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Abstract

After a cursory introduction of the basic ideas behind Born’s Recipro-
cal Relativity theory, the geometry of the cotangent bundle of spacetime is
studied via the introduction of nonlinear connections associated with cer-
tain nonholonomic modifications of Riemann–Cartan gravity within the
context of Finsler geometry. A novel gauge theory of gravity in the 8D
cotangent bundle T ∗M of spacetime is explicitly constructed and based
on the gauge group SO(6, 2)×sR

8 which acts on the tangent space to the
cotangent bundle T(x,p)T

∗M at each point (x,p). Several gravitational
actions involving curvature and torsion tensors and associated with the
geometry of curved phase spaces are presented. We conclude with a brief
discussion of the field equations, the geometrization of matter, QFT in
accelerated frames, T-duality, double field theory, and generalized geom-
etry.

Keywords : Gravity, Finsler Geometry, Born Reciprocity, Phase Space.

1 Born’s Reciprocal Relativity in Phase Space

Born’s reciprocal (“dual”) relativity [1] was proposed long ago based on the
idea that coordinates and momenta should be unified on the same footing, and
consequently, if there is a limiting speed (temporal derivative of the position
coordinates) in Nature there should be a maximal force as well, since force is the
temporal derivative of the momentum. A maximal speed limit (speed of light)
must be accompanied with a maximal proper force (which is also compatible
with a maximal and minimal length duality). The generalized velocity and
acceleration boosts (rotations) transformations of the 8D Phase space, where

∗Dedicated to the loving memory of Carmenza Castro Ramirez
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Xi, T, E, P i; i = 1, 2, 3 are all boosted (rotated) into each-other, were given by
[2] based on the group U(1, 3) and which is the Born version of the Lorentz
group SO(1, 3).

The U(1, 3) = SU(1, 3) ⊗ U(1) group transformations leave invariant the
symplectic 2-form Ω = − dt∧dp0+δijdx

i∧dpj ; i, j = 1, 2, 3 and also the following
Born-Green line interval in the 8D phase-space (in natural units h̄ = c = 1)

(dσ)2 = (dt)2 − (dx)2 − (dy)2 − (dz)2 +
1

b2
(
(dE)2 − (dpx)2 − (dpy)2 − (dpz)

2
)

(1.1)
the rotations, velocity and force (acceleration) boosts leaving invariant the sym-
plectic 2-form and the line interval in the 8D phase-space are rather elaborate,
see [2] for details.

These transformations can be simplified drastically when the velocity and
force (acceleration) boosts are both parallel to the x-direction and leave the
transverse directions y, z, py, pz intact. There is now a subgroup U(1, 1) =
SU(1, 1)⊗ U(1) ⊂ U(1, 3) which leaves invariant the following line interval

(dω)2 = (dT )2 − (dX)2 +
(dE)2 − (dP )2

b2
=

(dτ)2

(
1 +

(dE/dτ)2 − (dP/dτ)2

b2

)
= (dτ)2

(
1 − F 2

F 2
max

)
(1.2)

where one has factored out the proper time infinitesimal (dτ)2 = dT 2 − dX2 in
(1.2). The proper force interval (dE/dτ)2− (dP/dτ)2 = −F 2 < 0 is ”spacelike”
when the proper velocity interval (dT/dτ)2 − (dX/dτ)2 > 0 is timelike. The
analog of the Lorentz relativistic factor in eq-(1.2) involves the ratios of two
proper forces.

If (in natural units h̄ = c = 1) one sets the maximal proper-force to be given
by b ≡ mPAmax, where mP = (1/LP ) is the Planck mass and Amax = (1/Lp),
then b = (1/LP )2 may also be interpreted as the maximal string tension. The
units of b would be of (mass)2. In the most general case there are four scales
of time, energy, momentum and length that can be constructed from the three
constants b, c, h̄ as follows

λt =

√
h̄

bc
; λl =

√
h̄ c

b
; λp =

√
h̄ b

c
; λe =

√
h̄ b c (1.3)

The gravitational constant can be written as G = αG c4/b where αG is a di-
mensionless parameter to be determined experimentally. If αG = 1, then the
four scales (1.3) coincide with the Planck time, length, momentum and energy,
respectively.

The U(1, 1) group transformation laws of the phase-space coordinatesX,T, P,E
which leave the interval (1.2) invariant are [2]

T ′ = T coshξ + (
ξv X

c2
+

ξa P

b2
)
sinhξ

ξ
(1.4a)
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E′ = E coshξ + (−ξa X + ξvP )
sinhξ

ξ
(1.4b)

X ′ = X coshξ + (ξv T −
ξa E

b2
)
sinhξ

ξ
(1.4c)

P ′ = P coshξ + (
ξv E

c2
+ ξa T )

sinhξ

ξ
(1.4d)

ξv is the velocity-boost rapidity parameter and the ξa is the force (accelera-
tion) boost rapidity parameter of the primed-reference frame. These parameters
ξa, ξv, ξ are defined respectively in terms of the velocity v = dX/dT and force
f = dP/dT (related to acceleration) as

tanh(
ξv
c

) =
v

c
; tanh(

ξa
b

) =
F

Fmax
, ξ =

√
(
ξv
c

)2 + (
ξa
b

)2 (1.5)

It is straightforwad to verify that the transformations (1.4) leave invariant
the phase space interval c2(dT )2−(dX)2+((dE)2−c2(dP )2)/b2 but do not leave
separately invariant the spacetime proper time interval (dτ)2 = dT 2 − dX2,
nor the interval in energy-momentum space 1

b2 [(dE)2 − c2(dP )2]. Only the
combination

(dσ)2 = (dτ)2

(
1 − F 2

F 2
max

)
(1.6)

is truly left invariant under force (acceleration) boosts (1.4). They also leave
invariant the symplectic 2-form (phase space areas) Ω = − dT ∧ E + dX ∧ dP .

One can verify also that the transformations eqs-(1.4) are invariant under
the discrete transformations

(T,X)→ (E,P ); (E,P )→ (−T,−X), b→ 1

b
(1.7)

we argued [17] that the latter transformation b → 1
b is a manifestation of the

large/small tension T -duality symmetry in string theory. In natural units of
h̄ = c = 1, the maximal proper force b has the same dimensions as a string
tension (energy per unit length) (mass)2.

To understand the invariant meaning of the interval in phase space dσ, and
to show the consistency of eqs-(1.4,1.5,1.6), let us describe the following scenario.
A massive free particle does not experience any force, thus the momentum is
conserved so that dpa

dτ = 0 and the flat phase space interval is (dσ)2 = (dτ)2.
In an accelerated frame of reference the massive particle experiences a pseudo-

force which implies that
dp′a
dτ ′ 6= 0. Upon choosing an infinite rapidity parameter

ξa = ∞ in eqs-(1.5), the value of the pseudo-force reaches its maximal proper
value Fmax = b. Also, (dτ ′)2 = ∞ when the acceleration rapidity parameter
is ∞, as one can verify from eqs-(1.4) by simple inspection. Since the interval
in flat phase space (dσ)2 (1.6), in an inertial frame and accelerated frame of
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reference, respectively, remains invariant under the transformations (1.4) one
has that (dσ)2 = (dτ)2 = (dτ ′)2(1−F 2/F 2

max) =∞×0 6= 0. The latter product
cannot be zero, because if (dτ)2 were zero, in the inertial non-accelerated frame
of reference , this would mean that the massive free particle would have followed
a null geodesic, which it cannot do since only massless photons can.

We explored in [5] some novel consequences of Born’s reciprocal Relativity
theory in flat phase-space and generalized the theory to the curved spacetime
scenario. We provided, in particular, six specific results resulting from Born’s
reciprocal Relativity and which are not present in Special Relativity. These are
: momentum-dependent time delay in the emission and detection of photons;
energy-dependent notion of locality; superluminal behavior; relative rotation of
photon trajectories due to the aberration of light; invariance of areas-cells in
phase-space and modified dispersion relations.

A discussion of Mach’s principle within the context of Born Reciprocal Grav-
ity in Phase Spaces was described in [17]. The Machian postulate states that the
rest mass of a particle is determined via the gravitational potential energy due
to the other masses in the universe. It is also consistent with equating the max-
imal proper force mPlanck(c2/LPlanck) to MUniverse(c

2/RHubble) and reflecting
a maximal/minimal acceleration duality. By invoking Born’s reciprocity be-
tween coordinates and momenta, a minimal Planck scale should correspond to
a minimum momentum, and consequently to an upper scale given by the Hubble
radius. Further details can be found in [17].

The purpose of this work is to analyze the curved phase-space scenario in
more detail and the geometry of the cotangent bundle of spacetime via the in-
troduction of nonlinear connections associated with certain nonholonomic mod-
ifications of Riemann–Cartan gravity within the context of Finsler geometry. In
the case of the cotangent space of a d-dim manifold T ∗Md the metric compo-
nents can be equivalently rewritten in the block diagonal form [10] such that
the line element is given by

(ds)2 = gij(x
k, pa) dxid xj + hab(xk, pc) δpa δpb,

i, j, k = 1, 2, ...., d, a, b, c = 1, 2, ...., d (1.8)

if instead of using the standard coordinate basis frames one introduces the
following nonholonomic frames (non-coordinate basis)

δi = δ/δxi = ∂xi + Nia ∂
a = ∂xi + Nia ∂pa ; ∂a ≡ ∂pa =

∂

∂pa
(1.9)

One should note the key position of the indices that allows us to distinguish
between derivatives with respect to xi and those with respect to pa. The dual
basis of (δi = δ/δxi; ∂a = ∂/∂pa) is

dxi, δpa = dpa − Nja dx
j (1.10)

where the Nja(x, p)-coefficients define a nonlinear connection. When Nia = 0
and hab = gab/b2 = ηab/b2, the interval in eq-(1.8) reduces to the Born-Green
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interval in eq-(1.1). In the very special case such that Nja(x, p) = Γkja(x)pk, the

N -connection becomes linear in the momentum with Γkja(x) being the underly-
ing spacetime connection. The N–connection structures can be naturally defined
on (pseudo) Riemannian spacetimes and one can relate them with some non-
holonomic frame fields (vielbeins) satisfying the relations δαδβ−δβδα = W γ

αβδγ ,

with nontrivial nonholonomy coefficients W γ
αβ given in terms of derivatives of

Nia [9], [10]. The indices α, β, γ comprise both base and fiber coordinate indices.
An N-linear connection D on T ∗M can be uniquely represented in the

adapted basis in the following form [10], [9]

Dδj (δi) = Hk
ij δk; Dδj (∂

a) = − Ha
bj ∂

b; (1.11a)

D∂a(δi) = Ckai δk; D∂a(∂b) = − Cbac ∂c (1.11b)

where Hk
ij(x, p), H

a
bj(x, p), C

ka
i (x, p), Cbac (x, p) are the connection coefficients.

For any N-linear connection D with the above coefficients the torsion 2-forms
are

Ωi =
1

2
T ijk dx

j ∧ dxk + Ciaj dxj ∧ δpa (1.12a)

Ωa =
1

2
Rjka dx

j ∧ dxk + P baj dx
j ∧ δpb +

1

2
Sbca δpb ∧ δpc (1.12b)

and the curvature 2-forms are

Ωij =
1

2
Rijkm dxk ∧ dxm + P iajk dx

k ∧ δpa +
1

2
Siabj δpa ∧ δpb (1.13)

Ωab =
1

2
Rabkm dxk ∧ dxm + P acbk dxk ∧ δpc +

1

2
Sacdb δpc ∧ δpd (1.14)

where one must recall that the dual basis of δi = δ/δxi, ∂a = ∂/∂pa is given by
dxi, δpa = dpa −Njadxj . The explicit expressions for the terms

T ijk, Ciaj , Rjka, P
b
aj , S

bc
a , R

i
jkm, P

ia
jk , S

iab
j , Rabkm, P

ac
bk , S

acd
b (1.15)

in eqs-(1.12-1.14) are given explicitly in terms of the connection coefficients of
eqs-(1.11) and the nonlinear connection and nonholonomy coefficients as shown
in [10], [9]. The expressions are rather lengthy, for this reason we refer to [10],
[9] for detailed calculations.

The Hamilton geometry of the phase space of particles whose motion is
characterized by generalized dispersion relations was recently studied by [6].
In this framework, spacetime and momentum space are naturally curved and
intertwined, allowing for a simultaneous description of both spacetime curva-
ture and non-trivial momentum space geometry. The interplay between space-
time curvature and non-trivial momentum space effects was essential in the
notion of “relative locality” and in the deepening of the relativity principle [7].
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In the cotangent space description one has covariance under a more restricted
set of coordinate transformations of the form [10]

x′i = x′i(xj), p′i = pj
∂xj

∂x′i
(1.16)

such that there is an entanglement of spacetime and momentum variables in the
transformed momentum fiber coordinates. However, Quaplectic transformations
in flat phase space have a different form x′i = x′i(xj , pj) and p′i = p′i(x

j , pj).
Thus one cannot accommodate the Quaplectic transformations in eqs-(1.4) to
curved phase spaces (the cotangent bundle T ∗M) in the manner described by eq-
(1.16). This problem is beyond the scope of this work. A plausible solution is to
complexify the spacetime cotangent bundle by introducing complex coordinates
zµ = xµ+ ipµ/b, and whose complex conjugate momenta are πµ, along with the
transformations z′µ = z′µ(zν), π′µ = πν

∂zν

∂z′µ . This would lead to a mixing of xµ

and pµ encoded in the transformations of the base coordinates z′µ = z′µ(zν).
To finalize this section, we remark that in this letter we are following another

approach than the one based on Hamilton geometry in investigating curved
phase spaces. In the next section, a novel gauge theory of gravity in the 8D
cotangent bundle T ∗M of four-dimensional spacetime is constructed and based
on the gauge group SO(6, 2)×sR8. Several gravitational actions associated with
the geometry of curved phase spaces are presented. The geometry of the 8D
tangent bundle of 4D spacetime and the physics of a limiting value of the proper
acceleration in spacetime [4] has been studied by Brandt [3] . Generalized 8D
gravitational equations reduce to ordinary Einstein-Riemannian gravitational
equations in the infinite acceleration limit. We must emphasize that the results
described in the next section are quite different than those obtained earlier by
us in [13] and by [10], [9], [3], [6] among others.

2 Gauge Theories of Gravity in the Cotangent
Bundle

In this section we will construct a novel gauge theory of gravity in the 8D cotan-
gent bundle T ∗M based on the gauge group given by the semidirect product
SO(6, 2) ×s R8. Let us begin with a Lie group G; its associated Lie algebra
is spanned by the generators LA, A = 1, 2, . . . , dim G, and whose structure
constants are fCAB . The Lie algebra commutator is [LA,LB ] = fCABLC . The
components of the gauge field strength in the 8D cotangent bundle T ∗M , and
corresponding to the Lie-algebra valued gauge fields AAi LA,AAa LA, are

FAij = δiAAj − δjAAi + [ Ai, Aj ]A − WL
ij AAL =

(
∂

∂xi
+ Nib

∂

∂pb
) AAj − (

∂

∂xj
+ Njb

∂

∂pb
) AAi +
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ABi ACj fABC − WL
ij AAL (2.1)

FAab =
∂

∂pa
AAb −

∂

∂pb
AAa + ABa ACb fABC − WL

ab AAL (2.2)

FAia = δiAAa − ∂aAAi + ABi ACa fABC − WL
ia AAL (2.3)

FAai = ∂aAAi − δiAAa + ABa ACi fABC − WL
ai AAL (2.4)

where the nontrivial nonholonomy coefficients are WL
MN = −WL

NM . The indices
M,N,L comprise both base xi and fiber coordinate pa indices. The nonholo-
nomic frame fields in eq-(1.9) satisfy the relations δMδN − δNδM = WL

MNδL.
There is anti-symmetry in the indices FAia = −FAai. From eq-(1.10) one has
that the Lie-algebra-valued two-form field strengths are given by FAiadxi ∧ δpa,
where dxi ∧ δpa = − δpa ∧ dxi; and by FAijdxi ∧ dxj , FAabδpa ∧ δpb, respec-
tively. In nonholonomic frames one must include the nonholonomy coefficients
WL
MN in the definition of the gauge field strengths resulting from the exte-

rior differential of a one-form dA. In a coordinate-free form it is given by
dA(X,Y) = X(A(Y))−Y(A(X))−A([X,Y]) [14]. In a holonomic frame, the
basis vectors commute [X,Y] = 0 and one recovers the standard definition of
the exterior derivative of a one-form.

From eq-(1.9) one can evaluate the nonholonomy coefficients WL
MN which

turn out to be given by

W a
ij = δiN

a
j − δjN

a
i = (∂i + N b

i ∂b) N
a
j − (∂j + N b

j ∂b) N
a
i

W b
ia = −W b

ai = − ∂aN b
i (2.5a)

and the rest are vanishing

W k
ij = 0, W j

ia = − W b
ai = 0, W i

ab = 0, W c
ab = 0 (2.5b)

We shall choose the gauge group to be the semidirect product SO(6, 2) ×s
R8 which is the extension of the 4D Poincare group SO(3, 1) ×s R4 given by
the semidirect product of the Lorentz group with the translations. The flat
metric in the tangent space to the cotangent bundle T(x,p)T

∗M , at the point
(x,p), is ηAB = diag (−,+,+,+,−,+,+,+). There are two timelike directions
corresponding to the temporal coordinate x0 and the energy p0.

The SO(6, 2) Lie algebra generators LAB obey the commutation relations

[LAB , LCD] = (ηBCLAD − ηACLBD − ηBDLAC + ηADLBC). (2.6a)

The other commutators associated with the translation generators PA are

[LAB , PC ] = ( ηBC PA − ηAC PB ); [PA, PB ] = 0 (2.6b)
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In a holonomic frame (a coordinate basis) the metric GMN in the 8D cotan-
gent bundle T ∗M is given by

GMN = GMN (x, p) =(
gij(x, p) + hab(x, p) N

a
i (x, p) N b

j (x, p) − Na
i (x, p) hab(x, p)

− N b
j (x, p) hab(x, p) hab(x, p)

)
(2.7)

In a non-holonomic frame (a non-coordinate basis) the metric GMN is (gij , hab)
block diagonal as depicted in eq-(1.8). The entries of GMN have different units,
one could introduce suitable factors of b in order to have the same units for all
the entries of GMN if one wishes. For simplicity we shall set b = 1. One could
also have complex (Hermitian) metrics of the form GMN = G(MN) + iG[MN ]

with an antisymmetric piece G[MN ]. We refer to [11] for a study of gauge
theories of Born Reciprocal Gravity based on the Quaplectic group [2] given by
the semidirect product of the (pseudo) unitary group with the Weyl-Heisenberg
group.

The frame EAM fields are introduced such that

GMN = EAM EBN ηAB (2.8)

where A,B = 1, 2, . . . , 8 are the indices of the tangent space to the 8D cotangent
bundle T(x,p)T

∗M , at each point (x,p). M,N = 1, 2, . . . , 8 are the indices of
the cotangent bundle T ∗M of the 4D spacetime manifold M .

The Lie-algebra valued gauge field is

AM = ΩABM LAB + EAM PA (2.9)

where ΩABM (analog of the spin connection) is the field that gauges the SO(6, 2)
symmetry. EAM gauges the (Abelian) local translations in T(x,p)T

∗M . Defining
the derivative operators as

∂̂M ≡ (δi, ∂a) = (
∂

∂xi
+ Nib

∂

∂pb
,

∂

∂pa
) (2.10)

where we take the index M to comprise both the base spacetime and fiber
indices. The Lie-algebra valued field strength is given by

FMN = ∂̂MAN − ∂̂NAM + [AM , AN ] − WL
MN AL (2.11)

The curvature two-form associated with the spin connection ΩABM = − ΩBAM
is

RABMN ≡ FABMN = ∂̂MΩABN − ∂̂NΩABM + ΩAC[M ΩCBN ] − WL
MN ΩABL (2.12)

and whose explicit components are
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RABij ≡ FABij = (
∂

∂xi
+ Nib

∂

∂pb
) ΩABj − (

∂

∂xj
+ Njb

∂

∂pb
) ΩABi +

ΩAC[i ΩCBj] − WL
ij ΩABL (2.13)

RABab ≡ FABab =
∂

∂pa
ΩABb − ∂

∂pb
ΩABa + ΩAC[a ΩCBb] − WL

ab ΩABL (2.14)

RABia ≡ FABia = (
∂

∂xi
+ Nib

∂

∂pb
) ΩABa − ∂

∂pa
ΩABi +

ΩAC[i ΩCBa] − WL
ia ΩABL (2.15)

and FABai = −FABia . A summation over the repeated indices is implied and
[MN ] denotes the anti-symmetrization of indices with weight one.

The explicit components of the torsion two-form defined as

T AMN ≡ FAMN = ∂̂ME
A
N − ∂̂NE

A
M + ΩAC[M ECN ] − WL

MN EAL (2.16)

are

T Aij ≡ FAij = (
∂

∂xi
+ Nib

∂

∂pb
) EAj − (

∂

∂xj
+ Njb

∂

∂pb
) EAi +

ΩAC[i ECj] − WL
ij E

A
L (2.17)

T Aab ≡ FAab =
∂

∂pa
EAb −

∂

∂pb
EAa + ΩAC[a ECb] − WL

ab E
A
L (2.18)

T Aia ≡ FAia = (
∂

∂xi
+ Nib

∂

∂pb
) EAa −

∂

∂pa
EAi +

ΩAC[i ECa] − WL
ia E

A
L (2.19)

and FAai = −FAia.
The frame fields allow us to construct the curvature tensor on the cotangent

bundle T ∗M as follows

RQMNP ≡ R
AB
MN EQA EBP = FABMN EQA EBP (2.20)

where the explicit components FABMN are obtained in eqs- (2.13-2.15) . EMA is
the inverse frame field such that EMA EBM = δBA and EAM EMB = ηAB . The
contraction of indices yields the Ricci-like tensors.

RMP = δNQ R
Q
MNP (2.21a)
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A further contraction yields the generalized Ricci scalar

R = GMP RMP (2.21b)

The Torsion tensors are

TMNQ = FAMN EAQ, T QMN = FAMN EQA , TM = δNQ T
Q
MN (2.22)

A Lagrangian, linear in the curvature scalar and quadratic in torsion, can be
chosen to be

L = c1 R + c2 TMNQ T MNQ + c3 TM T M . (2.23)

where c1, c2, c3 are numerical coefficients. The action is

S =
1

2κ2

∫
Ω8

d8Y
√
| det GMN | L (2.24)

where κ2 is the analog of the gravitational coupling constant and the 8D measure
of integration involves

d8Y ≡ dx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧ δp1 ∧ δp2 ∧ δp3 ∧ δp4 (2.25)

with
δpa = dpa − Nai dx

i (2.26)

Other measures besides
√
|detGMN | in eq-(2.24) can be used in tangent/cotangent

bundles. For example, see the discussion on the Busemann-Hausdorff and
Holmes-Thompson measure in [12]. For simplicity we shall retain the ordinary
measure in eq-(2.24).

The curvature (2.13-2.15) depends on the geometric quantities gij , hab, Nia
that describe the metric (2.7) and ΩABM . The number of degrees of freedom
d(2d + 1) associated with gij , hab, Nia is the same as the number of degrees of
freedom of a metric GMN in 2d dimensions. Furthermore, if the torsion (2.16)
is set to zero one can solve ΩABM in terms of EAM . To sum up, in the absence of
torsion, the action (2.24) represents effectively a Poincare-like gauge theory of
gravity in 8 dimensions, written in a nonholonomic coordinate basis, and where
the gauge group is SO(6, 2)×s R8.

Bars [15] has proposed a gauge symmetry in phase space. One of the con-
sequences of this gauge symmetry is a new formulation of physics in spacetime.
Instead of one time there must be two times, while phenomena described by
one-time physics in 3 + 1 dimensions appear as various shadows of the same
phenomena that occur in 4 + 2 dimensions with one extra space and one extra
time dimensions (more generally, d + 2). Problems of ghosts and causality are
resolved automatically by the Sp(2, R) gauge symmetry in phase space.

The ordinary 4D Einstein-Hilbert action can be written in terms of the
vielbeins eai and spin connection ωabi as
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S =
1

16πG

∫
eai ∧ ebj ∧Rcdkl (ωabi , eai ) εabcd ε

ijkl (2.27)

The natural extension of (2.27) to the 8D cotangent bundle T ∗M is

1

2κ2

∫
EA1

M1
∧EA2

M2
∧EA3

M3
∧EA4

M4
∧EA5

M5
∧EA6

M6
∧RA7A8

M7M8
εA1A2...A8 ε

M1M2...M8

(2.28)
One could also introduce Lanczos-Lovelock-like Lagrangians inD-dimensions,

written in terms of the generalized Kronecker deltas,

δµ1ν1...µnνn
α1β1...αnβn

=
1

n!
δµ1ν1
[α1β1

δµ2ν2
α2β2

. . . δµnνnαnβn] (2.29)

as

L =

|D/2|∑
n=0

an R(n), R(n) =
1

2n
δµ1ν1...µnνn
α1β1...αnβn

∏
Rαrβrµrνr (2.30)

where |D/2| is the integer part of D/2; an are coupling constants of dimensions
(length)2n−D. In the 8D cotangent bundle case T ∗M the range of indices is
α, β = 1, 2, . . . , 8; µ, ν, . . . , 8. The first four indices correspond to the four-
dim spacetime, and the last four indices to the momentum space. Despite the
product of curvatures, the advantage of Lanczos-Lovelock Lagrangians is that
they lead to field equations containing only derivatives of the metric up to second
order, and in arbitrary number of dimensions.

The field equations associated with the above actions S are obtained via an
Euler variation with respect to the independent fields appearing in the descrip-
tion of the metric of the cotangent bundle GMN displayed in eq-(2.7)

δS

δgij
= 0,

δS

δhab
= 0,

δS

δNa
i

= 0 (2.31)

it is beyond the scope of this letter to find solutions to these very complicated set
of differential equations. One could also follow a different approach to gravity
in curved phase spaces described in section 1. By recurring to eqs-(1.11-1.15),
and writing the metric in block diagonal form which allows to factorize the
determinant of the metric as (detgij)(dethab), one could study the analog of the
Einstein vacuum field equations

Rij −
1

2
( R+ S ) gij = 0 ; Sab −

1

2
( R+ S ) hab = 0 (2.32)

and supplemented by the equations

δR
δNa

i

+
δS
δNa

i

= 0 (2.33)

where the spacetime and internal space scalar curvatures are, respectively,

R = δji R
i
kjl g

kl; S = δdb S
abc
d hac (2.34)
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These type of equations were studied by Vacaru [9] and some solutions were
found in some special cases. We leave the study of the field equations described
by eqs-(2.31) for future work. Another issue that warrants further investigation
is the issue of ghosts since the cotangent bundle metric signature has two timelike
directions. Physical theories with two times encounter ghosts in general except
if there are additional symmetries like Sp(2, R) that allow the removal of ghosts
[15]. Since the 2d-dim cotangent bundle is a symplectic space we may recur to
the symplectic group Sp(2d,R) to see if a similar mechanism allows the ghosts
removal.

3 Conclusions : Towards the Geometrization of
Matter and T -Duality

The results of this work leads us to believe that a geometrization of matter is
of paramount importance in the quantization program of gravity based on the
geometry of cotangent spaces (phase spaces). For instance, in 4D Riemannian
spacetimes, one finds that Einstein’s field equations, in units of 8πG = c = 1,

Rµν −
1

2
gµν R = Tµν (3.1)

exhibit a geometry/matter reciprocity symmetry, because after replacing

Rµν ↔ Tµν , R = gµνRµν ↔ T = gµνTµν (3.2)

in eq-(3.1) it yields

Tµν −
1

2
gµν T = Rµν (3.3)

one can notice that the last eq-(3.3) is indeed equivalent to eq-(3.1) after simply
taking the trace of eq-(3.1) in D = 4 and leading to T = −R. In this respect
four dimensions is singled out.

In other dimensions than D = 4 one can look back at eqs-(2.32)

Rij −
1

2
( R+ S ) gij = 0 ⇒

Rij −
1

2
R =

1

2
gij S = Tij (3.4)

such that when all the quantities in eq-(3.4) solely depend on the coordinates
xi (and not on the momenta pa) one finds that the scalar curvature S in
momentum space (times gij/2) plays the role of an effective stress energy tensor
Tij in the horizontal spacetime M . Hence, matter sources (mass in particular)
can be effectively geometrized (mimicked) by the momentum space curvature.

In classical mechanics, inertial mass is that property of matter which op-
poses acceleration. The Quaplectic group transformations in flat phase spaces,

12



implementing Born’s Reciprocal Relativity principle [1], implies the physical
equivalence of accelerated frames of reference [2]. Likewise, Special Relativity is
based on the physical equivalence of inertial frames in flat Minkowski spacetime
via Lorentz transformations. One of the most salient features of the Quaplectic
group transformations is the mixing of spacetime coordinates with the energy-
momentum coordinates as described in section 1.

This picture of the equivalence of accelerated frames in flat phase space
differs considerably from the one in ordinary Quantum Field Theory (QFT).
The physics behind accelerated frames in Minkowski space is essential in the
Fulling-Davies-Unruh effect, where an accelerating observer will observe black-
body radiation where an inertial observer would observe none. From the view-
point of the accelerating observer, the vacuum of the inertial observer will look
like a state containing many particles in thermal equilibrium (a warm gas of
photons). The Unruh temperature [19] is the effective temperature experienced
by a uniformly accelerating detector in a vacuum field. It is given by T = h̄a

2πckB
,

where a is the local acceleration, and kB is the Boltzmann constant. The Unruh
temperature has the same form as the Hawking temperature after replacing a
for the surface gravity at the black hole horizon.

Recently, Dasgupta [20] re-investigated the Bogoliubov transformations which
relate the Minkowski inertial vacuum to the vacuum of an accelerated observer.
He implemented the transformation using a non-unitary operator used in for-
mulations of irreversible systems by Prigogine [21]. An attempt was discussed
to generalize Quantum Field Theory (QFT) for accelerated frames using this
new connection to Prigogine transformations. It is warranted to build a general-
ized QFT in accelerated frames which is compatible with the Quaplectic group
transformations in Born’s Reciprocal Relativity [1]. This may shed some light
into the resolution of the black hole information paradox by recurring to novel
physical principles and which are beyond the many current proposals based on
standard QFT in curved Riemannian spacetimes.

Finally we add that earlier on in eq-(1.7) we argued how Born Recipro-
cal Relativity could provide a physical mechanism to understand T -duality in
string theory [17]. Nowadays it is pursued via Double Field Theory (DFT)
[18]. The idea behind DFT is to introduce a doubled space with coordinates
XM = (xi, x̃i),M = 1, . . . , 2D, on which O(D,D) acts naturally in the fun-
damental representation. One has doubled the number of all spacetime co-
ordinates. This idea is actually well motivated by string theory on toroidal
backgrounds, where these coordinates are dual both to momentum and winding
modes. An extension of DFT to exceptional groups, now commonly referred to
as exceptional field theory, allows us to settle open problems in Kaluza-Klein
truncations of supergravity that, although of conventional nature, were impos-
sible to solve with standard techniques [18]. We have not addressed in this work
how to accommodate DFT to Born Reciprocal Relativity and the geometry of
(co) tangent bundles. It is becoming more clear that generalized geometries
(like Finsler geometry) warrant further investigation.
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