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Abstract 

When applied to a quaternionic manifold, the generalized Stokes theorem can provide an elucidating 

space-progression model in which elementary objects float on top of symmetry centers that act as 

their living domain. The paper elucidates the origin of the electric charges and color charges of 

elementary particles. It indicates that integration depends on the ordering of the involved parameter 

spaces. 

1 Introduction 
This paper uses the fact that separable Hilbert spaces can only cope with number systems that are 

division rings. We use the most elaborate version of these division rings and that is the quaternionic 

number system. Quaternionic number systems exist in multiple versions, that differ in the way they 

are ordered. Ordering influences the arithmetic properties of the number system and it appears that 

it influences the behavior of quaternionic functions under integration. Another important fact is that 

every infinite dimensional separable Hilbert system owns a companion Gelfand triple, which is a non-

separable Hilbert space. We will use these Hilbert spaces as structured storage media for discrete 

quaternionic data and for quaternionic manifolds. We use the reverse bra-ket method in order to 

relate operators and their eigenspaces to pairs of functions and their parameter spaces. Subspaces 

act as Hilbert space domains in relation to which manifolds are defined. 

2 Without discontinuities 
The generalized Stokes theorem is in fact a combination of two versions. One is the using the 

divergence part of the exterior derivative 𝑑𝜔. It is also known as the generalized divergence 

theorem. The other version uses the curl part of the exterior derivative. For quaternionic manifolds 

the two versions can be combined. The theorem can be applied when everywhere in Ω the derivative 

d𝜔 exists and when everywhere in 𝜕Ω the manifold 𝜔 is continuous and integrable. 

Without discontinuities in the manifold 𝜔 the generalized Stokes theorem is represented by a simple 

formula [1]. 

 

∫ 𝑑𝜔
Ω

= ∫ 𝜔 (= ∮ 𝜔
𝜕Ω

)
𝜕Ω

 

 

The domain Ω is encapsulated by a boundary 𝜕Ω. 

 

Ω ⊂ 𝜕Ω 

 

(1) 

(2) 



In this paper, the manifolds 𝜔 and 𝑑𝜔 represent quaternionic fields 𝔉 and d𝔉, while inside 𝜕Ω the 

manifold 𝜔 represents the quaternionic boundary of the quaternionic field 𝔉.  

𝑑𝜔 is the exterior derivative of 𝜔. The theorem exists in the form of a divergence based version and 

in the form of a curl based version [2]. 

2.1 Domains and parameter spaces 
The quaternionic domain Ω is supposed to be defined as part of the domain ℜ of a reference 

operator ℜ that resides in the non-separable quaternionic Hilbert space ℋ. The reverse bra-ket 

method [4] relates the eigenspace {𝑞} of reference operator ℜ to a flat quaternionic function ℜ(𝑞). 

The target of function ℜ(𝑞) is its own parameter space {𝑞}. Here we explicitly use the same symbol 

ℜ for all directly related objects. 

 

ℜ = |𝑞〉ℜ(𝑞)〈𝑞| = |𝑞〉𝑞〈𝑞| 

 

The domain ℜ is spanned by the eigenvectors {|𝑞〉} of operator ℜ. 

The reverse bra-ket method also relates the eigenspace ℜ to an equivalent eigenspace ℛ of a 

reference operator ℛ, which resides in the separable Hilbert space ℌ. Both eigenspaces are related 

to the same version of the quaternionic number system. However, the second eigenspace ℛ only 

uses rational quaternions 𝑞𝑖.  

 

ℛ = |𝑞𝑖〉ℜ(𝑞𝑖)〈𝑞𝑖| = |𝑞𝑖〉𝑞𝑖〈𝑞𝑖| 

 

Quaternionic number systems can be ordered in several ways. Operator ℛ corresponds with one of 

these orderings. ℛ is supposed to be Cartesian-ordered. ℛ is a normal operator and its eigenspace is 

countable. It means that the set of eigenvectors of ℛ can be enumerated by the separate 

eigenvalues of ℛ. The eigenspace is the Cartesian product of four partially ordered sets in which the 

set, which represents the real part takes a special role. The eigenspace of the Hermitian part ℛ0 =

½(ℛ + ℛ†) of normal operator ℛ can be used to enumerate a division of ℌ into a countable number 

of disjunctive subspaces, which are spanned by eigenvectors of ℛ. Cartesian ordering means partial 

ordering of the eigenvalues of ℛ0 and additional ordering of the eigenvalues of the anti-Hermitian 

operator 𝕽 = ½(ℜ − ℜ†) by selecting a Cartesian coordinate system. Eight mutually independent 

Cartesian coordinate systems exist. ℛ0 = (ℛ +  ℛ†)/2 is a self-adjoint operator. The ordered 

eigenvalues of ℛ0 can be interpreted as progression values. The eigenvalues of 𝓡 can be interpreted 

as spatial values. This differs from the physical notions of time and space. Here we are talking about 

a mathematical test model. 

In this way, parameter spaces as well as domains correspond to closed subspaces of the Hilbert 

spaces. The domain subspaces are subspaces of the domains of the corresponding reference 

operators. The parameter spaces are ordered by a selected coordinate system. The Ω domain is 

represented by a part of the eigenspace of reference operator ℜ. The flat quaternionic function ℜ(𝑞) 

defines the parameter space ℜ. It installs an ordering by selecting a Cartesian coordinate system for 

the eigenspace of its anti-Hermitian part 𝕽 = ½(ℜ − ℜ†). Several mutually independent selections 

are possible. The chosen selection attaches a corresponding symmetry flavor to this parameter 

(1) 

(2) 



space. In the mathematical test model, this symmetry flavor will become the reference symmetry 

flavor. Thus, the symmetry flavor of parameter space ℜ⓪ may be distinguished by its superscript  ⓪. 

The manifold 𝜔 is also defined as the continuum eigenspace of a dedicated normal operator 𝜔 which 

is related to domain 𝛺 and to parameter space ℜ⓪ via function 𝔉. Within this parameter space 𝔉 

may have discontinuities, but these must be excluded from the domain over which integration takes 

place. This exclusion will be treated below. 

2.2 Interpreting the exterior derivative 
In this section we assume that the quaternionic manifold ω is represented by the target of a 

quaternionic function 𝔉(𝑞). Function 𝔉(𝑞) has a flat parameter space ℜ.  

ℜ is a flat quaternionic manifold, which is represented by the target of function ℜ(𝑞) = 𝑞. 

We presume that the exterior derivative d𝔉 of 𝔉 can be interpreted by the following equations: 

 

d𝔉 = ∑ 𝑒𝜇
𝜕𝔉

𝜕𝑥𝜇
𝑑𝑥𝜇

3

𝜇=0

= ∑ 𝑒𝜇𝑑𝑥𝜇 ∑ 𝑒𝜈
𝜕𝔉𝜈

𝜕𝑥𝜇

3

𝜈=0

3

𝜇=0

= 𝑒𝜇𝜈𝐷𝜇𝔉𝜈 

 

𝐷𝜇 = 𝑑𝑥𝜇  
𝜕

𝜕𝑥𝜇
 

 

Thus d𝔉 is represented by a tensor. This differs from the partial differentials that appear in partial 

differential equations. 

 

𝔊 = ∑ 𝑒𝜍𝔊𝜍 = 𝑒𝜍𝔊𝜍

3

𝜍=0

 

= ∇𝔉 = ∑ 𝑒𝜇
𝜕𝔉

𝜕𝑥𝜇

3

𝜇=0

= ∑ 𝑒𝜇 ∑ 𝑒𝜈
𝜕𝔉𝜈

𝜕𝑥𝜇

3

𝜈=0

3

𝜇=0

= 𝑒𝜇𝑒𝜈𝜕𝜇𝔉𝜈 = 𝑒𝜇𝜈𝜕𝜇𝔉𝜈 

 

In the right parts of the above formulas, the summation rules for subscripts and superscripts are 

applied. 

 

𝔉 =  𝔉0 + 𝕱 

 

𝔊 = ∇𝔉 = 𝔊0 + 𝕲 = (∇0 + 𝛁)(𝔉0 + 𝕱) 

 

(1) 

(2) 

(3) 

(4) 

(5) 



𝔊0 = ∇0𝔉0 − 〈𝛁, 𝕱〉 

 

𝕲 = ∇0𝕱 + 𝛁𝔉0 ± 𝛁 × 𝕱 

 

For some fields, some parts of 𝕲 may get special symbols. This is applied in Maxwell-like equations. 

 

𝕰 = −∇0𝕱 − 𝛁𝔉0 

 

𝕭 = 𝛁 × 𝕱 

 

In the integrals below some terms of ∇𝔉 are combined. 

 

𝛁𝕱 = −〈𝛁, 𝕱〉 ± 𝛁 × 𝕱 

 

𝛁𝔉 = 𝛁𝔉0 − 〈𝛁, 𝕱〉 ± 𝛁 × 𝕱 

 

∇0𝔉 = ∇0𝔉0 + ∇0𝕱 

 

The ± sign indicates the fact that combinations of quaternionic parameter spaces and quaternionic 

functions exist in versions that differ in the handedness of their external vector product. 

It must be noticed that  

 

d𝔉 ≠ ∑ 𝑒𝜇𝔊𝜇𝑑𝑥𝜇

3

𝜇=0

 

 

This is the reason that the generalized Stokes integral uses the wedge product 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧 ∧ 𝑑𝜏. 

These wedge products are merely a warning that a tensor is active. It is not a clear exposure of the 

mechanism. 

Some partial differential operators do not mix scalar and vector parts of functions. These are: 

∇0 

∇0∇0 

〈𝛁, 𝛁〉 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 



These operators can be combined in additions as well as in products and do not require to treat them 

as tensors. Two particular operators are: 

∇∇∗= ∇∗∇ = ∇0∇0 + 〈𝛁, 𝛁〉 

𝔒 = −∇0∇0 + 〈𝛁, 𝛁〉 

The last one is the quaternionic version of d’Alembert’s operator. The first one can be split into ∇ and 

∇∗. The second one cannot be split into quaternionic differential operators. 

The field 𝔉 is considered to be regular in spatial regions where the field 𝔉 obeys 

 

〈𝛁, 𝛁〉𝔉 = 0 

 

Similar considerations hold for regions where: 

 

∇∇∗𝔉 = (∇0∇0 + 〈𝛁, 𝛁〉)𝔉 = 0 

 

𝔒𝔉 = (−∇0∇0 + 〈𝛁, 𝛁〉)𝔉 = 0 

 

2.3 A special boundary between the real part and the imaginary part of the domain 
In the special case that is investigated here, the generalized Stokes theorem constructs a rim 𝔉(𝒙, 𝜏) 

between the past history of the field [𝔉(𝒙, 𝑡)]𝑡<𝜏 and the future [𝔉(𝒙, 𝑡)]𝑡>𝜏 of that field. It means 

that the boundary 𝔉(𝒙, 𝜏) of field [𝔉(𝒙, 𝑡)]𝑡<𝜏 represents a universe wide static status quo of that 

field.  

More specifically, the form of the generalized Stokes theorem for the sketched situation runs as: 

 

∫ ∭ d𝔉

𝑉

𝜏

𝑡=0

(𝑥) = ∫ (∭ ∇𝔉(𝑥) 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧

𝑉

) ∧ 𝑑𝜏

𝜏

𝑡=0

= [∭ 𝔉

𝑉

(𝒙)𝑑𝒙]

𝑡=𝜏

 

 

𝑥 = 𝒙 + 𝜏 

 

Here [𝔉(𝒙, 𝑡)]𝑡=𝜏 represents the static status quo of a quaternionic field at instance 𝜏. 𝑉 represents 

the spatial part of the quaternionic domain of 𝔉, but it may represent only a restricted part of that 

parameter space. This last situation corresponds to the usual form of the divergence theorem. 

As mentioned above great care must be taken by interpreting d𝔉(𝑥) = ∇𝔉(𝑥) 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧 ∧ 𝑑𝜏. 

The split that has been selected, sets a category of operators apart that are all Cartesian-ordered in 

the same way as operator ℛ is. It enables a space-progression model in which progression steps in 

(14) 

(15) 

(16) 

(1) 

(2) 



the separable Hilbert space ℌ and flows in its non-separable companion ℋ. Via the reverse bra-ket 

method the Cartesian-ordering of ℛ can be transferred to ℜ. 

 Interpretation of the selected encapsulation 
The boundary 𝜕Ω is selected between the real part and the imaginary part of domain ℜ. But it also 

excludes part of the real part. That part is the range of the real part from 𝜏 to infinity. 𝜏 is interpreted 

as the current progression value. 

The future ℜ − Ω is kept on the outside of the boundary 𝜕Ω. As a consequence, the mechanisms that 

generate new data, operate on the rim 𝜕Ω between past Ω and future ℜ − Ω.  

This split of quaternionic space results in a space-progression model that is to a large extent similar 

to the way that physical theories describe their space time models. However, the physical theories 

apply a spacetime model that has a Minkowski signature. The quaternionic model, which is 

represented here, is strictly Euclidean.  

The paper does not claim that this quaternionic space-progression model reflects the structure and 

the habits of physical reality. The quaternionic space-progression model is merely promoted as a 

mathematical test model. 

What happens in the mathematical test model is an ongoing process that embeds the subsequent 

static status quo’s of the separable Hilbert space into the Gelfand triple. 

Controlling mechanisms act as a function of progression 𝜏 in a stochastic and step-wise fashion in the 

realm of the separable Hilbert space. The result of their actions are stored in eigenspaces of 

corresponding operators that reside in the separable Hilbert space. At the same instance this part of 

the separable Hilbert space is embedded into its companion Gelfand triple.  

The controlling mechanisms will provide all generated data with a progression stamp 𝜏. This 

progression stamp reflects the state of a model wide clock tick. The whole model, including its 

physical fields will proceed with these progression steps. However, in the Gelfand triple this 

progression can be considered to flow.  

At the defined rim, any forecasting will be considered as mathematical cheating. Thus, at the rim, the 

uncertainty principle does not work for the progression part of the parameter spaces. Differential 

equations that offer advanced as well as retarded solutions must reinterpret the advanced solutions 

and turn them in retarded solutions, which in that case represent another kind of object. If the 

original object represents a particle, then the reversed particle is the anti-particle. 

As a consequence of the construct, the history, which is stored-free from any uncertainty-in the 

already processed part of the eigenspaces of the physical operators, is no longer touched. Future is 

unknown or at least it is inaccessible. 

 Integrals over regular spatial domains 
Function 𝔉 is regular in a spatial domain 𝑉, if in that domain  

 

𝜵𝜵𝔉 = 0 

 

For functions 𝔉 that are regular in spatial domain 𝑉 hold: 

(1) 



 

∭ 𝜵𝔉 = ∯𝒏𝔉
𝑆𝑉

 

 

∭ 𝜵𝔉0 = ∯𝒏𝔉0
𝑆𝑉

 

 

∭ 𝜵, 𝕱 = ∯𝒏, 𝕱
𝑆𝑉

 

 

∭ 𝜵 × 𝕱 = ∯𝒏 × 𝕱
𝑆𝑉

 

 

 Integrating irregular functions  
We can use the differential of the inverse spatial distance. 

 

𝜵
1

|𝒒 − 𝒄|
= −

𝒒 − 𝒄

|𝒒 − 𝒄|𝟑
 

 

𝛿(𝒒 − 𝒄) = −
1

4𝜋
〈𝜵, 𝜵

1

|𝒒 − 𝒄|
〉 = −

1

4𝜋
〈𝜵, 𝜵〉

1

|𝒒 − 𝒄|
 

 

𝜙(𝒄) = ∭ 𝜙(𝒒)𝛿(𝒒 − 𝒄)
𝑉

= −
1

4𝜋
∭ 𝜙(𝒒)〈𝜵, 𝜵〉

𝑉

1

|𝒒 − 𝒄|
 

 

As alternative, we can also use the Green’s function 𝐺(𝒒) of the partial differential equation. 

 

𝜙(𝒄) = ∭ 𝜙(𝒒)𝐺(𝒒 − 𝒄)
𝑉

 

 

For the Laplacian 〈𝜵, 𝜵〉 this obviously means: 

 

〈𝜵, 𝜵〉𝔉 = 𝜙(𝒒) 

 

(2) 

(3) 

(4) 

(5) 

 (1) 

(2) 

(3) 

(4) 

(5) 



𝐺(𝒒 − 𝒄) =
1

|𝒒 − 𝒄|
 

 

However, when added to the Green’s function, every solution 𝑓 of the homogeneous equation 

 

〈𝜵, 𝜵〉𝑓 = 0 

 

is also a solution of the Laplace equation. 

 

𝜙(𝒄) = ∭
𝜙(𝒒)

|𝒒 − 𝒄|𝑉

 

 

Function 𝜙(𝒄) can be interpreted as the potential that is raised by charge distribution 𝜙(𝒒). 

These facts also hold for the full quaternionic integration. But there we have two equations that can 

determine regularity. 

In pure spherical conditions the Laplacian reduces to: 

 

〈𝜵, 𝜵〉𝔉(𝑟) =
1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝔉(𝑟)

𝜕𝑟
) 

 

For the following test function 𝔉(𝑟) this means [3]: 

 

𝔉(𝑟) =
𝑄

4𝜋
 
𝐸𝑅𝐹 (𝑟

𝜎√2⁄ )

𝑟
 

 

𝜌(𝑟) = 〈𝜵, 𝜵〉𝔉(𝑟) =
𝑄

(𝜎√2𝜋)
3  exp (− 

𝑟2

2𝜎2) 

 

Thus, for a Gaussian location distribution 𝜌(𝑟) of point-like artifacts the corresponding contribution 

to field 𝔉(𝑟) equals an error function divided by its argument. At first sight this may look in 

contradiction with equations (4) − (8), but here the distribution of artifacts extends over the 

boundary of domain 𝑉. 

 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 



1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕

𝜕𝑟

𝐸𝑅𝐹(𝑟)

𝑟
) =

1

𝑟2

𝜕

𝜕𝑟
(− 𝐸𝑅𝐹(𝑟) + 𝑟

2

√𝜋
exp(−𝑟2)) 

=
1

𝑟2
(−

2

√𝜋
exp(−𝑟2) +

2

√𝜋
exp(−𝑟2) − 2𝑟

2

√𝜋
exp(−𝑟2))  =

4

√𝜋
exp(−𝑟2) 

 

3 The detailed generalized Stokes theorem 
Symmetry centers represent spherically ordered parameter spaces in regions H𝑛

𝑥 that float on a 

background parameter space ℜ. The boundaries 𝜕H𝑛
𝑥 separate the regions H𝑛

𝑥 from the domain Ω. 

The regions H𝑛
𝑥 are platforms for local discontinuities in basic fields [2]. These fields are continuous in 

domain Ω − H.  

 

𝐻 = ⋃ H𝑛
𝑥

𝑛

 

 

The symmetry centers 𝕾𝑛
𝑥  are encapsulated in regions H𝑛

𝑥 and the encapsulating boundary 𝜕H𝑛
𝑥 is 

not part of the disconnected boundary which encapsulates all continuous parts of the quaternionic 

manifold 𝜔 that exist in the quaternionic model. 

 

∫ 𝑑𝜔
Ω−H

= ∫ 𝜔
𝜕Ω∪𝜕H

= ∫ 𝜔
𝜕Ω

− ∑ ∫ 𝜔
𝜕H𝑛

𝑥
𝑛

 

 

If we take the unit normal to point outward on all of the boundary, this reverses the direction of the 

normal on 𝜕H𝑛
𝑥, which negates the integral. Thus, in this formula, the contributions of boundaries 

{𝜕H𝑛
𝑥} are subtracted from the contributions of boundary 𝜕Ω. This means that 𝜕Ω also surrounds the 

regions {H𝑛
𝑥}. 

Domain Ω corresponds to part of the reference parameter space ℜ⓪. As mentioned before the 

symmetry centers {𝕾𝑛
𝑥} represent encapsulated regions {H𝑛

𝑥} that float on parameter space ℜ⓪. 

The geometric center of symmetry center 𝕾𝑛
𝑥  is represented by a floating location on parameter 

space ℜ⓪. 

The relation between the subspace 𝑆Ω that corresponds to the domain Ω and the subspace 𝑆ℜ that 

corresponds to the parameter space ℜ⓪ is given by: 

 

Ω⏟
𝑆Ω

⊂ ℜ⓪⏟
𝑆ℜ

 

 

(1) 

(2) 

(3) 



Similarly: 

 

H𝑛
𝑥⏟

𝑆H𝑛
𝑥

⊂ 𝕾𝑛
𝑥⏟

𝑆𝕾𝑛
𝑥

 

 

4 Symmetry centers as floating parameter spaces 
If we tolerate discontinuities, then these artifacts must be encapsulated by boundaries 𝜕H𝑛

𝑥 and in 

that way they are separated from the main domain Ω. 

In that case the model may apply different parameter spaces, which have their own private 

symmetry flavor [5]. A separable quaternionic Hilbert space can cope with coexisting parameter 

spaces and these spaces are served by dedicated operators. The reverse bra-ket method relates the 

parameter space to a corresponding operator. For example [4]: 

Let {𝑞𝑖} be the set of rational quaternions in a selected quaternionic number system and let {|𝑞𝑖〉} be 

the set of corresponding base vectors. They are eigenvectors of a normal operator ℛ. 

Here we enumerate the eigenvalues and the base vectors with the same index 𝑖. This shows how the 

reverse bra-ket method works. 

 

ℛ ≡ |𝑞𝑖〉𝑞𝑖〈𝑞𝑖|  

 

For all bra’s 〈𝑥| and ket’s |𝑦〉 hold: 

〈𝑥|ℛ 𝑦〉 = ∑〈𝑥|𝑞𝑖〉𝑞𝑖〈𝑞𝑖|𝑦〉

𝑖

 

ℛ0 = (ℛ + ℛ†)/2 is a self-adjoint and thus Hermitian operator. Its eigenvalues can be used to 

arrange the order of the eigenvectors by enumerating them with the eigenvalues. The ordered 

eigenvalues can be interpreted as progression values. 

𝓡 = (ℛ −  ℛ†)/2 is the corresponding anti-Hermitian operator. 

We will use the same symbol for the operator ℛ, for the eigenspace {𝑞𝑖} and for the defined 

parameter space. 𝓡 is supposed to be ordered by using a selected Cartesian coordinate system. Eight 

mutually independent selections are possible. Together with the ordering of the real part ℛ0, the 

Cartesian ordering of the imaginary part 𝓡 determines the symmetry flavor of the eigenspace of ℛ. 

We define a category of anti-Hermitian operators {𝕾𝑛
𝑥} that have no Hermitian part and that are 

distinguished by the way that their eigenspace is ordered by applying a polar coordinate system. We 

call them symmetry centers 𝕾𝑛
𝑥. A polar ordering always start with a selected Cartesian ordering. The 

geometric center of the eigenspace of the symmetry center floats on a background parameter space 

of the normal reference operator ℛ, whose eigenspace defines a full quaternionic parameter space. 

The eigenspace of the symmetry center 𝕾𝑛
𝑥  acts as a three dimensional spatial parameter space. The 

(4) 

(1) 

(2) 



super script  𝑥 refers to the symmetry flavor of 𝕾𝑛
𝑥. The subscript  𝑛enumerates the symmetry 

centers. Sometimes we omit the subscript. 

 

𝕾𝑥 = |𝖘𝑖
𝑥〉𝖘𝑖

𝑥〈𝖘𝑖
𝑥| 

 

𝕾𝑥† =  −𝕾𝑥 

 

In the companion Gelfand triple of an infinite dimensional separable Hilbert space the reverse bra-

ket method can define continuum parameter spaces and relate them to corresponding operators. In 

this way the countable parameter space ℛ relates to a continuum parameter space ℜ. 

The quaternionic field 𝔉 can also be represented by a dedicated operator. Here we use a parameter 

space ℜ that is spanned by a full quaternionic number system. 

For all bra’s 〈𝑥| and ket’s |𝑦〉 hold: 

 

〈𝑥|ℜ 𝑦〉 = ∫〈𝑥|𝑞〉𝑞〈𝑞|𝑦〉
𝑞

 𝑑𝑞 

 

〈𝑥|𝔉 𝑦〉 = ∫〈𝑥|𝑞〉𝔉(𝑞)〈𝑞|𝑦〉
𝑞

 𝑑𝑞 

 

Here, we use the symbol 𝔉 for the field, the function and the operator. However, another 

parameter space 𝑅 would deliver another function 𝐹 for the same field 𝔉. So, what determines the 

field 𝔉 is stored in the eigenspace 𝔉 of operator 𝔉 and can be coupled to different pairs of functions 

and parameter spaces. 

4.1 Symmetry flavor of the symmetry center 
The symmetry center 𝕾𝑛

𝑥  is characterized by a private symmetry flavor. That symmetry flavor relates 

to the Cartesian ordering of this parameter space. When the orientation of the coordinate axes is 

fixed, then eight independent Cartesian orderings are possible [5]. We use the Cartesian ordering of 

ℜ⓪ as the reference for the orientation of the axes. ℜ⓪ has the same Cartesian ordering as ℛ⓪ 

has. 

 

∫ 𝑑𝜔
Ω−H

= ∫ 𝜔
𝜕Ω

− ∑ ∫ 𝜔
𝜕H𝑛

𝑥
𝑛

 

 

In this formula the boundaries 𝜕Ω and 𝜕H𝑛
𝑥 are subtracted. This subtraction is affected by the 

ordering of the domains Ω and H𝑛
𝑥. 

(4) 

(5) 

(6) 

(7) 

(1) 



This can best be comprehended when the encapsulation 𝜕H𝑛
𝑥 is performed by a cubic space form 

that is aligned along the Cartesian axes. Now the six sides of the cube contribute different to the 

effects of the encapsulation when the ordering differs from the Cartesian ordering of the reference 

parameter space ℜ⓪. Each discrepant axis ordering corresponds to one third of the surface of the 

cube. This effect is represented by the symmetry related charge and the color charge of the 

symmetry center [5]. It is easily related to the algorithm which is introduced for the computation of 

the symmetry related charge. Also the relation to the color charge will be clear. 

The symmetry related charge and the color charge of symmetry center 𝕾𝑛
𝑥  are supposed to be 

located at the geometric center of the symmetry center. A Green’s function together with these 

charges can represent the local defining function 𝜑𝑥(𝑞) of the contribution 𝜑𝑥 to the symmetry 

related field 𝔄𝑥 within and beyond the realm of the floating region H𝑛
𝑥. 

Nothing else than the discrepancy of the ordering of symmetry center 𝕾𝑛
𝑥  with respect to the 

ordering of the parameter spaces ℛ⓪and ℜ⓪ causes the existence of the symmetry related charge, 

which is related to the symmetry center. Anything that resides on this symmetry center will inherit 

that symmetry related charge. 

4.2 Single symmetry center 
H𝑛

𝑥 is a spatial domain. The regions H𝑛
𝑥 that are combined in 𝐻 are excluded from domain Ω. The 

Stokes theorem does not hold for the separate regions H𝑛
𝑥. Instead, the difference between the 

integrals defines a potential. In case of isotropic symmetry flavor of the symmetry center 𝕾𝑛
𝑥  holds: 

 

𝑄𝑛
𝑥 = |𝒒 − 𝒄𝑛

𝑥| {∫ 𝑑𝜔
H𝑛

𝑥
− ∫ 𝜔

𝜕H𝑛
𝑥

} 

 

𝒄𝑛
𝑥  is the geometric center of symmetry center 𝕾𝑛

𝑥. 𝑄𝑛
𝑥 is the symmetry related charge. This 

corresponds to the symmetry related potential 𝜑𝑛
𝑥(𝑞) that exists at the outskirts of the 

encapsulation. 

 

𝜑𝑛
𝑥(𝒒) =

𝑄𝑛
𝑥

|𝒒 − 𝒄𝑛
𝑥|

= ∫ 𝑑𝜔
H𝑛

𝑥
− ∫ 𝜔

𝜕H𝑛
𝑥

 

 

The potential 𝜑𝑛
𝑥(𝒒 − 𝐜𝑛

𝑥) contributes to the symmetry related field 𝔄𝑥. 

4.3 Bounded center 
A locally a spatially connected union 𝐻⊎ of encapsulations H𝑛

𝑥 is defined by: 

 

𝐻⊎ = ⋃ H𝑛
𝑥

𝑁𝑥

𝑛=1

 

𝐻⊎ encapsulates multiple symmetry centers. In case that 𝐻⊎ exists, we consider the objects that 

reside within that encapsulation 𝜕𝐻⊎ as bounded by the symmetry related charges. 

(1) 



 

𝜙𝑥(𝒒) = ∑
𝑄𝑛

𝑥

|𝒒 − 𝒄𝑛
𝑥|

𝑁𝑥

𝑛=1

 

 

At large enough distance from this bounded center, all charges can be considered to be merged in a 

single charge with symmetry related potential function 𝜙(𝑞): 

 

𝜙(𝑞) =
∑ 𝑄𝑛

𝑥𝑁
𝑛=1

|𝒒 − 𝒓|
 

𝒓 =
1

𝑁
∑ 𝒄𝑛

𝑁

𝑛=1

 

 

4.4 Grouped artifacts 
Next we consider artifacts that cause discontinuities in a bounded center. The concerned field need 

not be the symmetry related field. Since we do no longer focus on symmetry related charges, we will 

omit the superscript  𝑥. 

We consider the case that the locations of the artifacts form a coherent swarm {𝒄𝑛} that can be 

characterized by a continuous location density distribution 𝜌(𝒒).  

 

 𝜒(𝒒) = ∑ ∭ 𝜌(𝒒) 𝑄𝑛 𝛿(𝒒 − 𝒄𝑛)
𝑉

𝑁

𝑛=0

= −
1

4𝜋
∑ ∭ 𝜌(𝒒)𝑄𝑛 〈𝜵, 𝜵

1

|𝒒 − 𝒄|
〉

𝑉

𝑁

𝑛=0

 

 

If we use the spherical symmetric Gaussian location distribution of artifacts 𝜌(𝑟) that was introduced 

earlier as test function,  

 

𝜌(𝑟) = 〈𝜵, 𝜵〉𝔉(𝑟) = −
𝑄

(𝜎√2𝜋)
3  exp (− 

𝑟2

2𝜎2) 

 

then a potential in the form of 

 

𝜒(𝑟) = −
𝑄

4𝜋
 
𝐸𝑅𝐹 (𝑟

𝜎√2⁄ )

𝑟
 

 

(1) 

(2) 

(3) 



results.  

At somewhat larger distances the potential behaves like a single charge potential.  

 

𝜒(𝑟) ≈  
−𝑄

4𝜋𝑟
 

 

This gives an idea of what happens when a mechanism that acts within the realm of a symmetry 

center produces a coherent swarm of artifacts that will be embedded into a field that gets deformed 

by these artifacts. 

4.5 Discrepant regions 
The symmetry centers correspond to point-like discontinuities. However, also large connected 

regions of ℜ⓪ may exist that disrupt the continuity of the manifold. For example a region that is 

surrounded by a boundary where the deformation is so strong that information contained in ω 

cannot pass the boundary of this region. These regions must also be separated from domain Ω. In 

this way these regions will correspond to cavities in the domain Ω. The information contained in the 

manifold cannot pass the surface of the cavity. The cavities act as information holes. Within the 

cavity the manifold can be considered to be non-existent. Within that region it has no defining 

function. 

4.6 The embedding field 
Apart from the symmetry related fields 𝔄𝑥 that are raised by the charges of the symmetry centers at 

least one other fields exists. That field is the embedding field ℭ. The embedding field is not directly 

affected by the symmetry related charges of the symmetry centers. However, this field is affected by 

the embedding of artifacts that are picked by controlling mechanisms from the private domain of a 

symmetry center H𝑛
𝑥. and then embedded by the controlling mechanism into the embedding 

continuum, which is represented by the continuum eigenspace of operator ℭ. Each of these 

mechanisms operates in a cyclic and stochastic fashion. The result is a recurrently regenerated 

coherent location swarm that also represent a stochastic hopping path. The swarm is generated 

within the symmetry center 𝕾𝑛
𝑥  and is encapsulated by 𝜕H𝑛

𝑥. Since the embedding artifacts live near 

the geometric center of the symmetry center, the domain Ω also holds for the field ℭ. The actions of 

the mechanisms deform the field ℭ inside the floating regions H𝑛
𝑥. The deformation reaches 

beyond the region H𝑛
𝑥.  

The mechanism creates an elementary object, which is able to deform the embedding field ℭ and 

inherits the symmetry related charge from the symmetry center. The deformation represents 

the gravitation potential of the elementary object that owns the swarm. This is treated in more 

detail in reference [6]. 

4.7 Acceleration of the symmetry center 
The fields 𝔄 and ℭ may accelerate the location of the symmetry center on which an elementary 

object resides. This occurs via the interaction of these fields with the contributions that the 

symmetry center and the elementary object add to these fields. 

The symmetry center and with it the residing elementary object float over the background parameter 

space ℜ. This means that these items also float over the fields 𝔄 and ℭ.  



 The symmetry related field 
The symmetry related charge 𝑄𝑛

𝑥 of the symmetry center 𝕾𝑛
𝑥  contributes the local scalar potential 

𝜑𝑛0
 to the symmetry related field 𝔄.  

𝜑𝑛0
(𝒒) =

𝑄𝑛
𝑥

|𝒒 − 𝒄𝑛
𝑥|

 

 

On the other hand  

 

𝑬𝑛(𝒒) = 𝛁𝜑𝑛0
=

𝑄𝑛
𝑥(𝒒 − 𝒄𝑛

𝑥)

|𝒒 − 𝒄𝑛
𝑥|3

 

 

Another symmetry center 𝕾𝑚
𝑥  contributes potential 𝜑𝑚0

 to the symmetry related field 𝔄. The force 

𝑭𝑛𝑚 between the two symmetry centers equals: 

 

𝑭𝑛𝑚 = 𝑬𝑛𝑄𝑚
𝑥 =

𝑄𝑛
𝑥𝑄𝑚

𝑥 (𝒄𝑛
𝑥 − 𝒄𝑚

𝑥 )

|𝒄𝑛
𝑥 − 𝒄𝑚

𝑥 |3
= −𝑭𝑚𝑛 = −𝑬𝑚𝑄𝑛

𝑥 

This need not correspond to an actual acceleration. On the other hand, if the movement of the 

symmetry center 𝕾𝑛
𝑥  is uniform with speed 𝒗𝑛, then the scalar potential 𝜑𝑛0

 corresponds to a vector 

potential 𝝋𝑛 =  𝜑𝑛0
 𝒗𝑛. If the symmetry center actually accelerates, then this goes together with a 

field 𝑬𝑛 =  𝝋�̇� =  𝜑𝑛0
 𝒗�̇� that represents the corresponding change of field 𝔄. Thus. If the two 

forces 𝑭𝑛𝑚 and 𝑭𝑚𝑛 do not hold each other in equilibrium, then the field 𝕬 will change dynamically 

 The embedding field 
The location swarms that are generated by dedicated controlling mechanisms produce a local 

potential that also can accelerate the symmetry center on which the location swarm resides. We 

analyze the situation by assuming that the swarm is represented by a Gaussian location distribution. 

Thus the local potential equals  

 

𝜒𝑛(𝑟) = −
𝑄𝑛

4𝜋
 
𝐸𝑅𝐹 (𝑟

𝜎√2⁄ )

𝑟
 

 

Here 𝑄𝑛 represents the strength of the potential. At somewhat larger distances the potential 

behaves as a single charge potential.  

 

𝜒𝑛(𝒒) ≈
−𝑄𝑛

4𝜋|𝒒 − 𝒄𝑛
𝑥|

 

 



This virtual charge is located at the center of the symmetry center 𝕾𝑛
𝑥. The scalar potential 𝜒𝑛(𝒒) 

adds to the embedding field ℭ. The result is that ℭ gets deformed. 

The local scalar potential 𝜒𝑛(𝒒) corresponds to a derived field 𝓔𝑛(𝒒). 

 

𝓔𝑛(𝒒) = 𝛁𝜒𝑛 = −
𝑄𝑛(𝒒 − 𝒄𝑛

𝑥)

|𝒒 − 𝒄𝑛
𝑥|3

 

 

Another symmetry center 𝕾𝑚
𝑥  contributes potential 𝜒𝑚(𝒒) to the embedding field ℭ. The force 𝑭𝑛𝑚 

between the two symmetry centers equals: 

 

𝑭𝑛𝑚 = 𝓔𝑛𝑄𝑚 = −
𝑄𝑛𝑄𝑚(𝒄𝑛

𝑥 − 𝒄𝑚
𝑥 )

|𝒄𝑛
𝑥 − 𝒄𝑚

𝑥 |3
= −𝑭𝑚𝑛 = −𝓔𝑚𝑄𝑛 

 

This need not correspond to an actual acceleration. 

4.8 Path of the symmetry center 
The symmetry center 𝕾𝑛

𝑥  that conforms to encapsulated region H𝑛
𝑥, keeps its private symmetry 

flavor. At the passage through the boundary the symmetry flavor of the background parameter space 

ℜ⓪ flips from history to future. As a consequence the symmetry related charge of the symmetry 

center will flip.  

However, the passage of the symmetry center through the rim may also be interpreted as the 

annihilation of the historic symmetry center and the creation of a new symmetry center with a 

reverse symmetry flavor that will extend its live in the future. 

The passage of the symmetry centers through the rim goes together with annihilation and creation 

phenomena for the objects that reside on these platforms. Thus, this passage is related to the 

annihilation and creation of elementary objects. 

In the quaternionic space-progression model the existence of symmetry centers is independent of 

progression. With other words the number of symmetry centers is a model constant. The passage 

through the rim does not influence this number. Only the characteristics of the combination of the 

symmetry center and the background parameter space are affected by the passage. 

 Path integral 
Elementary objects reside on an individual symmetry center. A dedicated mechanism controls its 

recurrent generation and embeds the object into the embedding field. The path of the symmetry 

center is the averaged path of the embedded object. The embedded object is hopping along the 

elements of the generated location swarm. The landing locations of the hops are generated by the 

controlling mechanism in a stochastic fashion, but such that at first approximation the swarm as a 

whole can be considered to be moving as one unit. This is possible when the swarm is characterized 

by a continuous location density distribution, which owns a displacement generator. That is the case 

when the location density distribution owns a Fourier transform. This fact enables the description of 

the path of the swarm by a “path integral”. The hopping of the embedded object can be described by 



a sequence of factors that after multiplication represent the whole path. Each factor represents 

three sub-factors. 

The first sub-factor represents the jump from configuration space to momentum space. This sub-

factor is given by the inner product of the Hilbert vector that represents the current location and the 

Hilbert vector that represents the momentum of the swarm. This second Hilbert vector is assumed to 

be constant during the generation of the location swarm. 

The second sub-factor represents the effect of the hop in momentum space.  

The third sub-factor represents the jump back from momentum space to configuration space. 

In the sequence of factors the third sub-factor of the current term compensates the effect of the first 

sub-factor of next factor. Their product equals unity. 

What results is a sequence of factors that are very close to unity and that represent the effects of the 

hops in momentum space. Due to the fact that the momentum is considered to be constant the 

logarithms of the terms can be taken and added in an overall sum. In this way, the multiplication is 

equal to the sum of the logarithms of the factors.  

This summation approaches what is known as the “path integral”. In our interpretation it is not an 

integral, but instead it is a finite summation. In more detail the procedure can be described as 

follows. 

We suppose that momentum 𝒑 is constant during the particle generation cycle in which the 

controlling mechanism produces the swarm {𝑎𝑖}. Every hop gives a contribution to the path. 

These contributions can be divided into three steps per contributing hop: 

1. Change to Fourier space. This involves as sub-factor the inner product 〈𝑎𝑖|𝑝〉. 

2. Evolve during an infinitesimal progression step into the future.  
a. Multiply with the corresponding displacement generator 𝒑.  

b. The generated step in configuration space is (𝑎𝑖+1 − 𝑎𝑖). 

c. The action contribution factor in Fourier space is 〈𝒑, 𝒂𝑖+1 − 𝒂𝑖〉. 

3. Change back to configuration space. This involves as sub-factor the inner product 
〈𝑝|𝑎𝑖+1〉 

4. The combined term contributes a factor 〈𝑎𝑖|𝑝〉exp(〈𝒑, 𝒂𝑖+1 − 𝒂𝑖〉)〈𝑝|𝑎𝑖+1〉. 

5. Two subsequent steps give: 

 

〈𝑎𝑖|𝑝〉exp(〈𝒑, 𝒂𝑖+1 − 𝒂𝑖〉)〈𝑝|𝑎𝑖+1〉〈𝑎𝑖+1|𝑝〉exp(〈𝒑, 𝒂𝑖+1 − 𝒂𝑖〉)〈𝑝|𝑎𝑖+2〉 

 

= 〈𝑎𝑖|𝑝〉exp(〈𝒑, 𝒂𝑖+2 − 𝒂𝑖〉)〈𝑝|𝑎𝑖+2〉 

 

The terms in the middle turn into unity. The other terms also join. 

Over a full particle generation cycle with N steps this results in: 

∏〈𝑎𝑖|𝑝〉exp(〈𝒑, 𝒂𝑖+1 − 𝒂𝑖〉)〈𝑝|𝑎𝑖+1〉

𝑁−1

𝑖=1

 

(1) 

(2) 



= 〈𝑎1|𝑝〉exp(〈𝒑, 𝒂𝑁 − 𝒂1〉)〈𝑝|𝑎𝑁〉 = 〈𝑎1|𝑝〉 exp (∑〈𝒑, 𝒂𝑖+1 − 𝒂𝑖〉

𝑁

𝑖=2

) 〈𝑝|𝑎𝑁〉 

= 〈𝑎1|𝑝〉 exp(𝐿) 〈𝑝|𝑎𝑁〉 

 

𝐿 𝑑𝜏 = ∑〈𝒑, 𝒂𝑖+1 − 𝒂𝑖〉

𝑁−1

𝑖=2

= 〈𝒑, 𝑑𝒒〉 

𝐿 = 〈𝒑, �̇�〉 

 

𝐿 is known as the Lagrangian. 

Equation (4) holds for the special condition in which 𝒑 is constant. If 𝒑 is not constant, then the 

Hamiltonian 𝐻 varies with location. 

 

𝜕𝐻

𝜕𝑞𝑖
= −�̇�𝑖 

 

𝜕𝐻

𝜕𝑝𝑖
= �̇�𝑖 

 

𝜕𝐿

𝜕𝑞𝑖
= �̇� 

 

𝜕𝐿

𝜕�̇�𝑖
= 𝑝𝑖 

 

𝜕𝐻

𝜕𝜏
= −

𝜕𝐻

𝜕𝜏
 

 

𝑑

𝑑𝜏

𝜕𝐿

𝜕�̇�𝑖
=

𝜕𝐿

𝜕𝑞𝑖
 

 

𝐻 + 𝐿 = ∑ �̇�𝑖𝑝𝑖

3

𝑖=1

 

Here we used proper time 𝜏 rather than coordinate time 𝑡. 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 



4.9 At the start of progression 
At progression value 𝜏 = 0, the mechanisms that generate the artifacts, which cause discontinuities 

in the embedding manifold ℭ have not yet done any work. It means that this manifold was flat and its 

defining function equaled its parameter space at instance 𝜏 = 0.  

The model offers the possibility that the domain Ω expands as a function of 𝜏. In that case it is 

possible that domain Ω covers a growing amount of symmetry centers. 

5 Discussion 
This paper only considers the divergence based version of the generalized Stokes theorem. The 

consequences for the curl based version are not investigated. From fluid dynamics it is known that 

artifacts that are embedded in a fluid may suffer from the vorticity of the embedding field [2]. 

This paper does not investigate the consequences of polar ordering. It probably relates to the spin 

properties of elementary objects. In that case the polar ordering of symmetry centers regulates the 

distinction between fermions and bosons. The half integer spin particles may use ordering of the 

azimuth, where the integer spin particles use the ordering of the polar angle. However, this does not 

explain the difference in behavior between these categories. 

The concept of exterior derivative is carefully crafted by skillful mathematicians, such that it becomes 

independent of the selection of parameter spaces. However, in a situation like this in which one 

parameter space floats on top of another, the selection of the ordering of the parameter spaces does 

matter. The symmetry flavors of the coupled parameter spaces determine the values of the integrals 

that account for the contributions of the artifacts. It is represented by the symmetry related charges 

of these artifacts [6]. These symmetry related charges are supposed to be located at the geometric 

centers of the symmetry centers.  

As happens so often, physical reality reveals facts (the symmetry related charges) that cannot easily 

be discovered by skilled mathematicians. The standard model contains a short list of electric charges 

that correspond to the symmetry related charges. The standard model does not give an explanation 

for the existence of this short list. Here it becomes clear that the electric charge and the color charge 

are a properties of connected parameter spaces and not a properties of the objects that use these 

parameter spaces. The objects inherit the charge properties from the platform on which they reside. 

If electric charges are properties of the connection between spaces, then the fields to which these 

charges contribute implement the forces between these connections. No extra objects are needed 

to implement these forces! 

It is sensible to expect that depending on the type of their “charges” all basic fields are capable of 

attracting or repelling the spaces on which these “charges” reside. This behavior is described by the 

differential and integral equations that are obeyed by the considered field. 

This model is no more and no less than a mathematical test case. The paper does not pretend that 

physical reality behaves like this model. But the methods used and the results obtained in this paper 

might learn more about how physical reality can be structured and how it can behave. 
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