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Abstract: We develop a linear element ds in ordmiour-dimensional spacetime which, when
held stationary under worldline variations, leadsthe gravitational equations of geodesic motion
extended to include the Lorentz force law. Welsstan the presence of an electromagnetic vector
potential A, all that is needed to obtain this result is tdlder the well-known gauge theory
prescription of replacing the kinetic momentutmith a canonical momentusmi=p++eA* in the
mass / momentum relationshig=m,p°, and then to apply variational calculus to obtaire
motion of charged particles in this potential.
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1. Introduction

In 89 of his landmark 1916 paper [1], Albert Eestfirst derived the geodesic equation
of motion d*x* / ds’ :—F“aﬂ( dx /ds)( d% / ds) for a particle in a gravitational field based bp t

variation Ozdjfds of the linear metric elemends” = g, dx dx between any two spacetime

eventsA and B at which the worldliness of different observersemso that their clocks and
measuring rods can be coordinated at the oAtaatl then compared at the concludggorNotably
absent from [1], however, was a similar geodesieelbpment of the Lorentz force law

d’x‘/ds=(¢ m P{,( d‘i(/ds). Subsequent papers by Kaluza [2] and Klein [8] slicceed in

explaining the Lorentz force as a type of geodesition and even gave a geometric explanation
for the electric charge itself, but only at thetcotadding a fifth dimension to spacetime and
curling that dimension into a cylinder. To dateeatury later, there still does not appear to have
been any fully-successful attempt to obtain theebtz force from a geodesic variation confined
exclusively to the four dimensions of ordinary sgiawe. In this letter, we show how this is done.

2. Basisand derivation

As the basis for obtaining the Lorentz force frargeodesic variation in four dimensions,
we begin with the equatiom’ = p [ that describes the relativistic relationship betweany

massm and its “kinetic” energy-momentunp” = mu’ = n( dx/ d}. We then promote this

kinetic momentum to a “canonical” momentunt via the prescriptionp” - 7 = p/ + eX
taught by the local gauge (really, phase) theog&imann Weyl developed over 1918 to 1929 in
[4], [5], [6], and so obtaim® = p, - nf=7 °. It will be appreciated that this prescription

is the momentum space equivalentdgf=9/0x"* - D, =d, +ieA, which is the gauge-covariant

derivative specified in a configuration space fonieth the metric tensor of the tangent flat
Minkowski space isdiag(nw):(+1,— 1- 1 ) Consequently, deconstructing into a linear

equation using the Dirac matricé%y“,y”} =n*" in flat spacetime, one can employ = 77,777

to obtain Dirac’s equation(iy“Dﬂ—m)l/J:O for an electron wavefunctiony in an
electromagnetic potential, , which equation Dirac first derived in [7] fori@é electron in a form

equivalent to(iy“aﬂ —m)l// =0, i.e., without yet usin@, - D, =0, +ieA,.

So to obtain the Lorentz force from a geodesicatanm in spacetime, we backtrack from
m’ = 77,7’ to the linear metric element:

ds’ = g, d¥' dx - dé= g g* g'= g( dx ds/e)m*K ‘ox (d¢ ¢ )

=g, d¢dX+2(e m Adk ds( k& Jh g “A’Ads

which uses a canonical gauge prescription for paeeatime coordinates themselves, namely:
1
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dx“ - dy* = dx'+ df é h A (2.2)

This is just another variation gf* — 77 = p“+eA andd, - D, =0, +ieA,. Indeed, it is easily
seen that if one multipliesls’ =(dx + df ¢ f A( @ ds/e )m’p in (2.1) through by
nt / ds, the result is identical to the canonicaf = 7z,777. Now, all we need do is apply a

variation0=5jfds to the linear element (2.1) and the Lorentz foratirally emerges as a geodesic
equation of motion right alongside of the gravdatl! equation of motion.

Proceeding with this derivation which largely deia that in [8] to which it may be helpful
to refer, we first use (2.1) to construct the numbe

dx* d¥x e dx e\
1=\/g,uv__+ 2_rnAT_dS+(_rJ g,quA y (23)

ds ds

which we then use to write the variation as:

0=0[ ds=3| di/ gjv%% € /5_+( FJ g, A A. (2.4)

Applying d to the integrand and using (2.3) to clear the d@nator, this yields:

Ozdj'fds:%jf dsf[ g ddxS dd%S +2 & e\—ds+( 3 g, A Aj. (2.5)

Dropping the %2 and using the product rule, whikuasing that there is no variation in the charge-
to-mass ratio — i.e., thaf(e/ n) =0 — over the path from to B, we now distributed using the

product rule to obtain:

dx* dx X dX dX @ % dx e A’
o —+ —+ — +2—% —+2—

o:J'fds Iw4s ds ™ ds ds ™ ds ds & f% ds.(2.6)
+(e/m)y*(5g, A A+ g,0 A A+ g A5 A

One can use the chain rule in the small variadon 9 limit to show thatdg,, =d,g,,0X and
OA, =0,A,0% . Thus the bottom line equatdx” (e/ m)2 (aagw A K+ g0, AA+ g /ﬁaaA").

Likewise, we may recondensk, (gWA" AV) =d,9, XA +g,0, K K+g, Ad,A viathe product
rule. As a result, the entire integral on the dotline contains a total derivative given by:
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2
Ifdx”(%j aa (gWA"A”)ds Ox7 ( j aaxi(g A(’A)‘izo. (2.7)

This equals zero, because the two worldlines ist#rat eventA and B but have a slight
variational difference betweeh andB otherwise, so thadx’ (A)=Jx ( B) =0 while ox” 20

elsewhere. Consequently, the bottom line of (2e8ps out, leaving us with:

dx” dxX dd X' dx dX
0= ds - —~ +q9, ———+ + —e()' 2— 2.8
-[ [ s ds P ds ds ' ds ds O r'% i (.8)

From here, we again uség,, =0,9,,0X and JA, =0,A0X’, also witha renaming of

indexes and using the symmetry @f, to combine the second and third terms above, tairmb

= ®ad sy dx“ dy DK X, oo d% a °x
O_IAdS[ 909 ~4g ds ds+zg‘“’ ds_ds+25 —6 A&_ds-'- Z_FT’]% d SJ (2.9)

Next, we integrate by parts. First, we use theodpct rule to replace
0., (dox / dg( dk/ dp=( d df5 % g( B P06 “k /d s, § “dx )k and likewise
(dA/d9o X =(d d};( ) ‘3()— Adl % . Butthe terms containing the total derivatives wanish

for the same reasons that the terms in (2.7) vedishs a result of the boundary conditions
ox’ (A)=0x (B)=0. As aresult, (2.9) now becomes:

0= dg o%'d,g PPy VI P P ea /g——zsi—@'—pff (2.10)
A % ds ds d d m ds

Applying the d/ ds derivative contained in the second term above {fieds:

dx d¥ & X dg,, d¥ @A
0= [ ds| %0, 9, S -25%'g, C 7 -2 Lt e G ——zﬁ__ 211
J. [ <% 45 ds S ds ds 5 4s (21D

for the first time revealing the acceleratiddx’ / ds” in the second term above.

Nest, we use the chain rulelg,, / ds=9, g, ( d%/ df and dA,/ds=9, A( d%/ d to

rewrite the third and fifth terms aboveus obtaining:
"
| oxa,g,, ddi%—zaxﬂ O %— 25%9, g, d—ji:
0= ds S d; y s as (2.12)
e e

+20%X" =0, A, ——— 20%° —0 A, —

o Py . - Py &

3
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In the bottom line above, we may rename indexeso in the last term, to find that we
may rewrte  Ox°9,A, (dxX'/ d9-5 %0, A( dk/ ds=ox” E( dxd): using the
electromagnetic field strength tensgy, =d,A —d,A,, whichhas now appeared as a result of the
variation. So the above now simplifies to:

B dx* dxX o X dg dx e dX
0= ds| ox“0 ——-20X'g, —5— 20 X0 ——+ X" —F, ——|.(2.13
IA [ 9w 4s ds ST <% gs ds m™ dj( )

Now we rename indexes so that e terms all contain the inde& , that is, so all of
these terms aréx“ . We then factor this out and interchange thé &insl second terms, obtaining:

(2.14)

By OO G d e d
a2 a9 Tgs g Y e g T Tm 0 Tas )

B
O:IA dsdx“[—Zgw—ﬂ? g

For material worldlines,ds#0. Likewise, while ox’(A)=Jx"(B)=0 at the boundaries,

between these boundaries where the variation océufs# 0. Thus, multiplying through by %2,
for (2.14) to be true we must have:

2
X 1 o dk o o dk dk, e dx (2.15)

02700 "3 5% % T35 g %O e e T ¢

Now we move the acceleration term to the leftit $pé term withd, g,,=30,9,,+30,9,
into two halves, rename some indexes while usimgsymmetry ofg,,, and finally multiply
through byg® and then raise indexes. This all yields:

d® _1 g

X dx = e dk
g =
as© 2

_Cpp X
ds ds m 7 & (2.16)

(0,9,,-0,9,-9,9,)

But of course, we recognize that the Christoffehbgls -7  =1g* (aagw -0,0,, —0, gaﬂ).
As aconsequence, the above reduces to:

2 Y
dxﬂ:_rﬁ d dx e, dX

ds W ds ds m 7 df

(2.17)

In the presence of gravitational and electromagrietids, this contains both the equations
of gravitational motion and the Lorentz force lamhtained via the geodesic variation of the
canonical invariant metric length element (2.1).tHe absence of gravitation, i.e., fof, =7,

thus Fﬂw =0, this reduces to the Lorentz force law. As alteste have proved that the Lorentz
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force law of electrodynamics may indeed be obtaifredn a geodesic variation confined
exclusively to the four dimensions of ordinary sgtame geometry.

3. Conclusion and further linesfor development

The result (2.17) proves that charged particlesimgpaccording to the Lorentz force law
are in fact simply following geodesic paths in ftane, so long as we use Weyl's canonical
prescription in form ofdx* - dx* = dx'+ df ¢ M A from (2.2) todefine the linear metric

element byds’ = g,, dy” dy” as shown in (2.1).

Because the metric lengthls’ = g, dy“dy" of (2.1) under a variatiomzdjfds

simultaneously provides a geodesic description ofion in a gravitational field and in an
electromagnetic field, and because the prescriptigh—. dy* = dx'+ d{ ¢ h A is no more

than a variant of Weyl's gauge prescriptiops — 77 = p* +eA in momentum space and
d, - D,=0,+ieA, in configuration space and leads directly as wellDirac’s equation
(iy“Dﬂ —m)l,l/ =0 for an interacting fermion, this may fairly be aeded as a classical metric-

level unification of electrodynamics with gravitati, using four spacetime dimensions only. But
what about the field equatiorkT,, = R, -3 g,, R which specifies the gravitational dynamics?

v

Because the Lorentz force (2.17) is obtained layidg the differential coordinate elements
via dx* — dy* = dx' + d{ ¢ m Awithout in any way altering the metric tenspy, as is done,

for example, in Kaluza-Klein theory, one may inemtty conclude that the electromagnetic
interaction does not affect spacetime curvatunepesented by the Riemann tensdr,, with

the field dynamics specified by«T,, =R, -3 g, R. However, one must keep in mind that the
Reimann tensor may be defined WV, = [a;v,am] V; as a measure of the extent to which
the gravitationally-covariant derivatives V, =9V, -re .2V, operating on a vectdr, do not
commute. Likewise, the field strength tensgr may be defined viaeF, V, E[ D,, Dy]vﬁ as a
measure of the extent to which the gauge-covaritemivatives DV, :(6ﬂ+ieA)Vﬁ do not
commute when operating on this same vecfgr Indeed, this latter definition results in
F, =D,A,=0,A, +ie A, A] for anon-abeliangauge theory wher¢A,, A, |# 0, which

simplifies to F,, =d;,A,, for an abelian theory such a electrodynamics irtwpA,, A, |=0.

Therefore, if we apply Weyl's canonical prescriptito the gravitationally-covariant
derivatives by employing:

0N, =0, ="\, ~ D, =(0,+ieA) Y=T",, V., (3.1
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which is the same prescription that in the fodwt — dy* = dx' + d{ ¢ m A of (2.2) yielded

the Lorentz force law in (2.17), and if we then tisese derivatives (3.19 canonicallydefinethe
Riemann tensor as:

RV, =[D,.D, ]V, (3.2)

B “a

it can be expected as a consequencefV, =[ D,, D, |V, that the electrodynamic fields,,
and possibly potentials, will appear in the Riemann tensor and thereforthenfield equation
~«T, =R, -1g, R Further, becaus&F,V, = D, D, |V, encompasses botibelian and

non-abelian field strengthshe gravitational field equations usiig,, = R';, andR=FK’, can

be made not only to govern abelian electrodynantias,also the non-abelian weak and strong
interactions

Via such a path for further development, it maylveel possible to unify gravitation not
only with electrodynamics, but with the remaininggak and strong interactions, all while
maintaining full consistency with quantum mecharbesause the canonical gauge prescriptions
p* » = p'+el andd, -~ D, =0, +ieA, and nowdx" - dx* = dx'+ df ¢ H Aremain
at the root of the entire development. The maiastjans that would remain following such a
unification, would be as to the specific non-abeliuge groups that operate at any given energy
ranging up to the Planck mass, and how the symnadtiiyose groups becomes broken at lower
energies leading to the phenomenological gréu§3). x SU(2),, x Ul), - SWU3).x U1),, and
the fermions on which these groups act. The authserpreviously published on these questions,
and even shown how the three generations of quantkdeptons originate, at [9].

Refer ences

[1] A. Einstein,The Foundation of the General Theory of Relatjvitynalen der Physik (ser. 49, 769-822
(1916)

[2] T. Kaluza,Zum Unitatsproblem in der PhysiRitzungsber. Preuss. Akad. Wiss. Berlin. (Mathysh): 966-972
(1921)

[3] O. Klein, Quantentheorie und finfdimensionale Relativitaisilee Zeitschrift fur Physik A 37 (12): 895-906
[4] H. Weyl, Gravitation and Electricity Sitzungsber. Preuss. Akad.Wiss., 465-480. (1918).

[5] H. Weyl, Space-Time-Mattef1918)

[6] H. Weyl, Electron und Gravitation, Zeit. f. Pk, 56, 330 (1929)

[7]1 P. A. M. Dirac, The Quantum Theory of the Elect, Proceedings of the Royal Society A: Mathenadtic
Physical and Engineering Sciendds (778): 610 (1928)

[8] https://en.wikipedia.org/wiki/Geodesics _in_generelativity#Deriving_the geodesic_equation_via_atioac
[9] J. R. YablonGrand Unified SU(8) Gauge Theory Based on BarydmnistwAre Yang-Mills Magnetic
Monopoles Journal of Modern Physics, Vol. 4 No. 4A, 2018, §4-120. doi: 10.4236/jmp.2013.44A011,
http://www.scirp.org/Journal/PaperDownload.aspx@pki=30822(2013)




