.3.2) the Pauli principle will be used to prove that

the tetrahedral configuration of tetrons is extremely stable, and in (2.5.1) a simple

formula is given for its energy. These arguments will be extended here in order to

show that the global configuration fig. 2 is by far the lowest energy state of a many

tetron system.

Much of the effect can be understood by the fermion property of tetrons alone, i.e.

without considering the detailed form of the fundamental tetron interaction to be

discussed in (2.2.10). One may, for example, exploit the behavior of tetrons under

identical particle exchange. Since anti-tetrons are different particles, one needs to

consider only half of the isospinors, let’s say the ones with tetrons and without anti-

tetrons. According to the discussion in (2.4.16) and figs. 4 and 5 one can therefore

restrict attention to the lefthanded isovectors ~QL.

The total wave function should be antisymmetric under tetron exchange. Since the

ordinary spins are all ’parallel’ (all left-handed), the ordinary-spin part of the wave

function is symmetric. Concerning the spatial and the isospin part there are then

2 possibilities: either the isospin part is antisymmetric under tetron exchange and

the spatial part is symmetric or vice versa. I want to argue that inside a tetrahedral

’molecule’ the first and for the ’crystal’ binding between tetrahedrons the second

possibility is realized:

(i) In contrast to the inner-molecular coordinate forces, the inter-molecular coupling

between 2 tetrahedrons is relatively weak, and to some extent even elastic – though
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with a large stiffness (35). It is an open question whether this stiffness is a many

particle effect or due to an additional super-strong coordinate interaction among

tetrons; see the discussion below. In any case, the isomagnetic part (19) of the

inter-molecular binding corresponds to a spatial part of the wave function which

is antisymmetric under tetron exchange, because under such a condition the wave

function becomes small in the middle of the tetron-tetron bond, an effect which

usually runs under the name ’Fermi hole’ or ’exchange correlation hole’. The Pauli

principle then demands that the isospin part of the wave function is symmetric,

which corresponds to an aligned, i.e. ’iso-ferromagnetic’ configuration. This means

nothing else than aligned isospin vectors ~QL in neighboring tetrahedral molecules

as shown in fig. 2 and needed for the electroweak symmetry breaking.

(ii) Inside the tetrahedrons the isospin part of the wave function is antisymmetric un-

der tetron exchange. This corresponds to an anti-aligned, i.e. ’iso-antiferromagnetic’

configuration and leads to a frustrated configuration of isospin vectors ~QL as in fig.

1. As a consequence, the spatial part of the wave function must be symmetric, and

this implies that the forces inside a tetrahedron are rather strong. In the language

of molecular orbital theory they are ’sigma bonds’, and the strengthening effect is

referred to as ’Fermi heap’.7

This last point, however, seems to be in contradiction to the finding that the values

(18) of the internal exchange couplings are much smaller than the inter-tetrahedral

coupling (20). On the basis of the preceding discussion one would expect the oppo-

site, i.e. the anti-ferromagnetic couplings (14) should be quite large, certainly larger

than the O(1 GeV) values obtained in (18). To solve this puzzle8 one has to realize

that the tetrahedral arrangement of isospins fig. 1 is not an ideal antiferromagnet,

but a frustrated one. This fact severely lowers the isomagnetic energy of the state,

to values of about the QCD Lambda parameter, while the ferromagnetic coupling

Jinter in (19) which is responsible for the SM SSB remains much larger.

7In a chemical bond the Fermi heap allows both electrons to be localized in the internuclear

region, thus shielding the positively charged nuclei from their respective electrostatic repulsion. It

is a matter of speculation whether in the present case in addition to tetrons some kind of ’nuclei’

are needed to form the tetrahedral molecules.
8Another possibility is to give up the picture discussed in (2.2.14) and (2.3.17) and in connection

with fig. 3, that the internal extension R of a tetrahedron is larger than the spatial distance r = LP

between two of them.
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Note that the small values of the internal exchange couplings call for an additional

super-strong coordinate interaction among tetrons, in order to maintain strong bind-

ing within one tetrahedron. This interaction would then also be responsible for the

forces of gravity.

Actually, following (35) it has been argued that the weakness of gravity corresponds

to an extremely large stiffness of the coordinate forces among tetrahedrons in the

hyper-crystal. In other words, the stronger a force is among tetrons, the weaker it is

among mignons. This rule can be applied to particle physics, too: while on the level

of mignons the QCD interactions are much stronger than the electroweak ones, on

the level of tetrons the internal isomagnetic stiffnesses JSS, JST etc are much smaller

than the inter-tetrahedral stiffness Jinter, the latter being inversely proportional to

the Fermi coupling GF .

One upshot of the present discussion is that the apparent strength of the nuclear

forces can be traced back to the frustrated-ness of the isospins within a tetrahe-

dral molecule. More details on QCD aspects of the tetron model can be found in

(2.3.28)-(2.3.30).

2.2.10 *What is the form of the fundamental tetron interaction?*

Although I do not have a final answer to this question, there is a wealth of infor-

mation (the SM Lagrangian, the family spectrum, the Shubnikov symmetry etc),

which may be used to obtain some preliminary insights, and actually, important

qualitative features of the tetron-tetron interaction have been derived in previous

sections, eg. (2.2.9).

As argued in [1], rather weak many-particle correlations are sufficient to understand

the frustrated arrangement of isospins and obtain the masses of quarks and leptons.

The fact that the weak bosons W±, Z and H exhibit very small lifetimes agrees with

this argument and seems to indicate, that the phenomena of particle physics do not

need a super-strong tetron-tetron interaction.

The formation of the hyper-crystal at big bang temperatures might also be describ-

able by many-particle correlations, in a similar way as ordinary crystal structures are

mainly due to electrostatic interactions. The extreme density (36) of tetrahedrons

further strengthens the enormous stiffness (37) of the system. According to (35) it
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is inversely proportional to the weakness of the gravitational force, cf. (2.3.19) and

(2.3.21).

Even the initial formation of the tetrahedral molecules might be understandable in

terms of rather ’traditional’ forces by recourse to the Pauli principle, cf. (2.2.9).

The DMESC is then really similar to an ordinary crystal in that the binding occurs

because there is first a separation of charges due to a tetron-antitetron pairing in-

duced by the Pauli principle and afterwards an attraction of these charges.

It must be noted, however, that tetron coordinate interactions typically involve bind-

ing energies that are enormous (of the order of the Planck scale), and since binding

energies often are a measure of the couplings involved, at this point one may face

the existence of some additional super-strong binding interaction, which holds the

tetrahedral crystal and molecules together.

To make the analogy with non-relativistic QED complete, in [1] the existence of an

internal ’photon’ as part of a 6+1 dimensional U(1) gauge theory has been assumed.

It should be mentioned, however, that there are several drawbacks of the QED6+1

model:

-the ordinary photon interpreted as an excitation cannot be part of the fundamental

6+1 dimensional ’photon’ field , cf. (2.1.2) and (2.1.3)

-the 6+1 dimensional U(1) field must be very heavy in order that energy is not

dissipated away from the hyper-crystal, cf. (2.5.32)

-Huygens principle is not valid in 6 spatial dimensions; wave fronts of d’Alembert

kind of waves do not stay sharp

For these reasons I follow here a more general approach and analyze various possible

effective interactions among tetrons as to whether they yield the correct low energy

phenomena.

One could consider, for example, 4-tetron contact interactions. The SM together

with the tetron description of its bosonic sector [eqs. (44), (49), (50), (58) and (67)]

actually set important constraints on the form of such a contact Lagrangian. These

can be read off e.g. from the W-mass m2
WWµW

µ or the ~π~π term in the SM La-

grangian (55) and, in a second step, must be adapted for use in a 6+1 dimensional

Lagrangian framework.

In doing so, there is a scale factor to be considered when going from a 6+1 dimen-

sional fermion Ψ to a doublet ψ = (U,D) of two 3+1 dimensional spinors bound in
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the hyper-crystal, because Ψ has energy dimension 3 whereas U and D have energy

dimension 3/2. I will write

Ψ = Λ
3/2
R ψ (75)

where ΛR is the scale corresponding to arranging the internal dimensions to a mono-

layer of tetrahedrons of thickness R, cf. fig. 2, i.e. to the extension of an internal

tetrahedron.

Consider, as an example, a contact Lagrangian formed by two 7-dimensional vector

currents

L6+1 =
1

Λ5
R

[Ψ̄ΓµΨ][Ψ̄ΓµΨ] (76)

In this representation ΛR may also be interpreted as the mass of particle exchanged

between the tetrons. This could for example be the above mentioned massive

QED6+1 photon.

In any case one sees that ΛR determines the coupling of tetrons, because the La-

grangian is to describe the formation of the internal tetrahedrons at big bang times.

The appearance of the fifth power has dimensional reasons and is related to the fact

that a propagator of any particle exchanged behaves differently in 6+1 dimensions

than in 3+1 – namely as r−4 instead as r−1 at small distances (see below).

Γµ, µ = 0, ..., 6 are the Dirac matrices in 6+1 dimensions. They are seven 8 × 8

matrices which act on the 8 components of the tetron spinor Ψ ∼ (U,D). When the

hyper-crystal with its 3+1 dimensional ’surface’ structure is formed, they break up

as[102]

Γ0−7 = (γ0−3, ~τγ5) (77)

where according to the arguments in [1] and (2.1.20) the product ~τγ5 is one of the

ingredients necessary for weak parity violation.

The 7-dimensional Lagrangian is related to a 4-dimensional one via

L3+1 = Λ3
RL6+1 =

1

Λ2
R

[ψ̄~τγ5ψ][ψ̄~τγ5ψ] (78)

This is because identifying
∫
d3x with the volume filled by an internal tetrahedron

one has

S =

∫
d7xL6+1 =

∫
d4x

L6+1

Λ3
R

≡
∫
d4xL3+1 (79)
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The result (78) formally has the same structure as (67). More precisely, the ~π~π term

in (55) can be rewritten as

VSM = ...+
µ2

Λ4
P

[ψ̄~τγ5ψ][ψ̄~τγ5ψ] (80)

where ΛP is the Planck scale. To obtain (80) I have identified

~π =
1

Λ2
P

ψ̄~τγ5ψ (81)

In a traditional technicolor model the TC scale (=mass of the TC gauge bosons

exchanged) would appear in (81). Here we identify it with the scale ΛP set by the

Planck lattice constant of the hyper-crystal , cf. the discussion in (2.3.17).

A disadvantage of using an approach with contact interactions like (80) is that it

ignores the above mentioned problem with Huygens’ principle as well as the Galilean

nature of the hyper-crystal to be discussed in (2.5.3) and (2.5.40). According to

that point of view, tetrons and tetron matter inside the hyper-crystal should not be

described by d’Alembert type of wave equations, but a non-relativistic framework

should better be used.

It is relatively simple to write down non-relativistic 4-tetron contact terms in 6

dimensions, e.g.

Lnr =
1

Λ5
R

[Ψ†λaΨ][Ψ†λaΨ] (82)

where λa, a=1,...,15 are the generators of SO(6). Ψ in this equation is formally given

by (75), but instead of the tetron field ψ (= a relativistic spinor 8 of SO(6,1)) the

non-relativistic 4 of SO(6) should be taken, as defined in (73).

Since tetrons remain fermions in the non relativistic framework, a quantum mechan-

ical environment must be maintained to describe their interactions, with a Planck

constant h6 possibly different from the ordinary one. In such a framework bound

states are most conveniently analyzed using a generalization of Schrödinger’s equa-

tion to 6 dimensions with a potential U(r) between two tetrons. Spin and isospin

effects can in principle be included by extending this to a 6 dimensional equation of

Pauli type.

For many aspects of the dynamics like

–the coordinate formation of tetrahedrons,
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–the big bang crystallization process and

–the shifts of tetrahedrons inside the elastic hyper-crystal (giving rise to the gravi-

tational interactions)

it is sufficient to average over spins and isospins, so that one can do without the

Pauli terms and use the 6 dimensional version of the Schrödinger equation. Even

the exchange couplings responsible for the iso-magnetic interactions (14) relevant

for particle physics can be calculated with the scalar potential of the Schrödinger

equation alone. Only when polarization effects matter, one should extend this to

a 6-dimensional analog of the Pauli equation. In many respects the 6-dimensional

Schrödinger equation is similar to its 3-dimensional version. First, it is invariant

under 6+1 dimensional Galilean transformations, if U is. The wavefunction Φ for

one internal tetrahedron transforms as

Φ → Φexp[
i

~6
(Et− ~p~r)] (83)

where ~p = m~v is the 6-dimensional momentum and E = mv2/2 + U the energy.

Secondly, in the case of free tetrons (U = 0) there are plane wave solutions

Φ ∼ exp[i(ωt± ~k~r)] (84)

with a quadratic dispersion ω = ~
2k2/2m. Such a relation for tetrons, derived

within a 6-dimensional non-relativistic quantum mechanics and holding for the

highest energies, is completely different than the ω ∼ k dispersion obtained from

the d’Alembert/Klein-Gordon type of equation which controls mignon behavior, cf.

(41).

The predominant question in the non-relativistic approach is what the r-dependence

of the (iso)scalar potential U(r) appearing in the 6-dimensional Schrödinger equation

is and what kind of ’charge’ it contains. Since the Green function of the Laplacian

in 6 dimensions is r−4, an educated guess is U(r) ∼ r−4. This guarantees the

validity of Gauss’ law and thus of charge conservation for the new tetron interac-

tion. Furthermore, the structure of propagators is maintained, because the Fourier

transform of r−4 in 6 dimensions is ∼ ~p−2. Nevertheless, other choices are pos-

sible, e.g. U(r) ∼ r−2 or ∼ r−1, which has been used by some authors in their

studies on the stability of hydrogen like atom in higher dimensions[72, 73, 74]. Or

U(r) ∼ exp(−ΛRr)/r
4 in case of the above mentioned massive photon model.
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In order to obtain a tetrahedral bound state, a Newtonian attraction instead of a

Coulomb repulsion among the tetrons has to be assumed, i.e. U(~ri − ~rj) < 0. This

could either be handled en face or as discussed above by charge separation due to

the Pauli principle. It poses the additional problem that inverse power potentials

in higher dimensions usually lead to rather weakly bound states (as compared e.g.

to hydrogen in 3 spatial dimensions)[72]. So if one does not like any of the above

alternatives, one can assume instead the existence of some kind of central potential

within each tetrahedron. In other words, in addition to tetrons there are yet un-

known other components stabilizing the attraction among tetrahedrons within the

hyper-crystal by an additional super-strong interaction, cf. discussion and footnote

at the end of (2.2.9).

2.2.11 *Why do the ’molecules’ formed by tetrons have a tetrahedral

coordinate structure?*

In principle this question can be answered by analyzing the fundamental tetron

interaction and showing that among the ’molecules’ composed of n tetrons the ones

with n=4 (or n=8) are energetically most favored. Subsections (2.5.31) and (2.5.10)

about the growth of the hyper-crystal and (2.5.11) about the octonion origin of the

interactions as well as (2.3.2) and (2.2.9) are recommended to read in this connection.

2.2.12 Why not use an internal molecular model instead of a crystal?

According to (2.5.3) Lorentz invariance can be approximately established for small

enough lattice spacings (of order LP ). Nevertheless, some readers may find it difficult

to imagine the world as an irregular elastic crystal, with every point in physical

space occupied by an internal tetrahedron. So why not use a model, where the

quarks and leptons are excitations of isolated tetrahedrons in an otherweise empty

space? The molecules would extend into internal dimensions and have a frustrated

anti-ferromagnetic structure as in fig. 1. Even an explanation of the SSB as a re-

arrangement within the molecules happening below a certain temperature is feasible.

However, with such a picture one would run into all the known problems of classic

composite models[31]. The strongest counter argument certainly is, how one and
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the same molecule can sometimes have a mass larger than 100 GeV and sometimes

be as light as neutrinos.

2.2.13 Why not use a tetrahedral lattice in ordinary space, without any

internal dimensions?

Since higher dimensions have never been observed experimentally, it is important to

critically scrutinize their introduction. In this subsection I follow the idea that the

tetrahedrons extend into ordinary space and only mimic the existence of internal

symmetries by forming encapsulated, neutral and ordered tetrahedral systems a la

figs. 1 and 2 in which mignons can be excited just as in the picture with internal

dimensions. As before, the extension of the tetrahedrons would have to be tiny, of

order LP .

The spin-1
2
nature of the mignons would be ensured by the spin-1

2
nature of the

tetrons just as described in (2.4.2), while the ’internal’ quantum numbers arise from

the relative angular momentum of the tetrons inside the tetrahedron, i.e. from the

Shubnikov symmetry. The whole system including gravity would look similar to

a Cosserat continuum, where in addition to the Cosserat deformations describing

gravity[94] there are interactions among the encapsulated tetron spins with corre-

sponding spin wave excitations.

There are then several advantages of this approach as compared to the model with

internal d.o.f.:

–there is no problem (2.5.32) with the dissipation of energy into internal dimensions.

–the question (2.5.10) why there is no growth of the crystal into the internal dimen-

sions, does not arise.

–parity violation of the weak interaction would work analogous to optical activity

in molecules, without the necessity to recur to an octonion structure.

However, there is also a drawback. It is related to the fact that a rotation in physi-

cal space would not only flip the ordinary spin of a mignon, but also transform the

’internal’ coordinates.

This argument seems to kill the idea. One can only come around this conclusion, if

one assumes rather strange behavior of the tetrahedrons, e.g. that they are immersed

into a spacetime medium in such a way that they can be rotated independently of
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spatial rotations, i.e. have an extremely large relaxation time against outside rota-

tions.

It may be noted that color has only been observed in singlet states which would not

be sensitive to rotations anyhow. As for internal SU(2), weak isospin partners like

the electron and its neutrino after the SSB are G4-singlets, too. Weak isospin tran-

sitions in the tetron model are constructed rather indirectly as transition between

excitations of ~QL and ~QR, cf. the discussion in (2.4.16), and this construction can

in principle be taken over to the scenario discussed in this subsection.

As before, the electroweak bosons would be related to U(1) × SU(2) gauge trans-

formations referring to tetron number and the rotations of the tetron spin vectors,

respectively.

2.2.14 How large is the internal extension R of one tetrahedron? How

large is the average spacing 〈r(t)〉 between 2 tetrahedrons?

In most parts of the paper the following scenario is considered: R is smaller than

r, and r is of the order of the Planck length. This is a reasonable assumption

because R is the scale of tetrahedral ’molecule’ formation, which took place at

higher temperatures than the hyper-crystallization, i.e. before our universe was

born. Furthermore, the single internal tetrahedrons are rigid and strongly bound

objects, while the condensed system of tetrahedrons is elastic and its ’lattice spacing’

r grows with cosmic time.

Since 〈r(t)〉 was identified with the Planck length LP in (30), and is thus related to

the uncertainties of quantum theory, the introduction of a length R smaller than LP

may look problematic. However, as discussed in (2.5.6) and in connection with (38),

the quantum nature of matter arose when the hyper-crystal was formed during the

big bang (via crystallization), i.e. after the time of tetrahedral molecule formation.

2.2.15 Why should the distance between 2 adjacent tetrahedrons be

identified with the Planck scale?

One may ask whether there is the possibility, that r und R are much larger than the

Planck length. In that case tetrons would have nothing to do with general relativity,
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and one could forget all reasoning about gravity and cosmology presented in this

work. Only the particle physics sections would apply, and r and R would be scales

like appear in technicolor models. However, the arguments in (2.5.6) indicate that

the most consistent picture is obtained by choosing r ≈ LP .

2.2.16 Is the quantum theory of angular momentum used in (14)-(19)

applicable in case R < LP?

Yes, because the isomagnetic interactions responsible for the Standard Model physics

take place within the hyper-crystal and at energies much smaller than ΛP and Λr.

2.2.17 *The baryon asymmetry in the light of the tetron model*

Naively one could think that baryon asymmetry is due to a statistical fluctuation

shortly after the big bang which makes the observable part of the universe ’baryonic’

while other parts are predominantly ’antibaryonic’. However, the experts seem to

agree that such an asymmetry would have long been washed out, e.g. by sphaleron

effects from the non-perturbative sector of the SM. Instead they prefer to locate

baryogenesis at temperatures near ΛF [55]. In that kind of approach, it is then

noted that the SM can only partly explain baryogenesis, mainly because of lack of

’enough’ CP violation in the CKM sector. Additional new physics not too far above

the Fermi scale is needed to remedy the situation.

What can be learned from the tetron model about this issue? First of all, within

the tetron approach the SM is an effective theory, and it is not clear whether its

equations are valid beyond the perturbative regime, i.e. whether the sphaleron

argument is really true. Secondly, the low energy limit of the tetron model is a

2HDM model rather than the SM. Since the amount of CP violation is generally

larger in 2HDM models than in the SM, baryogenesis can in principle be explained

more easily[56].
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...1234... ...1423... ...1243...

family 1 family 2 family 3

τ , b1,2,3 µ, s1,2,3 e, d1,2,3

ν 1234 2314 3124

u1 2143 3241 1342

u2 3412 1423 2431

u3 4321 4132 4213

Table 1: List of elements of A4 ordered in 3 families. Permutations with a 4 at the

last position form a A3 subgroup of A4 and may be thought of giving the set of

lepton states.

2.2.18 A simple memo to understand the role of the permutation group

in the ordering of quarks and leptons

Since the 24-dimensional representation (9) of G4 is faithful, one can assign the

elements of A4 to the fermions of the 3 families as shown in table 1. It should

be noted, however, that this is only a heuristic assignment. Actually one has to

consider linear combinations of permutation states[3].

2.3 Questions about the local tetrahedral Structure and the

Nature of the SSB

To obtain the correct mass spectrum for quarks and leptons, not only the internal

geometry but also other features of the model have to fixed.

2.3.1 Are the tetrahedrons formed by 4 or 8 tetrons, i.e. how many

vibrators are needed on each lattice site?

A priori one may consider several options:

(i) the 4-tetron option: naively, one would think that 4 tetrons can give rise to only

4 × 3 = 12 excitations of their isospin vectors ~Q. However, there are 2 indepen-

dent vibrators δ ~QL and δ ~QR for each tetron, and for 4 tetrons this gives the desired
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2 × 4 × 3 = 24 states of eq. (9). For this picture to work the ground state values

〈 ~QL〉 and 〈 ~QR〉 must contain antitetron contributions. This is discussed in (2.4.16)

and actually brings option (i) close to option (ii).

(ii) the 8-tetron option: here ~QLi and ~QRi are carried by 2 different particles ap-

proximately occupying the same tetrahedral site i, as depicted in figs. 4 and 5. As

discussed in (2.4.16), it is most appropriate to assume this to be a particle and an

antiparticle. Since these are sitting very close together, the system keeps its Shub-

nikov symmetry (7), and all arguments concerning the mignon spectrum remain

unchanged.

The reason why the options (i) and (ii) are equivalent, can also be seen in the follow-

ing way: according to (1) a tetron which transforms as 8 under SO(6,1) decomposes

into a particle (1,2) and an antiparticle (2,1) under the Lorentz group SO(3,1), and

these are just the d.o.f. required in fig. 4.

When assuming a hyper-crystal with an originally Galilean structure as in (2.5.14)ff,

the tetron and antitetron correspond to a 4 and 4̄ of SU(4), cf. (73). Within the

above philosophy this is merely restating the fact that one may consider the particle

and antiparticle contributions to the isospin vectors separately.

(iii) in case of 8 tetrons there is another option which however will be abandoned

for reasons discussed below: namely one could consider unpolarized isospin vectors

~Q1−8, which appear in pairs ~Qi and ~Qi+1 on each tetrahedral site i=1-4, again to

be interpreted as tetrons i and i+1 to be very close to each other (with a tiny

but non-vanishing internal distance d8), i.e. more tightly bound than to the oth-

ers. Mathematically it corresponds to a coordinate ground state symmetry A4 ×Z2

instead of S4. Assuming ground state isospins 〈 ~Qi〉 = 〈 ~Qi+1〉 on each site to be

parallel, the isomagnetic ground state will again be symmetric under the Shubnikov

group A4+S(S4−A4). It is then straightforward to see that a spectrum of the same

form (9) as before is obtained from the vibrations of the ~Q1−8.

This scenario is clearly distinguished from those (i and ii) with chiral isospin vec-

tors. First of all, the origin of isospin of mignons (quarks and leptons) is different

in the 2 cases. According to (2.4.16) the transition L ↔ R can be chosen to accom-

pany an isospin transformation. In contrast in the case with ~Q1−8, the Z2 exchange

(i↔ i+ 1) has to provide for an isospin transition.

In addition, there is another, stronger disadvantage of using the approach with ~Q1−8,
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because the intimate connection between left-handed vibrators and the top-quark

gets lost, cf. (19) and (2.4.21), i.e. the understanding why mt is of the order of the

SSB scale while all other quarks and leptons, in particular the b-quark, have much

smaller masses, cf. (2.4.22).

2.3.2 Why is the tetrahedral ’molecule’ so stable?

The shortcut answer is that the tetrahedron is the ’helium’ of the tetron model.

One can use the Pauli principle to understand this point. While in the case of

helium, two SU(2) spinors arrange antiparallel to form the most stable and abundant

element in the universe, for tetrons the spinor representation 8 of SO(6,1) is relevant.

The most stable configuration corresponds to a ’shell’ filled with 8 tetrons all with

different SO(6,1) quantum numbers, as depicted in fig. 5.

2.3.3 Can there be a tetron and an antitetron on one and the same

tetrahedral site?

If we accept the idea that there are 2 independent fermions on each tetrahedral site

(a tetron and an antitetron, cf. (2.3.1) and figs. 4 and 5), then strictly speaking

they cannot exist on exactly the same spot. In other words, there must be a tiny

nonvanishing distance d between them. For obvious reasons one should have d ≤ r, R

where r and R were defined in fig.2 and identified as the Planck scale in sections 1

and (2.5.6).

2.3.4 Is the binding which makes up the Higgs field due to isospin or is

it due to tetron coordinate interactions?

It is due to both. The Higgs particle (49) relies on the alignment of U⋆ isospinors

and is therefore a natural part of the iso-magnetic interactions. On the other hand,

the Higgs (as well as all other scalar and vector fields) is an excitation of the tetron-

antitetron bonds in the crystal, and therefore controlled by the coordinate interac-

tions.
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2.3.5 What are the unbroken symmetries of the model?

The Shubnikov group G4 and U(1)Q. The unbroken Shubnikov group has only

singlet and triplet representations and leads exactly to the observed color and flavor

spectrum of 3 families of quarks and leptons (9).

2.3.6 Can one calculate the Fermi scale, the Weinberg angle and W/Z

and Higgs mass from first principles?

The origin of the Weinberg angle was discussed in (2.1.11). The Fermi scale and

the Higgs mass arise from iso-magnetic exchange and pairing interactions, as dis-

cussed in (2.1.8). Therefore if one would know the exact form of the fundamental

tetron interaction (2.2.10), these quantities would be calculable from 6-dimensional

exchange integrals.

2.3.7 Did gauge bosons exist at temperatures above the Fermi scale?

Yes, they did. In the tetron model gauge bosons are particle-antiparticle correlations

of crystally bound tetrons. They came into being shortly after the crystal was formed

at temperature ΛP and made up for the bulk of particles in the ’radiation dominated

epoque’, cf. (2.1.13).

2.3.8 Did quarks and leptons exist at temperatures above the Fermi

scale?

No, because from their very nature they require the existence of the iso-magnetically

ordered state fig. 2. When the tetron gas cooled down and the hyper-crystal began

to form, there was only the coordinate alignment of tetrahedrons but no align-

ment of isospin vectors. Therefore, at that stage, at temperatures above the Fermi

scale, quarks and leptons did not exist, because they could not travel as quasi-

particles through the isomagnetically disordered hyper-crystal. Only gravitons, phi-

nons (2.3.25) and scalar and vector bosons (as excitations of the tetron-antitetron

bonds) were present. This era is usually called radiation dominated, cf. (2.1.13).
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2.3.9 Then why can quarks and leptons be produced at energies above

the Fermi scale?

In collider experiments they can exist at energies much larger than 1 TeV because

the alignment of isospins is stable much beyond ΛF in the fully ordered hyper-

crystal, i.e. in our universe. This is due to a collective hysteresis effect in which

the crystal stabilizes itself by the concerted action of all aligned tetrahedrons to

maintain the isomagnetic ordering. As a result, quarks and leptons can be produced

and propagate normally, even in cases where energies locally exceed the critical

temperature ΛF .

2.3.10 Why is ψ̄ involved in the order parameter and not ψ†, whereas

the total ’iso-magnetization’ ~Σ eq. (21) is defined just like in

ordinary magnetic models?

Short answer to a long question: the ground state value of ~Σ =
∑4

i=1 ψ
†
i~τψi vanishes

due to the tetrahedral arrangement of isospin vectors within any internal tetrahedron

fig. 1, and is therefore not useful as an order parameter in the present case.

Furthermore, the definition of ~Σ involves only tetrons of one single tetrahedron,

whereas the particle physics SSB consists in the isospin alignment of two neighboring

tetrahedrons.

2.3.11 Is the vev 〈ŪU + D̄D〉 or 〈ŪU〉 or what?

The vev is given by 〈Ū⋆U⋆〉 in accordance with (49) where U⋆ is the ’radial’ iso-spinor

introduced in (11) corresponding to an isospin vector pointing outward as in fig. 1.

Such a vev is precisely what is needed to stabilize the alignment of isospins in fig.

2.

2.3.12 Why not use some other order parameter which is closer related

to the isomagnetic alignment than the Higgs vev?

First of all it must be noted that according to (2.3.11) the Higgs vev in the tetron

model has a lot to do with the isomagnetic alignment.
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Secondly, it is true that in general for a given phase transition different order param-

eters are possible. In the present case one may for example consider 2 neighboring

tetrahedrons A and B with tetrons ψAi and ψ̄Bi, and i = 1, 2, 3, 4 counting the tetra-

hedral sites. Unfortunately, the aligned tetrahedral ’star’ configuration of these 2

tetrahedrons not only implies 〈~ΣA,B〉 = 0 for each tetrahedron separately, but also

〈~Ξ〉 = 0, where ~Ξ is defined as ~Ξ =
∑

i ψ̄Bi~τψAi. This is because one can show that

all vectors ψ̄Bi~τψAi of 2 adjacent tetrahedrons are parallel, iff the corresponding

isospin vectors ~QAi,Bi are. Thus ~Ξ is not a useful order parameter either.

2.3.13 So what is the microscopic interpretation of the Higgs particle?

As discussed in (2.1.2) the Higgs is neither fundamental nor a bound state of

mignons, but an excitation of tetron-antitetron pairs which are themselves bound

within the hyper-crystal.

2.3.14 Should one consider separate tetrahedrons for anti-tetrons, with

isospin vectors pointing inward?

This question may seem justified, because anti-fermions usually react to magnetic

forces with an opposite sign. However, using isospin vectors (2) one is treating

the problem in a covariant way. As can be seen in (3), the isospin vectors contain

particle as well as antiparticle contributions, and the antiparticle contributions have

a negative sign. More details are given in (2.4.16), where a 〈 ~QR〉 pointing inwards

will be defined in terms of a charge conjugate tetron field. In this connection the

reader may also consult (2.3.3) and (2.2.8).

2.3.15 Is there a difference between the SM SSB and a ferromagnet,

apart from the fact that the SM SSB takes place in internal

space? Is the symmetry breaking in the tetron model really

spontaneous?

Both cases (ferromagnet and tetron structure) are similar in that at high energies /

temperatures the directions of (iso)spins are oriented randomly with an associated

SU(2) Heisenberg symmetry, and this defines the symmetric state.

63



In an uni-axial ferromagnet an accidental magnetization axis usually appears spon-

taneously, based on a thermodynamic potential

VFM( ~M) = −a ~M2 + b ~M4 (85)

where ~M is the total magnetization and the minimum of the potential is at 〈 ~M2〉 =
a/2b.

In the case at hand the crystallization process at scale Λr is accompanied by a co-

ordinate alignment of all tetrahedrons, i.e. there is a spontaneous selection of one

global internal coordinate system for all tetrahedrons. This coordinate alignment,

however, happens prior to the alignment of isospins and has not much to do with it.

When the temperature decreases towards ΛF , the anti-ferromagnetic tetrahedral

’star’ configurations fig. 1 appear where the isospin vectors within one tetrahedron

avoid each other as far as possible. Note there is an infinite SU(2) symmetric set of

such ’star’ configurations just as in a ferromagnet there is an infinite set of possi-

ble magnetized states corresponding to all possible magnetization directions in R3.

The difference as compared to a ferromagnet is that not only the stars over one

tetrahedron have to be included but also those over all the other tetrahedrons over

Minkowski space, with their independent SU(2) degeneracies, and this makes the

problem a local gauge symmetric one.

The SSB consists in the simultaneous selection of one among all the possible star

configurations over all Minkowski base points – namely the one with 〈Φ〉 ∼ (0, 1).

According to (50) this corresponds to a vev for the U⋆ isospinor component, i.e. the

one with an isospin vector pointing outwards in the radial direction. The choice

of (0, 1) - and of U - is notational convention and, in the framework of the gauge

theory, corresponds to choosing a certain gauge (the so called unitary gauge). There

is again a similarity to the situation in a ferromagnet where some axis is selected by

the spontaneous magnetization, and the coordinate system is then ’gauged’ in such

a way that this axis is called the z-axis ∼ (0, 0, 1).

One may ask what role the coordinate alignment of tetrahedrons at the crystalliza-

tion point Λr ∼ ΛP plays in this game, because it seems plausible that the state,

where the tetrahedrons of coordinate and isospin both point in the same radial di-

rections, is energetically preferred. (This geometry is in fact depicted in figures 1

and 2.)
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A similar situation is sometimes encountered in ordinary uni-axial ferromagnets in

cases when the coordinate backbone of the crystal prefers one specific magnetization

direction, so that the ferromagnetic phase transition is not really spontaneous. This

effect can be modeled by adding a tiny explicit symmetry breaking contribution to

the potential (85) by hand. At high temperatures due to thermal fluctuations this

structural / coordinate effect is not important. But it becomes relevant near the

Curie temperature where it fixes the magnetization direction.

In the present case, however, this possibility needs no consideration. The reason is

that ΛP is so large as compared to ΛF , that the granular internal coordinate struc-

ture is not noticed by the isospin vectors (nor by any human experiment). From the

perspective of the isospin vectors it looks as if they are sitting on an internal coordi-

nate structure which is rotationally invariant. They only feel the anti-ferromagnetic

aversion towards their 3 fellows within one tetrahedron.

As a consequence of these considerations all ’star’ configurations are energetically

equivalent, and the symmetry breaking is spontaneous.

One can even go as far to say that there could be no coordinate alignment among the

tetrahedrons at all. This would be in accord with the idea that the inter-tetrahedral

coordinate (=gravitational) interactions are elastic and therefore can give rise to

any relative coordinate orientation between neighboring tetrahedrons. The align-

ment of isospins could live with this option, because the only thing which matters

for the SM SSB is that the 4 isospin vectors point in radial direction and build up

the isomagnetically aligned multi-tetrahedral configuration, irrespective of what the

coordinates of the tetrons are.

Further it may be noted that the question whether the SB is really spontaneous, is

much easier to answer in what was called scenario C in section 1. In that case the

electroweak phase transition III consists in a simultaneous alignment of coordinate

and isospin vectors as shown in fig. 2. In other words the tetrahedral star config-

uration consists in a coordinate and an isospin star where the coordinate and the

associated isospin vector always point into the same radial directions. The transition

to the ordered state is then necessarily spontaneous because all rotated (coordinate

+ isospins) tetrahedral star configurations are energetically equivalent.
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2.3.16 Is the electroweak phase transition first or second order?

Lattice calculations in the SM with one Higgs doublet give no definite answer to

this question. The transition seems to be second order for mH . 120GeV, while for

mH & 130GeV one obtains a first order transition[49]. In the intermediate region

it may be a cross-over[50]. By contrast, in 2HDM models the situation is clearer,

because the electroweak phase transition turns out to be first order[51] and terms

of order ∼ Φ3T arise in the temperature dependent Higgs potential.

Since the 2HDM model (2.1.16) arises as the low energy approximation of the tetron

model, one may be content with this result, in particular because a first order

transition is preferable for phenomenological reasons, cf. (2.3.24) and [50]. However,

it should also be possible to directly determine the nature of the phase transition

in the tetron model without recurring to an effective theory. To achieve this aim,

a calculation in the framework specified in (2.3.15) and by figs. 1 and 2 should

be performed. If one looks at fig. 2, such an isomagnetic alignment is normally

expected to be of second order. However, first order magnetic transitions are also

known, in particular in connection with deformable structures[52].

2.3.17 What are the relevant scales in the model?

Naively, there are only 2 scales: the Fermi scale ΛF and the Planck scale ΛP . The

binding and crystallization process with coordinate alignment of tetrahedrons but

erratic directions of isospin vectors corresponds to scales Λr and ΛR both or order

ΛP , while ΛF is the scale where the isospin vectors align.

On a more sophisticated level some other scales might seem reasonable:

–the formation of tetrahedral ’molecules’ from a tetron gas in 6 dimensions and

of the hyper-crystal from the ’molecules’ may happen at different scales ΛR and

Λr(0) where t=0 corresponds to big bang time when the hyper-crystal was formed.

Furthermore, due to the elasticity of the DMESC, the crystal binding energy at

that point was different than it is now: Λr(0) ≫ Λr(now). This corresponds to the

fact that the average distance between neighboring tetrahedrons in the hyper-crystal

has grown since the big bang: 〈r(0)〉 ≪ 〈r(now)〉 where according to (30) we should

identify 〈r(now)〉 with the present value of the Planck length. In other words one
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has Λr(now) = ΛP and thus a hierarchy of scales

ΛR ≥ Λr(0) ≫ Λr(now) = ΛP ≫ ΛF (86)

–it is conceivable that the crystallization and the coordinate alignment of tetrahe-

drons do not happen at the same temperature, i.e. there is ΛP for the crystallization

and another scale ΛA for the coordinate alignment fulfilling ΛP > ΛA > ΛF . How-

ever, this would imply another phase transition in the early universe for which there

is no indication. As explained in section 1 and (2.3.15) it is best to assume that

either ΛA = ΛP or ΛA = ΛF or that there is actually no coordinate alignment at all,

only isospin alignment.

–there may be a separate scale Λd for the pairing interaction of 2 tetrons on one

tetrahedral site, as discussed in (2.3.3), (2.4.16) and (2.3.1).

2.3.18 What is the geometrical meaning of these scales?

According to fig. 2, r and R can be interpreted as spacings in the discrete structure

under consideration, or as lengths of certain tetron bonds. Namely, R is the fixed

bond length of 2 tetrons within a tetrahedron, while r is the variable (elastic) bond

length of 2 tetrahedrons in the hyper-crystal. The Fermi scale measures the ’length’

of isospin vectors of the ground state fig. 1.

2.3.19 Why are the scales ΛR and Λr so much larger than the quark

and lepton masses? Why is gravity so weak as compared to the

isomagnetic interactions? Why is the Planck scale so large in

comparison to the Fermi scale?

These questions are variation of why gravity is so weak as compared to QED and

the other particle physics interactions.

An important point to note is that the weakness of the gravitational forces and

the strong coordinate forces among tetrons and tetrahedrons are related. The lat-

ter express themselves in the close packing and the associated extreme stiffness of

the tetrahedrons in the hyper-crystal, which was deducted from the smallness of

Newton’s constant in the discussion after (35). In other words, it is the strong

binding of tetrons together with the close-meshed packing of tetrahedrons which
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makes the hyper-crystal react to mignon excitations with only tiny distortions. In

the Newtonian approximation, for example, writing g00 in (28) as g00 = −1 − 2V ,

the gravitational potential is V ≈ 10−39 at the surface of a proton and not larger

than 10−6 at the surface of the sun.

Not knowing the precise nature (2.2.10) of the fundamental interaction among

tetrons, one can only say that gravity is some kind of remnant elastic interaction

among the mignons, while the tetrons themselves are strongly bound to the hyper-

crystal structure.

On the other hand, the energies ∼ ΛF involved in the isospin alignment are much

smaller than the energies Λr ≈ ΛP needed for the coordinate formation of the crys-

tal. R and r are the length scales at which the iso-magnetic exchange integrals J

have to be calculated, i.e. they are on the abscissa of the Bethe-Slater curve fig. 3,

while the values of J are drawn on the ordinate of fig. 3 and always ≤ ΛF . The

reason why one can have J ≪ ΛP is explained in (2.3.20).

2.3.20 Why are the exchange energies J ∼ O(GeV ) in (14) so much

smaller than the tetron binding energies ∼ O(EP )?

Exchange couplings/integrals within a tetrahedron generically are of the form

J =

∫
d3y1d

3y2f1(~y1)f2(~y2)V (~y1 − ~y2)f1(~y2)f2(~y1) (87)

where y1 and y2 denote internal coordinates and fi the corresponding tetron wave

functions. The value of J is the smaller, the smaller the overlap of the wave functions

at different sites is. If the wave functions are very strongly concentrated, it is no

problem to have J ≪ EP .

2.3.21 Why are the forces of gravity so much weaker than particle

physics effects?

This question has been implicitly answered in connection with (35), (2.3.19) and

(2.2.9), where it was shown that gravity is only weak in connecting mignons, but

strong in connecting tetrons and tetrahedrons. This point of view is supplemented

here by arguing that both G and the fine structure constant α arise as remnants
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from one and the same fundamental tetron interaction. To understand this one

should remember that the binding energy of a tetron in the hyper-crystal is given

by the Planck energy ΛP . Accordingly, an ’effective mass’ MP can be associated

to a tetron bound in the hyper-crystal, and ΛP can be thought to arise from a

gravitational ’force’ FN = GM2
P/r

2 between two tetrons. On the other hand, it is

shown in (2.2.3), that the value of the electric charge of a tetron in the hyper-crystal

is e. Comparing the Coulomb force FC = e2/r2 with the gravitational effect FN , one

then obtains

FC = αFN (88)

This implies, that from the point of view of tetrons, gravity is anything but a

weak force. On the contrary, the electric force is suppressed by a factor of α.

This suppression is due to the fact that while gravity more or less directly reflects

the dynamics of the fundamental tetron interaction, in electromagnetism we see it

mediated and weakened by photon exchange.

2.3.22 Do GUT theories play any role?

No. It is difficult to imagine why there should be other SSBs in the tetron model

besides those described in section 1. I see no reason for the proliferated Higgs sector

characteristic for most GUT models.

2.3.23 Is there a unification of electroweak and strong couplings?

No. In the tetron model the QCD forces are on a less fundamental footing than

the electroweak interactions. For further details see (2.5.33) and (2.3.28). The

existence of a unification scale for electromagnetism and the weak interactions has

been discussed in (2.1.12).

2.3.24 What about domain walls?

Phase transitions in physics are usually associated with the formation of domains.

However, domain structures have never been observed in cosmology.

In the tetron model, cosmological domains either appear as separate universes, which
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according to (2.5.37) were created in R6 via a condensation process similar to the one

that has led to our own universe, or, if they are part of our own universe, they have

long disappeared beyond our event horizon. To understand this in detail, one should

first realize that one has to distinguish (i) domains arising at crystallization time

(coordinate alignment of tetrahedrons) from (ii) those arising at the electroweak

phase transition (tetrahedral alignment of isospins).

(i) In an ordinary crystal, one expects the appearance of domains with different

values of the order parameter arising from concurrent nucleations of crystal germs

in different points of space. In principle, this is also true for the R6+1 space un-

der consideration, and one would expect domains, where the ordered coordinate

tetrahedrons are rotated by some angle as compared to those shown in fig. 2. The

reason why domains do not arise in the case at hand, has to do with the fact that

the hyper-crystal grows into and occupies only a quasi 3-dimensional subspace of

R6. Therefore it intersects with other hyper-crystals from concurrent nucleation

points, which grow into other 3-dimensional subspaces of R6, in at most 1 point

(because the intersection of 2 almost flat 3-dimensional submanifolds in R6 in gen-

eral is just 1 point). This means the result of the other nucleations will be different

hyper-crystals, i.e. they correspond to different worlds whose intersection with our

universe consists of at most one point. At this point there will be a defect within

the hyper-crystal structure, cf. (2.5.37).

(ii) In an ordinary ferromagnet, one expects the appearance of ’Weiss domains’ with

different ordering directions of spin vectors. In the case of isospin vectors such

domains can in principle exist, too, and would differ by a global rotation of the

isomagnetic tetrahedral ’star’ configuration figs. 1 and 2. However, as discussed in

(2.3.16), the phase transition is first order, i.e. associated with a sudden release of

latent heat, which blows up the micro-elastic continuum, i.e. triggers an inflationary

process which in turn shifts domain walls outside the visible part of the cosmos.9

9Models with inflation near the electroweak scale have been discussed extensively in the

literature[75, 76, 77, 78].
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2.3.25 Are there excitations of the hyper-crystal besides the known

quarks, leptons and scalar and vector bosons?

Yes. An incomplete listing includes:

–phinons. They are the analogs of phonons in a solid and have been described under

more general circumstances in [3]. In the case at hand there are 12 phinon states,

that can be classified according to representations of the permutation group S4.

They travel as quasi-particles through the hyper-crystal in the same way as mignons

do. Phinon masses are expected to be much larger than mignon (quark/lepton)

masses. While the mignon spectrum is lying at and below ΛF , the phinon spectrum

is concentrated towards the crystallization energy ΛP . Note, this is not a very

accurate characterization, in view of the fact that neutrino masses are so tiny with

respect to the Fermi scale. Note further, phinons are internal coordinate vibrations,

and thus have to be distinguished from gravitational waves. An interesting question

is whether mignon-phinon scattering is possible.

–isospin density waves: they are to be distinguished from phinons and from mignons.

The vibrators in this case are similar to the isospin vectors (4), however without

the factor of ~τ , i.e. given by ψ†(1 ± γ5)ψ. As far as I can judge these excitations

correspond to a fourth family of fermions, i.e. a lepton-like and a quark-like isospin

doublet, probably higher in mass, because they are not related to the other families

by the Z3 family quantum number inherent in the Shubnikov group A4 + S(S4 −
A4). In particular, the fourth ’neutrino’ is expected to be much heavier than the

known neutrinos, because its mass is not suppressed by internal angular momentum

conservation, cf. (2.4.12).

–one should mention scalar fields other than the standard Higgs boson. They are

the components of the second Higgs doublet (58), the lightest among them being

the most promising candidate for dark matter, cf. (2.5.35).

2.3.26 What about vibrations of ψ̄γµ~τψ, ψ̄σµν~τψ etc?

These are other examples of higher mass excitations of the hyper-crystal.
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2.3.27 Could quark and leptons be phinons?

or in other words: what is the advantage of using mignons with Shubnikov symmetry

A4+S(S4−A4) over phinon excitations with symmetry group A4×Z2 as advocated

in [3]?

The answer is that many of the attractive features of mignons are absent, like the

explanation of the Higgs mechanism, of why mt ≫ mb, of tiny neutrino masses etc.

2.3.28 *Is it possible to understand the dynamics of the strong interac-

tions from within the tetron approach?*

I don’t have a final answer to this question. From its very construction the tetron

model is concerned mainly with the symmetries and interactions of electroweak

physics. The colors of quarks arise merely as a byproduct, because they are inter-

preted as the 3 d.o.f. of a Shubnikov triplet representation. It is therefore clear that

QCD with a color gauge group and SU(3) color triplets does not directly arise in

the tetron model.

In section 1 it was argued that the phase transitions of a 6+1 dimensional spacetime

filled with a condensing tetron gas supplies all relevant physics for the early universe

and it may even account to understand the forces of gravity. As for the latter the

suggestion is that it may arise from elastic forces between tetrahedrons which are

the remnants of the fundamental 6-dimensional tetron-tetron coordinate interac-

tions (2.2.10) and induce curvature and/or torsion effects on Minkowski space. One

would like to interpret the strong interactions in a similar spirit, namely starting

with the paradigm that there are no other interactions in the universe besides the

ones among tetrons.

Gluons cannot be part of the isomagnetic geometry, because the SU(2)×U(1) bundle

connection allows only for the 4 electroweak gauge bosons. One may note, however,

that a Shubnikov invariant mignon-mignon interaction is to be expected among the

triplets, transforming as

T × T = A+ A′ + A′′ + 2T (89)

As shown in [5] this structure can be embedded into a SUc(3) algebra where the color

indices correspond to the 3 d.o.f. of the triplet representations in (9). Although as
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yet there is no proof that gluons and QCD gauge interactions can really arise from

this line of reasoning, some hints will be given in (2.3.30).

2.3.29 Is color a part of isospin?

In the tetron model the color triplets of quarks transform according 3-dimensional

representations of the Shubnikov group (5), and this symmetry group is defined

in terms of transformations within the same internal space as weak isospin. This

could lead one to suspect that color in some sense is part of isospin. However, this

is not the case. While the Shubnikov group is unbroken to the lowest energies,

isospin symmetry corresponds to the free rotations of isovectors on each tetron site

separately and is completely broken in the ordered state.

2.3.30 Is there a connection between the QCD vacuum and the elec-

troweak condensate?

Chiral symmetry breaking is the appearance of a non-vanishing quark condensate

〈ūu〉 ≈ 〈d̄d〉 ≈ 〈s̄s〉 ≈ −(0.25GeV )3 (90)

which breaks SU(2)L × SU(2)R to the diagonal isospin SU(2)V group.

One difference as compared to the electroweak case is that these groups are global,

not local symmetries. Furthermore, according to (49) the Higgs condensate is related

to U⋆, i.e. the tetrahedral star configuration pointing outwards as in fig. 1. In

contrast, the quark condensates are singlets w.r.t. the relevant quantum number (in

this case color, while for the Higgs condensate it is isospin). In other words

〈q̄q〉 = 〈q̄1q1 + q̄2q2 + q̄3q3〉 (91)

does not correspond to a preferred direction or orientation in color space.

The quark condensates essentially are a measure of the nucleon masses, and in the

QCD framework this role is taken over by the QCD Lambda parameter. Thus it

appears that the nucleons get their mass not from the Higgs mechanism (mignon

oscillations) but from the condensates (90). However, as discussed below, in the

tetron model there may be a relation between the 2 mechanisms.
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It is interesting to note that the strange condensate has about the same magnitude

as up and down condensates, although its mignon mass (17) is much larger. This is

an indication that the strong interactions are due to an additional phase transition

at about 1 GeV. More precisely, one expects a mignon triplet condensation at that

temperature, which leads to (90).

This phase transition is also responsible for the confinement of quarks10. In the

tetron model it arises as follows: by definition each (Shubnikov) triplet state de-

fines a direction in internal space. This is nothing else than the oscillating isospin

eigenvector which according to (14) interacts via a Heisenberg Hamiltonian with

other isospin vectors. Therefore, it is no accident that ΛQCD and the values of the

inner-tetrahedral tetronic isospin exchange couplings (15)-(17) [or the masses of the

second family mignons] are of the same order of magnitude! Note that the corre-

sponding strong attraction between 2 isotriplet eigenvectors should be equivalent to

the effective description of the theory by low energy / lattice QCD.

2.4 Questions about the Quark and Lepton Mass Spectrum

and the CKM and PMNS mixing Matrices

Quark and lepton masses can be calculated as excitation frequencies of mignons

via a straightforward procedure where the results are obtained quite naturally by

considering isomagnetic interactions among the tetrons of one or two tetrahedrons

only. Analytic expressions for masses have been derived in [2] in terms of internal

Heisenberg and Dzyaloshinskii-Moriya exchange couplings.

2.4.1 Using exchange couplings instead of Yukawas – isn’t one replacing

one set of unknown parameters by another set and one effective

theory (the Standard Model) by another one (the internal Heisen-

berg model)?

No, because the internal couplings can in principle be calculated from first principles

as exchange integrals over internal space, just as in ordinary magnetism the exchange

10I have played with the idea that confinement arises from the stiffness of the DMESC but did

not really find a good argument for that.
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couplings of the Heisenberg model are in principle calculable from exchange integrals

of electronic wave functions over physical space. What one needs to know is the

underlying 6+1 dimensional dynamics of tetron interactions, cf. (2.1.20), (2.2.10)

and (2.2.9).

2.4.2 Why are mignons spin-1
2
particles?

Since they are constructed from excitations of ’bosonic’ isospin operators (2), one

could be led to believe that they are bosons, just like magnons in ordinary ferro-

magnets are bosonic quasi-particles.

However, it is important to distinguish the behavior in internal space from that in

Minkowski space. While mignons transform as Shubnikov singlets A and triplets T

(i.e. not as projective representations) w.r.t. internal space, it is not hard to see

that they are Dirac fermions w.r.t. Minkowski space.

The point to note is that mignons are not bound states of tetrons but eigenmodes of

their excitations. As such they are not tensor products but linear combinations of

(fluctuations of) tetron fields ψαa (where a = 1, 2 is the internal and α = 0, 1, 2, 3 the

Dirac index of the tetron). Since each mignon is a vibration of one isospin eigen-

mode, one concludes that it must be a Dirac particle w.r.t. the Minkowski base

space. Using the ’bosonic’ isospin vectors ~Q = ψ†~τψ is merely a tool to separate

the isospin triplet vibrations from singlet density fluctuations of ψ†ψ, cf. (2.3.25).

Looked at from ’below’, i.e. from the Minkowski base space, the tetron excitations

are Dirac fermions. If such an excitation travels through the crystal as a quasi-

particle, it can be either L or R, particle or anti-particle.

2.4.3 Why are there exactly the quark and lepton states of the 3 gen-

erations?

The unbrocken (Shubnikov) symmetry group has only singlet and triplet represen-

tations, and the 8 independent isospin vectors on a tetrahedron lead exactly to the

flavor spectrum of 24 quarks and leptons as given in (9).
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2.4.4 Are there other ground states than the tetrahedral one, which

yield the appropriate quark and lepton spectrum (9)?

No. I scanned other geometries with 8 iso-magnetic vibrators and found that for

most systems mignons appear in 2-dimensional representations[9, 10], not useful for

the q/l spectrum of particle physics. This applies in particular to the configuration

(m2) described in (2.5.1).

2.4.5 Should one really use covariant isospin vectors (3) containing both

particle and anti-particle contributions as vibrators?

Yes, one should. It is important for the vanishing electric charge of the hyper-crystal,

for the formation of gauge bosons out of tetron-antitetron pairs, and in general to

maintain relativistic covariance as seen in (7) and figs. 4 and 5. Technically it is

important for the mass calculations corresponding to mignon mass terms 〈0|T (q̄q)|0〉.

2.4.6 Why not use only ~Q = ~QL + ~QR as vibrators instead of ~QL and ~QR

separately?

In order to obtain the 3 families of quarks and leptons one would have to consider

systems with 8 instead of 4 tetrons. This possibility has been discussed in (2.3.1).

The main counterargument is that the SU(2)L vibrators ~QL are needed to account

for the observed parity violation of the weak interaction.

2.4.7 Is it okay to start the mass calculations using chiral SU(2)L×SU(2)R
symmetry quantities ~S = ~QL and ~T = ~QR?

Yes. This is just the way the SM works. Non-zero fermion masses are developed via

SSB starting from a massless, i.e. SU(2)L × SU(2)R chirally symmetric theory.

The role of custodial SU(2) in the tetron model is discussed in (2.4.17).
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2.4.8 Can the simple Heisenberg interaction (14) really explain the full

q/l mass spectrum with its extreme hierarchies?

No. As shown in [2] the masses of some of the fermions get contributions from other

physical sources, namely

–the top mass is dominated by a contribution of order ΛF which stems from the

symmetry breaking inter-tetrahedral interactions (19). Physically it arises because

the top quark corresponds to the 3 eigenmodes which ’disturb’ the global ground

state in the strongest possible way. This disturbance is also responsible for the hi-

erarchy observed in the CKM matrix elements.

–only strange-, charm- and muon-mass are dominated by anti-ferromagnetic ex-

change couplings within one tetrahedron, and thus can be obtained from the inner-

tetrahedral exchange couplings (14) alone.

–down-quark, up-quark and electron are left massless by the Heisenberg and DM

interactions (14) and (19). They get their relatively small masses from energetically

favored torsion contributions[2].

–neutrino masses are protected by internal angular momentum conservation, i.e. by

the internal rotational symmetry, cf. (2.4.12). The way how they acquire their tiny

mass values is described in [2].

2.4.9 Is there a mismatch between the internal Heisenberg interaction

(14) for a single tetrahedron and the DM interaction (19) involving

neighboring tetrahedrons?

This is a technical question concerning the calculation of quark and lepton masses

presented in [2], and the answer is that technically one can treat the isospin vectors

from the neighbors as if they were vectors of the original tetrahedron.

Denoting 2 neighboring tetrahedrons as primed and unprimed and starting with

interactions of the form ∼ ~Si~S
′
j, one would expect the doubling of the number of

eigenmodes. However, due to the symmetry between the 2 tetrahedons, i.e. between

the ~S and ~S ′, the modes arrange in pairs of identical energy. In other words, the

doubling of modes is a trivial one.

To understand this in more detail consider the first term (Heisenberg contribution)

in the inter-tetrahedral interaction (19) and assume that the inner-tetrahedral dis-
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tances are much smaller than the inter-tetrahedral ones. This is in accord with

arguments given in (2.3.17), that after the long time of cosmic expansion one ex-

pects r ≫ R in fig. 2. This assumption implies that the couplings Jinter of an ~Si

to all isospin vectors in the neighboring tetrahedron are identical (as anticipated in

(19)) and one obtains

d~Si
dt

= Jinter [~S
0
i ×

4∑

j=1

~S ′
j] (92)

where the superscript 0 denotes ground state values. A second set of equations is

obtained for d~S ′
i/dt by exchanging the role of the 2 tetrahedrons, i.e. the primed and

unprimed quantities. An obvious set of solutions to these equations fulfills ~Si = ~S ′
i,

i.e. the vibrations are completely in step, and one obtains the trivial doubling of

modes mentioned above.

As for the DM part (second term) in (19) a similar argument can be given. Fol-

lowing the results in [2] this leads to the conclusion that the top quark receives the

overwhelming mass contribution from the inter-tetrahedral interaction (19).

It is interesting to note that in a cosmological scenario where one would have r ≪ R

the mignon mass spectrum would turn out quite different because in that case it is

natural to assume that the coupling of ~Si to ~S
′
i is much larger than to the other ~S ′

j .

2.4.10 How are the CKM and PLMN matrix elements obtained in the

tetron model?

In the SM the possibility of inter-family mixing arises because interaction eigenstates

are distinguished from mass eigenstates. In the tetron model on one hand, there are

the original modes which correspond to small vibrations of the isospin vectors, and

on the other the eigenmodes of the vibrations whose eigenfrequencies correspond to

the quark and lepton masses. The original modes δ ~QiL/R are directly related to the

SM interaction eigenstates because ~QL according to (4) defines the isospin ’charge’

of the left handed SU(2) current appearing in the Glashow theory.

Therefore, in order to obtain the CKM and PLMN matrices in the tetron model,

one can make use of the results of the diagonalization procedure from the δ ~QiL/R to

the mass/frequency eigenmodes. Since the mixing in the right-handed sector is not

observable, only projections onto the δ ~QiL need to be treated.
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2.4.11 Why are interfamily interactions suppressed in the tetron model?

It is a prevalent problem in many composite models, to explain why - apart from

CKM mixing effects - transitions between fermions of different families do not exist,

e.g. why µ→ eγ is forbidden.

In the tetron model this fact can be understood from the symmetry of states. Since

the gauge bosons W, Z and γ (2.1.4) behave trivially under the Shubnikov group,

the same must be true for the fermion-antifermion conglomerates, which get pair

produced from them.

Analyzing products of representations of (95), it turns out that all inter-family

conglomerates behave non-trivially under Shubnikov transformations. For example,

a combination of a µ−- and an e+-mignon transforms as a non-trivial singlet and

therefore cannot become a photon.

It may be noted that the antiparticle of A′
1+is transforms as A′′

1−is.

2.4.12 How can the smallness of neutrino masses be understood?

Neutrinos are interpreted as internal Goldstone particles of the breaking of the

tetronic isospin by the formation of the discrete structure fig. 1. The associated

conserved Noether charge is given by the total internal angular momentum ~Σ defined

in (21) which implies the existence of 3 zero-frequency modes. This is analogous

to how magnons are interpreted as Goldstone modes in ordinary magnetism, except

that here one is considering the physics of spin waves in the internal spaces.

While in ordinary ferromagnets after magnetization a U(1) symmetry about the z-

axis survives, in the given frustrated configuration fig. 1 all three SO(3) generators

give rise to Goldstone bosons, to be identified as the internal magnons corresponding

to the 3 neutrino species.

2.4.13 Neutrinos are fermions. How can they be Goldstone modes?

One has to distinguish the dynamics in internal from that in physical space. In

physical space the neutrinos are fermions, but they are Goldstone bosons w.r.t. the

dynamics in internal space, because in internal space they are described by (bosonic)

excitations of the total internal angular momentum ~Σ defined in (21) which is the
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conserved quantity associated with the internal rotational symmetry.

As discussed before, none of the representations in (9) are projective representations

of the Shubnikov group, so all quarks and leptons are ’bosonic’ w.r.t. the internal

dynamics, cf. (2.4.2) and (2.4.18).

2.4.14 How do neutrinos obtain their tiny non-zero masses?

As Goldstone modes neutrinos are strongly protected to getting masses. However,

as proven in [2] the observed non-zero neutrino masses can be generated on the

phenomenological level by tiny torsional interactions which violate (22). These can

also be used to accommodate appropriate PMNS mixing values. Physically the

existence of such interactions is a signal for the activity in isospin space of small

anisotropic forces. This is discussed in more detail in (2.5.21).

2.4.15 Are neutrinos Dirac or Majorana particles?

They are Dirac fermions. Like all other quark and lepton flavors they inherit this

property from the tetrons, cf. (2.4.2).

2.4.16 How is weak isospin realized on the mignon level?

The first fact to note is that the weak isospin of the SM cannot be directly identified

with the tetronic isospin SU(2). As can be seen by calculating the masses of quarks

and leptons from vibrations δ~S = δ ~QL and δ ~T = δ ~QR of the ground state fig. 1, the

isospin of mignons corresponds to an exchange of the roles of ~S and ~T , i.e. of the

SU(2)L and the SU(2)R sector.

The most appropriate way to construct quark and lepton isospin is to assume the

existence of a tetron ψL and an antitetron (χR)
c = (χc)L on each tetrahedral site

i=1,2,3,4, as depicted in figs. 4 and 5. Here the charge conjugation operator is

defined as usual for a Dirac spinor F, i.e. F c = Cγ0F
∗.

One can either interpret fig. 4 in such a way that there are 2 particles (a tetron and

an antitetron) on each site, or by saying that one is considering the tetron and the

antitetron contribution of a single field to the isospin vectors ~QL and ~QR, cf. the

discussion in (2.3.1) and (2.5.17).
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Although (χR)
c is left-handed, it transforms under SU(2)R and thus can be used to

build a ~QR vibrator. For the question why tetrons and antitetrons do not annihilate

inside the hyper-crystal see (2.2.8).

I also tried an approach without antiparticles, i.e. with χR instead of (χR)
c, but

have abandoned this for the following reasons:

–since tetrons are fermions, the wave function for each pair would have to respect

the Pauli principle. While the spatial part must be symmetric (the argument is

similar as for in the helium atom), the spin and the isospin part are both expected

to be anti-symmetric singlets, and this would violate the Pauli principle. If one of

the tetrons is an antiparticle, one does not run into this problem of two identical

fermions.

–A(νe) and A(e), T (u) and T (d) etc would not be true isospin partners but compo-

nents of Kramers doublets. The exchange ~QL ↔ ~QR induces an isospin exchange

U ↔ D only if one antiparticle is involved. The reason is that charge conjugation

compensates for the internal time reversal active in a Kramers doublet. This will

be explained in more detail in (2.4.19).

–finally, since the Higgs field and the gauge bosons have been interpreted as tetron-

antitetron excitations, it seems a good idea to have antitetrons already appearing

in the ground state.

The isospin vectors, whose vevs are depicted in fig. 4, are given by

~QL =
1

2
ψ†
L~τψL

~QR =
1

2
(χR)

c†~τ (χR)
c (93)

A transition between them is then necessarily accompanied by an exchange of

isospins U and D via[87]

(UL, DL) → (−Dc
R, U

c
R) (94)

If one strips off the Dirac structure, (94) is identical to an internal time reversal

(6), which was considered in connection with the Shubnikov transformations in

section 1. One concludes that the Shubnikov symmetry (5) can be defined as in

(7) by using charge conjugation and without introducing the concept of an internal

time. For more details on the action of discrete symmetries like C, P and T on

the tetron ground state see (2.4.20). It is interesting to note that the internal

reflection operators which exchange the elements of A4 and S4−A4 comprise isospin
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Figure 4: Ground state configuration of the tetron-antitetron pair on a single tetra-

hedral site. The vertical axis corresponds to the radial direction in the sense of (11),

i.e. isospin pointing outwards=up means U, inwards=down means D. Drawn are

the ground state values of isospin vectors ~QL and ~QR which in (93) are defined in

terms of ψL and (χR)
c, respectively. Considering the tetrahedron as a whole, the

configuration is shown in fig. 5 and is chiral, both in internal and physical space.

The internal chirality is flipped by U ↔ D, the external by L↔ R. Note that (χR)
c

is left-handed, but transforms under SU(2)R. Therefore and since the configuration

shown is preferred over that of opposite chiralities through the sign of the inter-

action (78), (χR)
c does not take part in the symmetry-breaking inter-tetrahedral

interactions (19).

transformations, charge conjugation as well as transitions between left and right.

To summarize, it has been shown that the transition between weak isospin partners

like A1(e) and A1(νe) can be obtained by exchanging ~QLi and ~QRi on the tetrahedral

sites i. In the actual calculation of mignon eigenstates, it turns out that the top-

quark is predominantly an ~S = ~QL excitation while the b-quark is ~T = ~QR. On

the other hand the neutrinos are given by vibrations of the conserved quantity
∑

i(
~Si+ ~Ti), while charged leptons are approximately excitations of the

∑
i(
~Si− ~Ti)

combination.

The connection between the attributes ’left-handed’ and ’up-type’ (and similarly

’right-handed’ and ’down-type’) is of fundamental importance in the tetron model.

It relies on the chiral structure of the internal ground state fig. 1 and the octonion

induced form of the tetron interactions (2.1.20). Furthermore, it is at the heart of

the tetron model explanation of weak parity violation (2.1.20) and of the large value

of the top quark mass from (19) as compared to the other q/l masses, cf. (2.4.21).
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Figure 5: The local ground state of the tetron model with 8 internal spin vectors ~QLi

(pointing outwards) and ~QRi (pointing inwards), i=1,2,3,4, accounts for 3×8 d.o.f.

corresponding to 24 quarks and leptons according to (9). Due to the antiparticle

nature of the isospin vectors pointing inwards, internal parity is maximally violated.

For details on the action of discrete symmetries C, P and T on this state see (2.4.20).

2.4.17 The difference between tetron isospin and ’custodial’ SU(2)

In the bosonic sector of the SM (i.e. without quarks and leptons) there is a global

vectorlike SU(2) symmetry which remains intact after the SSB. This is usually called

’custodial SU(2)’, and it should not be mixed up with the isospin SU(2) of the 3-

dimensional internal space considered in the tetron model. While custodial SU(2)

arises on the level of mignons, the tetron model SU(2) exists on the level of tetrons

and comprises not only electroweak but also color and family symmetries. While the

dominant corrections from custodial SU(2) breaking are ∼ mt − mb, tetron SU(2)

breaking terms generate the neutrino masses, cf. (2.4.12)ff. More details on the

relation between tetron and electroweak(=mignon) SU(2) can be found in (2.3.29)

and (2.4.16).
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2.4.18 Do pairs of ordinary and true Shubnikov representations form

isospin doublets?

No. To explain this point, I start with a remark, that ’true’ Shubnikov representa-

tions have nothing to do with ’projective’ representations mentioned above. While

the latter are representations of the covering group, a true Shubnikov representation

is a representation of G4 = A4+S(S4−A4) which is not a representation of A4. True

Shubnikov representations are labeled by an index s in the following. The Shubnikov

group G4 under consideration has the property that for each ordinary representa-

tion D of G4 there is exactly one true Shubnikov representation Ds. If one puts

an isospin along the z-direction, true Shubnikov representations are related to the

excitations of the y-components of the isospin vectors, while Qx and Qz correspond

to the ordinary representations.

Analyzing the representations appearing in (9) one finds that A and As, T and Ts

arise in the combinations

A(νe) + A′
1+is(νµ) + A′′

1−is(ντ ) + T (u) + T1+is(c) + T1−is(t) +

A(e) + A′
1+is(µ) + A′′

1−is(τ) + T (d) + T1+is(s) + T1−is(b) (95)

where the notation 1 ± is means that the second and third family are generated

by excitations of Qx ± iQy, while the first family corresponds to excitations of Qz.

According to this result an isospin doublet is not given by a pair (A,As) or (T, Ts)

of an ordinary representation and a Shubnikov representation. Instead, the rows

A,A1+is, A1−is and T, T1+is, T1−is correspond to particles of the 1., 2. and 3. family.

The representation (95) can be used to show that interfamily transitions are sup-

pressed in the tetron model, cf. (2.4.11).

2.4.19 A simple mathematical understanding of all the 24 Shubnikov

states in (95)

First of all note that, although mignons are actually precessions of internal angular

momentum vectors, I sometimes call them ’vibrations’ or simply ’excitations’ in this

paper.

In this section the 24 mignon precessions are derived successively starting with the

3 mignons arising from a single tetron, then going over to 2 tetrons and ending with
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the 8 tetron configuration fig. 5. The results of the discussion will amount to the

following statements:

–the existence of 3 families reflects the 3 dimensions of the internal space.

–weak isospin of quarks and leptons corresponds to isospin transformations of tetron

and anti-tetron within one tetrahedral site.

–the color d.o.f. arise from the 4-fold structure of the tetrahedrons.

By slightly abusing notation, mignon excitations of a single tetron can be described

as isospinors of the form

ψ = (〈U〉 + δU, 〈D〉+ δD) = (1 + δU, δD) (96)

〈U〉 and 〈D〉 are the isospinor values in the ground state. For the convenience of

the following discussion, 〈U〉 can be put to 1 and 〈D〉 assumed to vanish. δU and

δD contain a time dependence ∼ exp(iωt) where ω is the mass/energy/frequency

of the precession. The corresponding fluctuation of the isospin vector ~Q = ψ†~τψ is

given by

δ ~Q = ~Q− 〈 ~Q〉 =




Re δD

Im δD

Re δU


 +O(δ2) (97)

where 〈 ~Q〉 = (0, 0, 1).

It may be noted, that on the tetrahedron one has non-vanishing vevs 〈 ~Q〉 6= 0

only for the single isospin vectors, whereas for the tetrahedron as a whole the total

internal angular momentum vanishes in the ground state, i.e.

4∑

i=1

〈 ~Qi〉 = 0 (98)

and the only relevant vev becomes the Higgs vev as described in (2.3.10)-(2.3.11).

Coming back to the single tetron states (97), the 3 vibrations Re δD, Im δD and

Re δU in the x, y and z-direction essentially correspond to the third, second and

first family of quarks and leptons. The y-vibration is a true Shubnikov excitation in

the sense of (2.4.18).

The color quantum number arises as soon as all four tetrahedral sites are taken into

account. In place of one vibrator (96) one then has four, and arrives at one singlet
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(A) and one triplet (T) for each family and each isospin ±1/2. More details about

the origin of color in the tetron model can be found in (2.3.28) and (2.3.29).

So far, we have ignored the fact that there are 2 vectors ~QL and ~QR that vibrate

on each tetrahedral site instead of one. These vectors are given in (93), and the

doubling of mignon states which they induce gives rise to weak isospin of quarks

and leptons, i.e. to partners like A(νe) and A(e) in (95).

In explicit terms the mignons from the 2 tetrons fig. 4 on a tetrahedral site are

given by isospinors of the form

ψL = (UL, DL) = (1 + δUL, δDL) χcR = (−Dc
R, U

c
R) = (−δDc

R,−1 + δU c
R) (99)

and the corresponding isospin vectors are

~QL − (0, 0,
1

2
) =




Re δDL

Im δDL

Re δUL


 ~QR − (0, 0,−1

2
) =




Re δU c
R

Im δU c
R

Re δDc
R


 (100)

which makes the weak isospin transformation between the 2 kinds of mignons evi-

dent.

Actually, for a more precise analysis, terms of order δ2 or, equivalently, fluctuations

of Im δU have to be included in the analysis. For example, they enter in

δQx = Re δD +
1

2
[δU †δD + c.c.] (101)

or in Qz, because Qz = ψ†ψ/2− |δD|2 with the tetron density given by

ψ†ψ = |1 + δU |2 + |δD|2 (102)

This makes the analysis of the weak isospin transition somewhat more complicated

than appears in (100).

The complete set of the 24 quark and lepton eigenstates is worked out in [2].

2.4.20 The role of CPT symmetry in the tetron model

In this section I want to show that CPT plays an eminent role in the relativistic

generalization (7) of the Shubnikov group (5). The point is that in the presence of

relativistic particles, CPT supersedes the PT symmetry inherent in non-relativistic
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(iso)-magnetic phenomena.

Actually for this argument to work, the parity transformation P is to be interpreted

as the product PinPau of internal and external parity, where Pin reverses the sign

of the internal and Pau that of the physical coordinates. In other words, CPT is

the CPT transformation not in Minkowski space (this would be CPauT) but in the

underlying 6+1 dimensional spacetime. Therefore this invariance will sometimes be

called CPT6 to distinguish it from ordinary CPT in Minkowski space.

We start the line of reasoning by summarizing what we already know about C, P

and T in the tetron model:

-in (2.1.20) the (maximal external) parity violation observed in the weak interactions

was related to the maximal violation of internal parity Pin induced by the ground

state fig. 1. This relation arises via the appearance of products γ5~τ in the tetron

dynamics.

-in (2.4.16) charge conjugation was discussed as a necessary ingredient, if one is

working in a relativistic environment and includes antitetrons in the ground state as

done in figs. 4 and 5. Due to the antiparticle nature of the isospin vectors pointing

inwards, internal parity in fig. 5 is again maximally violated just as it is in fig. 1.

-it is well known that time reversal is an essential ingredient in any kind of magnetic

phenomena. One may even go as far to say that magnetism is the physics of the

breaking of T symmetry. For example, T appears in the nonrelativistic version (5)

of our Shubnikov symmetry. T itself is broken as in any magnetic alignment, but

the product TPin is an implicit part of the symmetry (5).

The action of CPT6 on an isospin vector ~QL pointing up(=outwards) as in figs. 4

and 5 is given by

~QL
C−→ −~QL

Pau−−→ −~QR
Pin−−→ ~QR

T−→ −~QR (103)

As discussed in section 1, T and Pin reverse the orientation of isospin vectors, while

Pau exchanges L and R. C also reverses the orientation of an isospin vector, because

antiparticle contributions enter in isospin vectors ~Q with an opposite sign, cf. (3).

Eq. (103) shows that CPT6 invariance is equivalent to demanding that the lo-

cal ground state must be formed by ~QL and ~QR of opposite orientation like in

figs. 4 and 5, more precisely a tetron and an anti-tetron are involved, and one has

〈 ~QLi〉 = −〈 ~QRi〉 on each tetrahedral site i. In case the local ground state would be
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〈 ~QLi〉 = 〈 ~QRi〉, i.e. the isospin vectors point in the same direction, one would have

PT or CP symmetry, but CPT6 would not be a symmetry.

Note, this discussion of the ground state’s discrete symmetries has to be distin-

guished from the CP violation in the CKM matrix. As discussed in [2], the latter

arises from the complex nature of the exchange couplings and the resulting phases

in the mixing of mignon states.

2.4.21 Why is top so heavy, why not bottom?

Up to tiny CKM and V+A mixing effects, the top quark corresponds to vibrations

of ~ΣL =
∑

i
~QLi. This vector plays a special role in the tetron model, which has

to do with the chiral nature of the SSB and with the relation between internal

and external parity violation[1] induced by (78), and because nature has chosen

to break internal parity, i.e. prefers the state fig. 1 with isospin vectors pointing

outwards over the one with those pointing inwards. The top-mignon is defined as

that internal precession, where all isospin vibrations act against the SSB alignment

in the strongest possible way.

2.4.22 Why is mb much smaller than mt and from where does it get its

predominant contributions?

In contrast to the top quark, the b-quark is mostly an excitation of the
∑

i
~QRi,

and therefore does not get a contribution from the SU(2)L Dzyaloshinskii-Moriya

interaction (19).

I have considered several sources for an mb value of order 5 GeV, the most straight-

forward being the existence of a tiny right handed (=V+A) current. Actually, in

the calculation[2] it is more difficult to accommodate the bottom mass than the

values of the lighter quark masses. This is because contributions to mb are natu-

rally associated to the right handed version of (19) where ~T instead of ~S appears,

and this V+A contribution must be radically suppressed according to the argument

that weak parity violation is due to the internal chirality of the tetrahedrons, as

discussed in (2.1.20). Thus from a general point of view the introduction of a small

V+A current does not serve as a fully satisfactory explanation for a noteworthy
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bottom mass.

On the other hand one is talking here about a mb/mt =3% effect, and a 3% V+A

correction to the leading V-A coupling is compatible with present experimental

bounds[6]. Such a correction can then be used to account for the observed value of

mb[2].

2.4.23 If up type quarks arise mainly from vibrations of ~QL = ~S, how

can their right-handed version be produced?

As shown in [2], lepton states originate dominantly from vibrations of the form ~S±~T ,

while up and down quark states are related to vibrations of ~S and ~T , respectively.

Therefore one might suspect that the helicities of quarks and leptons generated in

this way are restricted, too. However, it must be noted that an excitation δ of a

left-handed isospin vector can in principle vibrate into any chiral direction. The

same is true for right handed vectors ~QR.

2.5 Connections to Gravitation and Cosmology

This section relies on the interpretation of the world as an elastic system of internal

tetrahedrons. According to section 1 the tetrahedrons form an extremely dense

monolayer mesh which can buckle and bulge into the surrounding higher dimensional

space thus inducing the forces of gravity. The following list of questions and answers

shows how this picture may be incorporated within a larger, cosmological framework.

Throughout it will be assumed that after crystallization spacetime is homogeneous

and isotropic, i.e. it can be described by a Friedmann / Robertson-Walker (FLRW)

metric

ds2 = dt2 − a2(t)[
(d~x)2

1− k~x2
+ ~x2dΩ2] (104)

where a(t) is the scale factor and k=0,+1 or -1 for a euclidean, spherical or hyperbolic

universe. Rewriting this as

ds2 = dt2 − a2(t)γijdy
idyj (105)

one has

γij = δij + k
yiyj

1− kynyn
(106)
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with i, j = 1, 2, 3. The yi are the ’comoving’ coordinates, from which the physical

coordinates are obtained as xi = a(t)yi. Accordingly, the physical velocity of an

object can be decomposed as

vi =
dxi

dt
= a(t)

dyi

dt
+
da

dt
yi = wi +Hxi (107)

where the second term introducing the Hubble parameter H is called the ’Hubble

flow’ and the first term wi defines the ’peculiar velocity’ of an object, i.e. its velocity

relative to the Hubble flow.

Note that the FLRWmetric fulfills g00 = 1 and g0i = 0, i.e. it corresponds to a metric

in a ’synchronous gauge’[96]. Such a metric has a particular simple interpretation

in the tetron model, because the only non-trivial elements are the spatial gij . These

can be identified with variable ’longitudinal’ distances among the tetrahedrons in

the 3-dimensional elastic system which is our physical universe. This point will be

further discussed in connection with fig. 6a.

2.5.1 Is the tetrahedral ground state stable or metastable?

In other words, are there isomagnetic states X with a lower energy? If yes, this

might threaten our world when such a state would be produced in high energy

collisions. More precisely, what could happen is that at collider energies of order

ΛF the ordered state fig. 2 is locally destroyed and in the process of re-ordering of

isospin vectors a germ of the state X appears. Energy would then be released, which

would destroy the ordering in the neighborhood of the original collision, so that a

chain reaction would start at the end of which the metastable ground state would

be completely replaced by the stable one.

In the microscopic model it is possible to compare the energies of all isomagnetic

configurations with 4 isovectors to the energy of fig. 1. Essentially, one deals with a

system of 4 isospin vectors interacting via an ’anti-ferromagnetic’ coupling JA > 0.

The local energy of any state X is given by

E(X) = JA [ ~Q1
~Q2 + ~Q1

~Q3 + ~Q1
~Q4 + ~Q2

~Q3 + ~Q2
~Q4 + ~Q3

~Q4 ] (108)

With this input one may run over all possible ground state configurations of isospin

vectors. As a result, one finds 2 minima with exactly the same energy. One minimum
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(m1) corresponds to fig. 1 while the other (called m2) is characterized by the 4

isospins arranged into 2 pairs of opposite orientation as depicted in fig. 6 of [97].

This conclusion remains unchanged, if one considers separate left- and right-handed

isospin vectors on each tetrahedral site as in (14). However, it may get changed, if

the inter-tetrahedral energies are different. In general, one expects roughly identical

inter-tetrahedral energies, because in both cases (m1) and (m2) the same number of

isospin pairs are aligned in a ferromagnetic way, with identical exchange couplings

JF . However, in reality there may be small differences between the JF for the (m1)

and the (m2) configuration due to the different geometries of the two ground states.

2.5.2 Is physical space discrete, i.e. is there a granular structure of

physical space in addition to the discrete tetrahedral structure in

internal space?

Most probably yes. Although the discrete structure of physical space is not com-

pelling and the distance r between two tetrahedrons could be identically zero, the

discussions in section 1 suggest that r has a tiny non-vanishing value of the order of

the Planck length. Note, due to the elasticity of the system only an average 〈r〉 can
be given, in accord with (30).

2.5.3 How can such a granular structure be compatible with Lorentz

invariance?

In other words: how can the elastic continuum of tetrahedrons be Lorentz invariant?

The point to note is that in the tetron model all physical objects that we know

are superpositions of excitations which travel as quasi-particles through the hyper-

crystal. This holds true even for photons and also for ourselves as well as for all

experiments and ’reference frames’ we can preparate. In a quantum mechanical

framework such excitations always have a wave nature and are to be described by

(generalizations of) the d’Alembert wave equation. This fact alone fixes the system

of waves, which constitutes our physical environment, to be Lorentzian, because the

d’Alembert operator

� =
∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23
− 1

c2
∂2

∂t2
(109)
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leaves the squared 4-momentum p2 invariant. In particular, if one wave packet is

emitted from another one, their velocities add up according to the rules of Lorentz

transformations.

For massive particles which move at velocities < c, the operator is modified to

�−m2c2/~2 corresponding to a ’dispersion relation’ p2 = m2c2/~2. It is important

for this argument (and in general to retain the Lorentz structure) that in all those

wave equations there is a universal maximum speed c that fixes the relation between

space and time. This is defined to be the speed of the massless excitations (2.1.3)

and according to (32) is given by the ratio of ’lattice constant’ LP and ’hopping

time’ TP .

The value of c is universal for all SM particles because all of them arise from the same

isomagnetic interactions introduced in section 1. This is discussed in more detail in

(2.5.13), and the question of (metrical) velocities larger than c will be discussed in

(2.5.41). The question why gravitational waves propagate at c will be answered in

(2.5.40).

It should be stressed, that in particle physics interactions usually only the excitations

move. The tetrahedrons stay fixed at their location in the hyper-crystal. They only

move in connection with metrical changes induced by gravity, for example when the

universe expands after the crystallization or on a much tinier level in any kind of

gravitational interaction, cf. the discussion after (28) and in (2.5.41).

2.5.4 Is time discrete?

Time is an averaged construct induced by the superposition of many elementary

thermodynamics processes. In the tetron model it can be interpreted to have a

granularity of order TP – at least from the standpoint of the quasi-particles which

constitute our physical environment, because TP is the minimum time it takes a

quasi-particle to jump from one tetrahedron to the other. In our world of quasi-

particles the duration of any observable physical process can never fall below this

value.
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2.5.5 Is quantum mechanics just a material property of the hyper crys-

tal?

My claim is yes. The proof will be given in the following question (2.5.6). It relies on

the fact that ordinary matter (including the photon) consists of internal excitations

traveling as quasi-particles on a discrete structure with Planck length lattice spacing.

2.5.6 Why is the Planck length the natural lattice spacing for the hyper-

crystal?

The short answer: the Planck length LP arises as a lower limit on ∆x in the ’gener-

alized’ Heisenberg uncertainty relation (111), which includes the effects of gravity.

On the other hand in the tetron model all known particles including the photon are

interpreted as excitations with an extension of at least one lattice spacing r, i.e. they

are quasi-particle waves with wavelength λ > LP . Since every physical experiment

necessarily makes use solely of these quasi-particles, its resolution cannot be better

than r. This strongly suggests r ≈ LP , because if r would be smaller than LP , r

instead of LP would determine the uncertainties of quantum mechanics.

Due to the extremely small lattice spacings, spacetime as we perceive it effectively

looks like a continuum. This guarantees local rotational symmetry. The item of

invariance under Lorentz boosts is discussed in (2.5.3).

Extended answer: in ordinary quantum mechanics there is a fixed dimensionful

quantity h which relates the canonical Fourier variables of frequency to energy and

inverse distance to momentum, i.e. it transforms the spacetime quantities x and t

into physically ’active’ quantities

~p = ~~k E = ~ω (110)

These relations are the reason why h appears in the uncertainty principle ∆x∆p >

~ which otherwise would just be the Cauchy-Schwarz inequality known from the

Fourier analysis of waves, i.e. ∆x∆k > 1 with no dimension on the r.h.s. I consider

them as further evidence that h is a material property of the hyper-crystal not valid

outside of it, cf. the discussion at the end of section 1.

The ’generalized’ uncertainty relation includes gravitational effects of the photon

on a test particle[59]. These occur because the general relativistic effect from the
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photon with ’mass’ hν/c2 adds to the uncertainty about the test particle. The

Heisenberg relation is then modified to

∆x ≥ ~

∆p
+ L2

P

∆p

~
= λ[1 + (

LP
λ

)2] (111)

where λ is the photon wavelength to be identified with the limit of resolution.

Eq. (111) can be derived e.g. by extending the ’Heisenberg microscope’ thought

experiment (which imagines a photon to measure x and p of a probe particle) to

include gravitational effects of the photon[59]. It implies that there is a minimum

value of

∆x ∼ LP (112)

corresponding to a photon with wavelength LP . Usually, this is interpreted in such a

way that at distances/wavelengths smaller than LP all matter dissolves into quantum

fluctuations and the laws of physics do not have a meaning any more.

In the microscopic model the interpretation is a little different. The limitation on

distances/wavelengths holds true only inside the hyper-crystal and is restricted to

the world of quasi-particles, not of tetrons. For example, since the photon is such

a quasi-particle (a correlation among 2 tetrahedrons), the minimal wave length of

photons, that can be produced and used in experiments, roughly corresponds to the

lattice spacing (30), and it is this minimal wavelength which restricts the precision

of any experiment.

It is worth mentioning that on the hyper-crystal the value of h is given by (33) where

the Planck energy ΛP corresponds to the binding energy of the tetrahedrons and TP

is the hopping time needed to absorb and re-emit the photon.

At first sight the linear momentum dependence of the gravity contribution in (111)

does not fit exactly into this picture. However, it can be interpreted in such a way

that the gravitational effect of the photon modifies the average spacing 〈r〉 = LP

between the tetrahedrons involved in the interaction and thus the resolution ∆p = λ

of the photon. The modification factor can be derived from the metric (28) by

inserting the photon’s gravitational mass M = hν/c2 = h/cλ and amounts to

1− φ

c2
= 1 +

Gh

|~x|λc3 (113)

Since the relevant regime of discussion is distances |~x| ≈ λ, the factor (113) agrees

with the factor in (111).
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These considerations may be compared to the Fourier wave analysis which has led to

the dispersion relation (39) and which also provides a modified uncertainty relation

∆x∆k ≥ |〈[x, k]〉| = |〈cos(kLP )〉| (114)

Eq. (114) may be evaluated in the limit of long wavelengths to give the usual

Heisenberg uncertainty relation, i.e. a meaningful result. On the other hand, for

wave vectors near the border of the first Brillouin zone, the r.h.s. of (114) van-

ishes. Therefore it seems that lattice quantum mechanics at Planck scale energies

can exhibit classical, non-quantum mechanical behavior. It should be noted, how-

ever, that this happens only for extremely small photon wavelengths λ ∼ LP and,

furthermore, that in the tetron model wavelengths ≤ LP do not occur because of

the quasi-particle nature of the photon.

2.5.7 How is physical space defined within the 6+1 dimensional world?

How is it distinguished from the internal dimensions?

The aligned tetrahedrons define a 3-dimensional subspace of R6. Everything orthog-

onal gives physical space.

2.5.8 What is the exact lattice structure of the hyper-crystal?

This question is obsolete because of the elastic nature of inter-tetrahedral coordi-

nate bonds. It is an irregular lattice of tetrahedrons in the base 3+1 dimensional

spacetime without a discrete symmetry. As discussed in various places - e.g. after

(23) in section 1, in (2.5.9) and (2.5.28) - there are more similarities to a fluid than

to a crystal.

2.5.9 Then why is this structure called a ’crystal’?

Because there is a rigid tetrahedral structure in the internal directions. Concerning

physical space it is a disordered system which resembles a plastics or a fluid.
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2.5.10 *Why is there no growth of the crystal into the internal direc-

tions?*

This has to do with the form of the fundamental tetron interaction, cf. (2.2.10) and

(2.2.11), and its preference to form the spiky tetrahedral ’star’ system fig. 1, which

do not allow tetrahedrons to be stacked on top of each other in fig. 2, or, in more

scholarly terms, with the fact that there is no space symmetry group corresponding

to the point symmetry A4 + S(S4 − A4).

It is the main reason why internal dimensions need not be compactified, cf. (2.5.31).

2.5.11 *Where do the 6 spatial dimensions come from?*

I have only a partial answer to this question. A tetron spinor ψ = (U,D) trans-

forming as 8 under SO(6,1) can be interpreted as an octonion field living in 6+1

dimensions. Octonions form a rather unique mathematical structure[41, 42, 43].

They are the next thing to use when complex numbers (used for amplitudes in

quantum mechanics) and quaternions (used for rotations and spinors in physical

space) are not ample enough to describe physical phenomena. The octonion nature

of tetrons has been used in (2.1.20) to determine the form of the isomagnetic tetron

interactions. The splitting of R6 into an internal space and physical space corre-

sponds to a splitting of an octonion into two quaternions.

Note that if octonion multiplication is really relevant for the behavior of tetrons, it

seems somewhat more natural to have 7 instead of 6 spatial dimensions. However,

this is pure speculation. It is the product ~τγ5 appearing in (78), which provides the

link between internal and physical space, necessary to explain weak parity violation

from the chiral configuration fig. 1.

2.5.12 How does the value for c come about? Why is it finite?

In the tetron model light is interpreted as a (massless) excitation of tetron-antitetron

pairs, cf. (2.1.2) and (2.1.3). While the pairs themselves are bound over 2 tetra-

hedrons with fixed positions within the hyper-crystal, the excitations propagate

through physical space as quasi-particles. In contrast to massive excitations, pho-

tons cannot cling to one fixed internal tetrahedron, but are constantly moving at the
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speed c of light. Nevertheless, c is not infinite, because even a massless excitation

needs a certain ’hopping time’ TP to jump from one tetrahedron to another. Since

the tetrahedrons are distributed over the hyper-crystal with average distance LP ,

this corresponds to c = LP/TP in agreement with (31).

2.5.13 Why is c the universal limiting speed for all particles?

In the tetron model all SM particles are internal excitations whose interactions have

the same type of isomagnetism as universal origin. Therefore it is of no surprise

that a common maximum speed exists, to be identified with the ratio LP/TP , as

explained in (2.5.12).

For the interpretation of (metrical) velocities larger than c see (2.5.41).

2.5.14 Is there a rest system of the hyper-crystal?

At first sight the existence of such a system seems to contradict Einstein’s principle

of equivalence and special relativity - well established concepts which I do not want

to question. Still I think the answer to the question is affirmative.

The point is that in the tetron model all material objects and all normal matter and

gauge bosons including the photons from their very nature are quasi-particle waves,

i.e. entities fulfilling Lorentz covariant Klein-Gordon equations, as discussed in

(2.5.3). As such they cannot distinguish an absolute rest system, i.e. they naturally

fulfill Einstein’s principle of equivalence. By contrast, the original tetron matter,

which forms the fixed hyper-crystal ground state, is merely the carrier of those quasi-

particles, and mostly invisible for human experiments.

This point of view is close to the Fitzgerald interpretation of special relativity[103]

and allows for a rest system of the hyper-crystal. More details are given in the next

answers.

2.5.15 Why has a rest system never been observed in Michelson Morley

type of experiments?

The essence of the answer to this question has already been given at the end of

(2.5.14). An extended version can be found in [103]. In that interpretation of
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special relativity a Galilean ground state like fig. 2 is not a contradiction to special

relativity but rather supplements it. It supplies the 6-dimensional framework which

leads to the observed spectrum of physical particles.

2.5.16 Can the hyper-crystal’s rest system ever be identified?

It follows from (2.5.14) that it is difficult to experimentally perceive the ground state

fig. 2 which forms the rest system of the hyper-crystal - the reason being that our

reality (ourselves, our detectors as well as all test particles) consists of quasi particle

excitations and not of tetrons themselves.

The puzzle cannot be resolved on the level of excitations. Even gravitational waves

propagate at the speed of light, cf. (2.5.40). However, it is well known that the

metrical expansion of the universe (and metrical changes in general) can proceed at

superluminal velocities, cf. (2.5.26) and (2.5.40).

In section 1 it was shown that metrical changes correspond to displacements of

the internal tetrahedrons within the elastic hyper-crystal, cf. the discussion after

(24). Applied to the standard model of cosmic expansion, this leads to the idea

that the hyper-crystal’s rest system is given by the spatial coordinates of the FLRW

metric (104). Of course one must be aware that due to the expansion factor a(t)

this is an elastic ’rest system’ permanently changing with cosmic time, but at least

momentarily it can be considered to be at rest. The time dependence of a(t) defines

the expansion of the elastic hyper-crystal, and what comes nearest to the notion of

’matter at rest’ are the galaxies on the Hubble flow. The peculiar velocity (107)

gives their ’true’ nontrivial motion with respect to the elastic rest system.

The underlying idea is that to a good approximation mignon-matter forming the

galaxies was originally produced ’at rest’ (at least on the average) during and shortly

after the big bang / crystallization and has since been moving together with the

expanding elastic hyper-crystal. This is in accord with the finding that most large

lumps of matter, such as galaxy clusters, are nearly comoving with the Hubble flow.
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2.5.17 Is there an internal time different from the ordinary time vari-

able?

In magnetism, time reversal is a far-spread concept because it allows to reverse the

orientation of the magnetization / of a spin vector. This way it enters the definition

of magnetic point groups, for example the Shubnikov group (6).

However, as shown in (2.4.16) and (2.4.20), for the case of iso-magnetism one may

replace the role of internal time reversal by charge conjugation, so no separate time

is needed for the internal dimensions.

2.5.18 Is there an absolute time in the hyper crystal?

Yes, it is given by the comoving Hubble time coordinate, i.e. the elapsed time since

the big bang according to a clock of a comoving observer.

2.5.19 What is the status of the Copernican and of the Cosmological

Principle in the tetron model?

The Copernican Principle states that no place in the universe is ’special’ or pre-

ferred, while the Cosmological Principle demands that the universe looks the same

in all directions (is isotropic) and contains everywhere roughly the same amount

and mixture of material (is homogeneous). These principles are not questioned by

the microscopic model, assuming a suitable uniformity of the hyper-crystal built

from tetrons. However they will not be fulfilled at the edges of the DMESC where

there may be steadily new accretions of tetrahedrons to the crystal. Those edges

are therefore expected to be both ’special’ and anisotropic places.

2.5.20 Is the original R6,1 Lorentzean oder Galilean?

It was argued in section 1, that the speed of light, which is at the heart of Lorentz

symmetry, is an intrinsic property of the hyper-crystal, not valid outside of it. Fur-

thermore, the fact that metric expansion of our universe can proceed with velocities

larger than c gives support for Galilean (or, in case of a SO(6,1) Lorentz type sym-

metry, with a limiting speed much larger than the speed of light).

99



2.5.21 Do we know anything about the position of our universe in full

R6+1?

To show up in experiments such an information requires anisotropic interactions,

which would get their anisotropy from 6-dimensional structures which go beyond

the hyper-crystal. It cannot be obtained from the dominant isospin interactions

(14) and (19), because these are rotationally invariant, i.e. the same mass spectrum

is obtained after a global rotation of the isospin axes.

A simple anisotropic Hamiltonian of isospin vectors ~Qi would look like

Ha = −Jz
4∑

i 6=j

QizQjz − Jxy

4∑

i 6=j

(QixQjx +QiyQjy) (115)

with Jz 6= Jxy.

Since they explicitly break internal rotational symmetry, anisotropic interactions

like (115) violate internal angular momentum conservation (22). As discussed in

(2.4.12), neutrinos are the Goldstone modes corresponding to that symmetry. More

precisely, the 3 neutrino species were identified as the 3 vibrating components of

total internal angular momentum. Therefore, the anisotropic Hamiltonian (115)

contributes to the neutrino masses, and measuring the neutrino mass matrix has

the potential to answer the present question.

2.5.22 Is there a contribution from the tetron ground state configuration

to the mass/energy density and to the expansion rate of the

universe?

According to general relativity the mass/energy density of the universe determines

its curvature, its expansion rate and its future. So one might expect that the energy

of the ground state fig. 2 should also contribute. However, as argued in (2.5.29),

this energy does not appear in energy balance equations of ordinary matter.

The main effect of the enormous tetron ground state energy is to initialize big bang

inflation by releasing a vast amount of crystallization energy.
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2.5.23 How does all of this fit into inflationary cosmology?

As discussed in (2.1.12) and after (23), inflation in the microscopic model is asso-

ciated to the crystallization process of tetrahedrons with an accelerated expansion

due to the elastic nature of the bindings and the sudden release of crystallization

energy.

The major signature of inflation is the exponential increase of the scale parameter

a(t) in (104). According to the Einstein equations a(t) has to fulfill

ä = −4π

3
G(ρ+ 3p/c2)a (116)

where ρ is the mass density of the universe and p its pressure, and the combination

ρ + 3p/c2 corresponds to the trace of the energy momentum tensor. Eq. (116)

makes it clear that the exponential increase needed for inflation can be obtained for

constant and negative ρ+ 3p/c2.

What kind of matter fulfills such a condition? The immediate answer: matter un-

dergoing a phase transitions. Indeed, it is normally assumed in models of inflation

that a false vacuum decays in the framework of some abstract phase transition being

active in the very early universe. However, the physical background of this phase

transition is never specified.

In the tetron model the understanding is clearer, because the phase transition relies

on the Landau free energy ∆F in (23). The order parameter is defined in terms

of density fluctuations D of tetrahedrons and is thus a material quantity. Infla-

tion(=crystallization) starts almost immediately after the big bang, at the time

when the germ of the hyper-crystal comes into being. This point corresponds to the

maximum value of the free energy curve (23) from where the system rolls down to

its non-trivial minimum – the moment when the latent heat is released.

A word of warning: although the qualitative features of inflation are well described

by (116), one should be aware that the Einstein equations are not valid close to

the crystallization point. According to the discussion at the end of section 1, the

least one must expect is a temperature dependence of c and G which will modify

the details of the description. Since I have not quantitatively estimated the amount

of energy released in the crystallization, it is even possible, that the dominant part

of the growth of the hyper-crystal arises from simultaneous accretion of tetrahe-

drons and only a minor part is due to subsequent expansion, i.e. to inflation in the
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proper sense. In that case the accretion would almost instantaneously produce a

huge hyper-crystal, and expansion literally would start only at tetrahedral distances

of let’s say r ≥ 0.1LP . I will call this possibility scenario X.

2.5.24 What are the tetron model answers to the flatness and the hori-

zon problem?

If one rejects scenario X, they are similar to those in ordinary inflationary models:

–flatness problem (the question why the universe is almost flat everywhere): due to

the exponential expansion, triggered by the initial release of crystallization energy,

the universe is much larger than anticipated.

–horizon problem (the question why the universe looks almost the same everywhere):

all parts of the universe were causally connected at the time when the hyper-crstal

was born. Due to the subsequent exponential expansion they have lost their causal

contact.

On the other hand, within scenario X, the universe is extremely large right from the

beginning, and also flat because the interactions of tetrahedrons are such that they

form a flat hyper-crystal. Concerning the horizon problem: what appears to be a

causal contact shortly after the big bang, would be due to the fact that the physics

and initial conditions are everywhere the same at the point of accretion.

2.5.25 Is there an inflaton field?

Inflation was explained in section 1 and (2.5.23) as arising from the latent heat

released in the crystallization of the hyper-plastics. Therefore in the tetron model,

the inflaton can be interpreted as the energy/density wave that carries the initial

crystallization energy.

2.5.26 How can the release of crystallization energy lead to metric ve-

locities much larger than the speed of light?

It is well known that metrical changes proceeding faster than c do not contradict

Einstein’s equations, because in GR there are rules about matter moving through

space, but there is no rule about space expanding faster than light. They necessarily
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occur in the standard cosmological model at times shortly after the big bang.

In the microscopic model metric velocities have a special interpretation due to the

fact that an expanding space corresponds to elastic motion of tetrahedrons in the

hyper-plastics, cf. (2.5.41) and section 1. Since tetron velocities are not bounded

by c, the release of a large amount of crystallization energy at the big bang can

push this motion to faster than c. It is only excitations and quasi-particles whose

propagation on the hyper-crystal cannot proceed larger than c, cf. (36) and (42).

2.5.27 Nature of the forces among tetrahedrons

The elastic forces among the tetrahedrons are responsible for the curvature of space-

time, i.e. for the gravitational interactions. In principle, they should be calculable

from the fundamental tetron interaction considered in (2.2.10). Because of the many

particles involved, in practice this is not an easy task.

On a heuristic level the forces can be understood as depicted in fig. 6 for a linear

chain of tetrahedrons. Longitudinal displacements/accelerations are felt as local or

global contraction or expansion of flat physical space and can be used to understand

the physics of the FLRW metric. Transverse displacements go into one of the 3

internal dimensions thus inducing genuine extrinsic spatial curvature.

Neither of the two can explain the appearance of a gravitational field in the New-

tonian limit, i.e. the potential (27) appearing in the g00 component of the metric

(26). To account for that, a ’timely’ curvature, i.e. variations of the hopping time

TP are needed, i.e. the time a quasi-particle needs to travel(=be emitted, run, get

absorbed) from one tetrahedron to its neighbor. These variations happen, because

the presence of mass/energy modifies the microscopic processes behind the hopping

of any ’test excitation’. Note that the Newton effect is of the simplest possible form,

namely proportional to M and inversely proportional to r, and actually arises from

the elastic nature of the tetronic environment in which the excitation propagates,

cf. (42).

In more formal terms the Newtonian limit corresponds to a change of the local time

variable t → t(1 + φ
c2
) in the sense of (24) while the FLRW cosmology relies on a

longitudinal spatial expansion x→ a(t)x in the sense of fig. 6a.

According to the discussion in (2.2.10) the force among the tetrahedrons may be
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Figure 6: This picture illustrates ’longitudinal’ vs ’transverse’ curvature for a 1-

dimensional chain of tetrahedrons. The tetrahedrons are drawn as tiny black

squares. Physical space is represented by the x-axis, similar to fig. 2. Longitu-

dinal displacements/accelerations (fig. 6a) are felt as local or global contraction or

expansion of physical space like in the FLRW metric. Transverse displacements (fig.

6b) go into the internal dimension. Modifications of the hopping time (relevant for

the Newtonian approximation) are not drawn in the figure.

of such a form that they are driven towards an equilibrium distance rs. In that

case the force can be expanded in powers of r − rs, and in the leading harmonic

approximation it is then of Hooke’s form

mT r̈ = −dT (r − rs) (117)

where mT is the tetrahedron mass and ω2
T = dT/mT the frequency characteristic for

the interaction.

In an elastic medium of many tetrahedrons this interaction corresponds to

ρT ü = ζu′′ (118)

where ζ is the Lame parameter introduced in (35), u the deformation vector and

ρT = mT/r
3 (119)

the mass density of tetrahedrons.

ζ can be traced back to Hooke’s constant via

dT = ζ r (120)
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Therefore, ζ can be considered as Hooke’s constant per unit of length.

According to (118) one expects elastic waves at speed

c2 = ζ/ρT (121)

in agreement with (36). It must be noted, however, that this kind of elastic wave

cannot be perceived by mignon matter, because it corresponds to a pure gauge

transformation (128) and thus does not affect the curvature felt in gravitational

interactions.

Furthermore, one obtains

ωT =
1

TP
(122)

an extremely high frequency, which does not play any role in the universe’s ex-

pansion. The point to note here is that LP - the present day average distance of

tetrahedrons in the hyper-crystal - is not equal to the equilibrium distance rs of

tetrahedrons. In the presence of the many other tetrahedrons, a given tetrahedron

is not able to instantaneously attain the distance rs to its neighbors. Instead, the

characteristic time for this to happen is much larger than TP . In other words, there

must be another characteristic frequency ωM ≪ ωT describing the expansion of the

hyper-crystal, so that (116) should be replaced by

ä = −4π

3
G(ρ+ 3p/c2)a− ω2

M(a− as) [+ΛCc
2a] (123)

Here ρ is the (mignon) matter density, and in a matter dominated universe one has

ρ ∼ 1/a3 as usual. For reasons of comparison I have also added a cosmological

constant term (not present in the picture described here).

It turns out that it is possible to accommodate the observed dark energy effect by

a harmonic contribution ωM 6= 0 instead of a cosmological constant provided one

chooses ωM ≈ 10−18Hz (very small as compared to ωT ≈ 1043Hz).

The first 2 terms on the rhs of (123) are then of the same order. The first one

leads to the well-known t2/3 behavior of a(t) for a dust dominated universe. For

larger values of a and t and as long as a ≪ as the second term becomes relevant,

with a ∼ as(1 − cos(ωMt)). We live at 0 ≪ a ≪ as. This condition corresponds

to times where the universe has just started to re-accelerate and does not feel the

equilibrium. At much later times the Hooke term will dominate and drive it towards
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as.

Note for a proper treatment of (123) the temperature dependence of as must be

taken into account

as ∼ (Tc − T )−
1

6 (124)

where T < Tc and Tc was introduced in (23).

2.5.28 Is there a similarity to the behavior of superfluids?

There is a certain similarity, but there are also appreciable differences.

The growth and expansion of the elastic hyper-crystal along a lower (in this case 3)

dimensional structure is reminiscent of the behavior of superfluids, which can creep

along arbitrary surfaces. There are 2 prototypes of superfluids whose representatives

are He-3 and He-4. While in He-3 fermion condensates populate the macroscopic

quantum state, in He-4 superfluidity is a consequence of a normal Bose-Einstein

condensation of the He-4 bosons. There are actually speculations that associate

gravity to a He-3 type of superfluid[90]. In the tetron model, however, it is the

tetrahedrons and not the tetrons themselves which are involved in the gravitational

interactions. The tetrahedrons are bosons, so the ordinary Bose-Einstein approach

to superfluidity could be useful to describe the growth and expansion of the hyper-

crystal. More precisely, the Bose-Einstein condensate of tetrahedrons within the

hyper-crystal would obey a Gross-Pitaevskii equation in 3 dimensions[101]

i~
∂

∂t
D(~r, t) = [− ~

2

2m
∆+ α|D(~r, t)|2]D(~r, t) (125)

Although it fulfills a (nonlinear) Schrödinger equation and is sometimes called the

’wave function’ of the condensate, D is a classical field and can be identified with

the order parameter of the system, i.e. with the density fluctuations of tetrahedrons

introduced in (23).

One should, however, be hesitant to accept the idea of a superfluid, for the following

reasons:

–quite in general superfluidity is a low temperature effect. There is no indication of

an additional cosmic phase transition in the low energy regime.

–in the last 10 billion years the universe has expanded rather slowly. This is not
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what one would expect from a superfluid.

–in a superfluid there is a macroscopic quantum state governed by a Planck constant

h, as appears in (125). This picture is different from the interpretation (2.5.6) of

quantum theory on the hyper-crystal and the model with elastic Hooke’s inter-

tetrahedral forces advocated in sections 1 and (2.5.27).

As a result I prefer to consider the DMESC in its ground state to be a perfect fluid

(not a superfluid), and by definition without any stresses. Only if mignons and

other excitations are put into the system, this will produce stress and strain, thus

modifying metric and curvature in the way discussed in section 1 and giving rise to

the effects of gravity.

2.5.29 Is energy conserved in the tetron dynamics?

Yes. This is in contrast to general relativity, where energy is only ’covariantly’

conserved, i.e. the energy momentum tensor fulfils DµTµν = 0 where Dµ is the

covariant derivative involving the Christoffel symbols. The latter point can be bet-

ter understood by considering the Einstein equation Gµν = κTµν which relates the

energy-momentum Tµν of matter(=mignons) to the intrinsic curvature equivalent to

displacements of tetrahedrons.

The Einstein equation can be re-interpreted by saying that the total energy mo-

mentum of the universe with contributions Gµν from the tetrahedrons and Tµν from

the mignons is not only constant but actually zero, and that energy can be shifted

from one side of the equation to the other, i.e. from mignons to tetrahedrons and

vice versa. A famous example is the red shift of photons in the expanding universe

where the photons lose energy to the FLRM metric.

In the tetron model, this is not the whole story. As discussed after (37), the vac-

uum energy density of the universe does not only consist in the (small) contribution

from the cosmological constant responsible for dark energy, cf. (2.5.36), and the

(somewhat larger) contribution from the QCD and electroweak symmetry breaking

vacua, but there is also a contribution

VT ∼ Λ4
P (126)

to the vacuum energy from the tetronic ground state energy fig. 2. This contribution

arises as the product of the energy of a bound tetrahedron (∼ ΛP ) and its inverse
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volume (∼ Λ3
P ) and is very large, because the tetrahedrons are closely packed and

strongly bound within the hyper-crystal.

In the framework of quantum field theories the vacuum energy density arises as the

sum of all zero point oscillations. For example, the vacuum energy for a free field is

the sum of the ground state energies ωk ∼
√
k2 +m2 of all oscillator modes k. For

a cubic box of side-length LP , one has to sum over integers n = kLP /2π, and in the

continuum limit this turns into an integral
∫ √

k2 +m2d3k ∼ Λ4
P (127)

Using the Planck scale as a natural cutoff, this is again much larger than the cosmo-

logical constant and the energies of the QCD and electroweak symmetry breaking

vacua. In field theory[64] it is usually renormalized away, so that it does not ap-

pear in any particle or gravitational energy balance consideration. By contrast, in

the tetron model it must be included and added to the ground state energy of the

hyper-crystal, which according to (126) is of the same order of magnitude.

There is also a third contribution to be included in tetron energy considerations,

and that is elastic energy ∼ (∂µuν+∂νuµ)
2 from displacements of tetrahedrons with

vanishing curvature. It is true that these contributions do not matter in the energy

balance of ordinary matter, because mignons do not react to a ’pure gauge’

gµν = ηµν + ∂µuν + ∂νuµ (128)

For the tetron dynamics, however, they are relevant.

2.5.30 We are living in a rather cold universe. Why don’t we see a

transition from the elastic hyper-crystal to a rigid crystalline

structure at zero temperature?

In such a rigid crystal no shifts of the tetrahedrons would be allowed, and therefore

one expects gravitation to disappear.

One could speculate that the present temperatures of the universe are not small

enough for the solidification to occur, or that pressure is always needed like for the

solidification of He-3.

Note that these remarks are only true in the absence of mignons. When a mignon
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excitation is present, its mass/energy induces a stress in the hyper-crystal which at

least locally re-liquidizes the system. In other words, the mignon’s mass/energy is

automatically accompanied by curvature, i.e. a non-vanishing gravitational poten-

tial.

2.5.31 Are the internal spaces compact or infinite?

They are infinite, no assumption about compactification of internal spaces needs to

be made. The reason why we cannot step into the internal dimensions is because

we are built from quasi-particles and thus cannot leave the hyper-crystal(=our uni-

verse).

According to fig. 2, the hyper-crystal is restricted to a 3+1 dimensional ’surface’ in

R6+1. Going away from this ’surface’, internal space is empty, because according to

(2.5.32) and (2.5.10) ordinary matter cannot dissipate into the internal dimensions.

Exception: other hyper-crystals may have condensed at big bang times. In general

these will lie skewed with respect to the one we live in and form separate ’universes’,

cf. (2.3.24) and (2.5.37).

2.5.32 How can one avoid dissipation of energy into the internal dimen-

sions?

Since internal space is infinite, matter and energy could in principle disappear into

it. This could happen in the form of particles which move in the direction orthogonal

to the hyper-crystal. However, in (2.1.2) and (2.1.3) I have taken the viewpoint that

all observed particles including the photon are excitations of the crystal and as such

cannot exist away from it. Furthermore, the tetrons, from which the crystal is made,

are assumed to be so strongly bound, that they can be split off the hyper-crystal

only by supply of Planck scale energies.

2.5.33 Was there a GUT era in the early universe where electroweak

and strong couplings were unified?

No, because there is no GUT – cf. (2.3.22). In the tetron model the strong force has

a different origin than the electroweak one (cf. 2.3.28), and thus GUT unification
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seems unlikely.

The proper history of the universe starts with the end of the crystallization process

(=the inflation era), at which point electromagnetism and weak forces are unified,

cf. (2.1.12). In the standard terminology this is the starting point of the radiation

dominated era, with photons, effectively massless W/Z and dark matter as the

dominant excitations. At the end of the electroweak era at temperatures of order

ΛF there is the alignment of isospin vectors corresponding to the electroweak phase

transition which gives masses to q/l and W/Z.

2.5.34 Is there a unification of the SM and gravitational forces at the

Planck scale?

Not in the sense of supergravity and related models. Even at big bang tempera-

tures gravity and SM forces have a very different nature. Although it is true that

everything observed can eventually be derived from the fundamental forces among

tetrons, the SM interactions trace back to interactions between isospin vectors of

tetrons, whereas gravity is an elastic force between tetrahedrons which stems from

remnant tetron coordinate interactions.

The question, why the forces of gravity appear to be much weaker than particle

physics effects, has been treated in (2.3.19) and (2.3.21).

2.5.35 Are there dark matter candidates in the model?

Yes, there are several possibilities:

–further internal excitations of the crystal, like phinons, cf. (2.3.25) and [3]. Their

interactions with mignons(=ordinary matter) is tiny, because they are not involved

in the isomagnetic correlations giving rise to the SM.

–the pseudoscalar η arising in the 2HDM ansatz (2.1.14). Such a possibility is widely

discussed in the literature [68, 69] provided the η is inert, i.e. does not interact with

quarks and leptons. This condition can be fulfilled in the present model essentially

because of (59). Note that right after inflation there is the radiation dominated era

where the inert scalar is copiously produced together with a soup of many other

tetron-antitetron bound state excitations (photon, W/Z, Φ and Φ′).
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2.5.36 Is there an explanation for dark energy?

Observations indicate that the universe’s expansion rate was decelerating until about

5 billion years ago, after which time the expansion began re-accelerating. Phe-

nomenologically, this can be explained by including a cosmological constant ΛC in

the theory (this amounts to saying that a volume in space has some intrinsic funda-

mental vacuum energy creating a pressure which makes the universe expand) or by

a weakly fluctuating scalar ’quintessence’ field (this does a similar job).

Furthermore, such a type of energy that is not matter or dark matter is also needed

to explain the apparent flatness of the universe (absence of any detectable global

curvature). According to that argument the contribution of dark energy should be

more than twice as large as that of matter and dark matter together.

A third explanation of the dark energy effect is offered within the f(R,T) models

(29) discussed in section 1 by suitable accommodation of the 11 phenomenological

coupling constants[61].

To understand dark energy within the tetron model one should remember, that

the micro-elastic forces that have initially induced cosmic expansion during the big

bang crystallization process are still at work today. For example, there may still be

accretions to the hyper-crystal at its edges which are setting free large amounts of

crystallization energy. The energy is then transferred to the other tetrahedrons of

the crystal in the form of weakly fluctuating energy/density waves traveling through

the universe. This picture is well along the line of the quintessence idea mentioned

above.

Another possibility is that the increased acceleration arises, because the average dis-

tance LP between tetrahedrons has not yet reached its equilibrium value rs. This line

of argument was followed in (2.5.27) and gives rise to a self-contained explanation

of the dark energy effect.

2.5.37 Are there other universes?

Probably yes. One may consider the original R(6,1) spacetime as a container of

universes. When the tetron gas cooled down and temperatures reached the crys-

tallization temperature (Planck energy), germs of 3+1-dimensional hyper-crystals

came into being in various places of R(6,1), cf. (2.3.24). These crystals then grew
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in their respective 3+1 dimensionsal subspaces, each of them making up for a sep-

arate R(3,1) spacetime. Since they are of low dimension as compared to the whole

R(6,1), they hardly interfere with one another. If at all, they intersect in isolated (1-

dimensional) points. At those points a defect in the isomagnetic and/or coordinate

crystal structure will show up, because the isospin and/or coordinate vectors of the

tetrons do not know how to orient themselves.

2.5.38 On the interpretation of black holes in the tetron model

From its very nature the discrete elastic hyper-crystal does not allow for mathemat-

ical singularities. It is true that black holes correspond to solutions of the Einstein

equations, and the Einstein equations according to section 1 arise from the effective

action (29) for the DMESC. However, these equations are not applicable at arbitrary

small distances, where the discrete structure becomes perceptible.

It is generally believed, that if enough mass M is squeezed into a roughly spheri-

cal volume of size r = GM/c2, it collapses into a black hole. What happens from

the standpoint of the tetrahedrons is that inside the black hole’s event horizon the

crystal becomes extremely compressed, i.e. the distances between the tetrahedrons

become smaller and smaller. At the same time the temperature strongly increases as

more and more matter (mignons, gauge bosons and other quasi-particle excitations)

is accreted. When the temperature exceeds the Fermi scale, the isospin alignment

of the hyper-crystal gets lost and the accreted mignons decay to photons and weak

gauge bosons. In some sense this scenario is reverse to the appearance of the ’radia-

tion dominated’ epoque of the big bang. Finally, if temperatures reach the order of

the crystallization energy ΛP , the DMESC structure completely dissolves and the

tetrahedrons vaporize to form a gas which is set free into the full R(6,1), i.e. into the

internal directions.

It is conceivable that this hot gas becomes the germ of another hyper-crystallization

process making up for another universe in the sense of (2.5.37). One could then

distinguish ’parent’ and ’child’ universes in an obvious sense. If our own universe

would have been created as a child under such circumstances, the appearance of a

big bang with a radially symmetric expansion like desribed by the FLRW metric

(104) would be somewhat easier to understand than in the picture developed in sec-
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tion 1 where accretions of tetrons to the edges of the hyper-crystal could in principle

provoke deviations from an FLRW behavior, cf. (2.5.36).

2.5.39 Should gravity be quantized?

As emphasized in (2.5.6), the quantum behavior of nature is closely related to the

granularity of physical space. Therefore it seems natural to believe that in circum-

stances where this discrete structure becomes relevant, gravitational effects should

be treated in a quantum theoretical manner.

However, gravity in the tetron model is an effective interaction of (internal) tetrahe-

drons in an elastic/plastics system. Its description by the Einstein-Hilbert action or

its generalization (29) is valid only at distances ≫ LP , i.e. looses its validity when

probed at distances where the discrete structure becomes appearant. Instead of

’quantizing’ gravity one should quantize the fundamental interaction among tetrons.

2.5.40 Why is the speed of gravitational waves equal to the speed of

light? Why is there a universal maximum speed for all the objects

in the universe?

In section 1 general relativity has been interpreted as an effective theory for an

elastic system of internal tetrahedrons. Gravitational waves exist in this theory on

the classical level, as solutions to the Einstein equations. They are metrical waves,

whose velocity is forced to be equal to the speed of light by the condition of local

Lorentz invariance. In the tetron model they can be associated to some of the den-

sity fluctuations of tetrahedrons11 discussed in connection with (23).

In the tetron theory elastic waves propagate at the speed (121) of a typical exci-

tation in an elastic medium, and thus at the same speed as photons and massless

mignons, cf. (42). At first sight this looks like a rather amazing feature, because

it was argued in (2.5.34) that the isomagnetic particle physics interactions of the

photon and the elastic gravitational interactions do not have much in common.

In order to get a clearer understanding one should realize that the world according

11In distinction the internal translational excitations were coined phinons in [3], while the internal

rotational excitations are mignons, i.e. quarks and leptons.
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to the microscopic model falls apart into 2 rather disparate pieces:

-the realm of what philosophers would call emergent or appearance phenomena, i.e.

isomagnetic quasi-particles like quarks, leptons, Higgs and gauge fields. Since all

these excitations fulfill Lorentz invariant wave equations, any phenomenon and sig-

nal propagation in this sphere is necessarily limited by the speed of light.

-the realm of what could be called ’true’ or tetron matter, consisting of tetrons, of

aligned tetrahedrons and of the DMESC with its elastic/metric structure. This may

rightfully be called ′υλη πρωτη. However, while for Aristotle this was more an idea

than a concrete material, here it can be understood in a real, materialistic sense.

Just for joke one could call it ’tatter’ to distinguish it from the ordinary mignon

material which remains m-atter.

Since the relevant scales ΛP ≫ ΛF are so vastly different, these two spheres do not

have much in common. We ourselves live in the sphere of appearances and can

perceive anything coming from the tatter sector only if suitable devices of mignon

matter are patched in between. Gravity, for example, which originally corresponds

to a shift of tetrahedron locations on the DMESC, becomes visible in our physical

world only due to the small and stiff reaction to suitable conglomerations of m-

atter. In particular, the physical effects of a gravitational wave can only be seen by

plugging appearances in between, i.e. m-atter which ’rides’ the gravitational waves.

The principle of relativity states, that m-atter must respect local Lorentz invari-

ance. Therefore, although the fundamental interactions among tetrons may proceed

at other velocities than c, the gravitational interactions between m-atter particles

always appear to proceed at c.

Let me repeat that these arguments are supported by considering the dispersion

relation for mignons (41) and (42). As shown at the end of section 1, the propaga-

tion of mignons can be completely described by c, which itself according to (36) is

completely given in terms of tetron variables as c2 = ζ/ρT .

2.5.41 How can metric velocities larger than c be interpreted in the

tetron model?

This question is related to the discussion in (2.5.14),(2.5.15), (2.5.16), (2.5.26) and

(2.5.40). c is the maximum speed for all the isomagnetic quasi-particles that build

114



our known universe. However, this limit does not apply to the bound tetrahedrons

which make up the hyper-crystal and are the carriers of the quasi-particles. As

evident from (24), in the tetron model metrical changes are associated to displace-

ments of tetrahedrons. The corresponding velocities of the tetrahedrons have been

particularly large (> c) in the inflationary period shortly after the big bang (crys-

tallization) where a lot of crystallization energy had been released.

According to (107) one can roughly identify the metric velocity in an FLRW uni-

verse with the Hubble flow Hd. In the tetron model this can be interpreted as the

relative velocity of 2 tetrahedrons at distance d.

3 Conclusions

The present review is devoted to a model which tries to give a microscopic meaning

to physical phenomena usually described by the Standard Model of elementary par-

ticles. By introducing an additional level of matter one is able to understand and to

calculate known particle properties (like the quark and lepton masses and mixings)

from first principles and furthermore to make predictions for future experiments.

Most prominent among the latter are:

–the existence of a second Higgs doublet similar as in inert 2HDM models[68, 69].

–the existence of a fourth family of quarks and leptons. This family, however, is

distinct from the other three, not only because it has a very massive neutrino but

also because its couplings are not given by the SM. The point is that the 8 Dirac

particles of this family do not arise from vibrations of iso-’magnetizations’ ψ†~τψ but

of internal ’densities’ ψ†ψ, and therefore they do not obtain their masses via the

Higgs mechanism and the SSB fig.2.

After discussing particle physics properties, implications of the tetron model on the

big bang and on phase transitions in the early universe have been elucidated. This

has led to the idea that besides the

–isomagnetic interactions among aligned isospin vectors which are relevant for par-

ticle physics

one should consider 2 other forces:

–strong rigid coordinate forces among tetrons fixing the form and extension of the
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(internal) tetrahedrons.

–weak elastic forces between these tetrahedrons, which are the basis of the gravita-

tional interactions.

All 3 types of forces are assumed to derive from one universal interaction among

the tetrons, and it was suggested that one should use octonion multiplication and

perhaps supersysmmetry as a guideline which eventually will lead to the correct

renormalizable theory in 6+1 dimensions.

The various viewpoints on the model presented in the preceding sections have sup-

plied a set of important requirements as to the nature of tetron interaction. We

already know that

–tetrons have a tendency to form excited pairs with antitetrons of neighboring tetra-

hedrons in the crystal with similarity to Cooper pairs or Frenkel excitons of solid

state physics.

–tetron bonds are extremely short, of the order of the Planck length.

–they get saturated in tetrahedral configurations.

–these configurations form 3-dimensional monolayer crystal structures, i.e. there is

no stacking of tetrahedrons on top of each another, no growth of the hyper-crystal

into internal directions.

–isospins within the quartets of tetrons are maximally frustrated (fig. 1).

–once tetrons are in such a saturated hyper-crystal configuration, there is a left-over

elastic force among the internal tetrahedrons, which gives rise to the gravitational

interactions.

In summary a new picture of the physical world was presented. It was shown that

–quarks and leptons can be interpreted as internal magnons of a discrete iso-magnetic

structure and that their spectrum is due to a tetrahedral symmetry group which re-

mains unbroken down to the lowest energies

–the SU(2)×U(1) gauge group of the SM is related to an iso-magnetic ’Heisenberg’

SU(2) and the SM SSB can be obtained from a global ordering of internal magnets

–the big bang is due to a crystallization process which has released a large amount of

latent energy and has led to the formation of a rapidly expanding 3+1 dimensional

universe

–the physical world including the gauge bosons consists of excitations which travel

as quasi-particles through the hyper-crystal. Since they are described by relativistic
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wave equations, this leads to the appearance of Minkowski space (and the associated

Lorentz structure).

–an ’elastic’ rest system of the hyper-crystal exists which is identical to the cos-

mological comoving coordinates. However, due to the quasi-particle nature of our

physical world this cannot be observed in Micholsen-Morley type of experiments.
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