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Abstract: We develop a linear element ds in ordinary four-dimensional spacetime which, when 
held stationary under worldline variations, leads to the gravitational equations of geodesic motion 
extended to include the Lorentz force law.  We see that in the presence of an electromagnetic vector 
potential Aµ, all that is needed to obtain this result is to follow the well-known gauge theory 
prescription of replacing the kinetic momentum pµ with a canonical momentum πµ=pµ+eAµ in the 
mass / momentum relationship m2=pσpσ, and then to apply variational calculus to obtain the 
motion of charged particles in this potential. 
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1.  Introduction 
 
 In §9 of his landmark 1916 paper [1], Albert Einstein first derived the geodesic equation 

of motion ( )( )2 2/ / /ds dd sx ds dx dxµ µ α β
αβ= −Γ  for a particle in a gravitational field based on the 

variation 0
B

A
dsδ= ∫  of the linear metric element 2ds g dx dxµ ν

µν=  between any two spacetime 

events A and B at which the worldliness of different observers meet so that their clocks and 
measuring rods can be coordinated at the outset A and then compared at the conclusion B.  Notably 
absent from [1], however, was a similar geodesic development of the Lorentz force law 

( ) ( )2 2 // /d x ds e m F dx dsα
µ µ α= .  Subsequent papers by Kaluza [2] and Klein [3] did succeed in 

explaining the Lorentz force as a type of geodesic motion and even gave a geometric explanation 
for the electric charge itself, but only at the cost of adding a fifth dimension to spacetime and 
curling that dimension into a cylinder.  To date, a century later, there still does not appear to have 
been any fully-successful attempt to obtain the Lorentz force from a geodesic variation confined 
exclusively to the four dimensions of ordinary spacetime.  In this letter, we show how this is done. 
 
2.  Basis and derivation 
 
 As the basis for obtaining the Lorentz force from a geodesic variation in four dimensions, 
we begin with the equation 2m p pσ

σ=  that describes the relativistic relationship between any 

mass m and its “kinetic” energy-momentum ( )/p mu m dx dsµ µ µ= = .  We then promote this 

kinetic momentum to a “canonical” momentum µπ  via the prescription p p eAµ µ µ µπ→ = +  
taught by the local gauge (really, phase) theory of Hermann Weyl developed over 1918 to 1929 in  
[4], [5], [6], and so obtain 2 2m p p mσ σ

σ σπ π= → = .  It will be appreciated that this prescription 

is the momentum space equivalent of / x D ieAµ
µ µ µ µ∂ = ∂ ∂ → = ∂ +  which is the gauge-covariant 

derivative specified in a configuration space for which the metric tensor of the tangent flat 
Minkowski space is ( ) ( )diag 1, 1, 1, 1µνη = + − − − .  Consequently, deconstructing into a linear 

equation using the Dirac matrices { }1
2 ,µ ν µνγ γ η=  in flat spacetime, one can employ 2m σ

σπ π=  

to obtain Dirac’s equation ( ) 0i D mµ
µγ ψ− =  for an electron wavefunction ψ  in an 

electromagnetic potential Aµ , which equation Dirac first derived in [7] for a free electron in a form 

equivalent to ( ) 0i mµ
µγ ψ∂ − = , i.e., without yet using D ieAµ µ µ µ∂ → = ∂ + . 

 
So to obtain the Lorentz force from a geodesic variation in spacetime, we backtrack from 

2m σ
σπ π=  to the linear metric element: 

 

( )( ) ( )( )
( ) ( )

2 2

2 2

/ /

2 / /

ds g dx dx ds g d d g dx ds e m A dx ds e m A

g dx dx e m A dx ds e m g A A ds

µ ν µ ν µ µ ν ν
µν µν µν

µ ν σ µ ν
µν σ µν

χ χ= → = = + +

= + +
, (2.1) 

 
which uses a canonical gauge prescription for the spacetime coordinates themselves, namely: 
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( )/dx d dx ds e m Aµ µ µ µχ→ = + . (2.2) 

 
This is just another variation of p p eAµ µ µ µπ→ = +  and D ieAµ µ µ µ∂ → = ∂ + .  Indeed, it is easily 

seen that if one multiplies ( )( ) ( )( )2 / /ds dx ds e m A dx ds e m Aσ σ
σ σ= + +  in (2.1) through by 

2 /m ds, the result is identical to the canonical 2m σ
σπ π= .  Now, all we need do is apply a 

variation 0
B

A
dsδ= ∫  to the linear element (2.1) and the Lorentz force naturally emerges as a geodesic 

equation of motion right alongside of the gravitational equation of motion. 
 
 Proceeding with this derivation which largely parallels that in [8] to which it may be helpful 
to refer, we first use (2.1) to construct the number 
 

2

1 2
dx dx e dx e

g A g A A
ds ds m ds m

µ ν σ
µ ν

µν σ µν
 = + +  
 

, (2.3) 

 
which we then use to write the variation as: 
 

2

0 2
B B

A A

dx dx e dx e
ds ds g A g A A

ds ds m ds m

µ ν σ
µ ν

µν σ µνδ δ  = = + +  
 

∫ ∫ . (2.4) 

 
 Applying δ  to the integrand and using (2.3) to clear the denominator, this yields: 
 

2
1

0 2
2

B B

A A

dx dx e dx e
ds ds g A g A A

ds ds m ds m

µ ν σ
µ ν

µν σ µνδ δ
  = = + +     

∫ ∫ . (2.5) 

 
Dropping the ½ and using the product rule, while assuming that there is no variation in the charge-
to-mass ratio – i.e., that ( )/ 0e mδ =  – over the path from A to B, we now distribute δ  using the 

product rule to obtain: 
 

( ) ( )2

2 2
0

/

B

A

dx dx d x dx dx d x e dx e d x
g g g A A

ds ds ds ds ds ds m ds m dsds

e m g A A g A A g A A

µ ν µ ν µ ν σ σ

µν µν µν σ σ

µ ν µ ν µ ν
µν µν µν

δ δ δδ δ

δ δ δ

 
+ + + + 

=  
 + + + 

∫ .(2.6) 

 
One can use the chain rule in the small variation δ → ∂  limit to show that g g xα

µν α µνδ δ∂=  and 

AA xα
σ α σδ δ∂= . Thus the bottom line equals ( ) ( )2

/e m A A g A A g Ax g Aµ ν µ ν µ ν
µν µν

α
α µν α αδ + +∂ ∂ ∂ .  

Likewise, we may recondense ( )A A Ag A g A A Ag g Aµ ν µ
α µν α µν α

ν µ ν µ ν
µν ν αµ= + +∂ ∂ ∂ ∂  via the product 

rule.  As a result, the entire integral on the bottom line contains a total derivative given by: 
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( ) ( )
2 2

0
BB

A A

e e
A A ds A A

m

s
x x g

x xm
g µ ν µ να α

µν µνα αδ δ   =∂ ∂
∂

=   
 ∂  

∫ . (2.7) 

 
This equals zero, because the two worldlines intersect at events A and B but have a slight 
variational difference between A and B otherwise, so that ( ) ( ) 0x A x Bσ σδ δ= =  while 0xσδ ≠  

elsewhere.  Consequently, the bottom line of (2.6) zeros out, leaving us with: 
 

0 2 2
B

A

dx dx d x dx dx d x e dx e d x
ds g g g A A

ds ds ds ds ds ds m ds m ds

µ ν µ ν µ ν σ σ

µν µν µν σ σ
δ δ δδ δ 

= + + + + 
 

∫ . (2.8) 

 
 From here, we again use g g xα

µν α µνδ δ∂=  and AA xα
σ α σδ δ∂= , also with a renaming of 

indexes and using the symmetry of gµν  to combine the second and third terms above, to obtain: 

 

0 2 2 2
B

A

dx dx d x dx e dx e d x
ds g A A

ds ds ds ds m ds m s
x

d
g xα α

α µ

µ ν µ ν σ σ

σν σν αµδ δδ δ 
= + + + 

 
∂ ∂∫ . (2.9) 

 
 Next, we integrate by parts.  First, we use the product rule to replace 

( )( ) ( ) ( )( ) ( ) ( )( )/ / / / / /g d x ds dx ds d ds x g dx ds x d ds g dx dsµ ν µ ν µ ν
µν µν µνδ δ δ= −  and likewise 

( ) ( )( )/ / /dA ds x d ds A x A d x dsσ σ σ
σ σ σδ δ δ= − .  But the terms containing the total derivatives will vanish 

for the same reasons that the terms in (2.7) vanished as a result of the boundary conditions 

( ) ( ) 0x A x Bσ σδ δ= = .  As a result, (2.9) now becomes: 

 

0 2 2 2
B

A

dAdx dx d dx e dx e
ds x g A x

ds ds ds ds
x g

m m ds
x

ds
α α

α µν α

µ ν ν σ
µ σ σ

µ σνδ δδ δ
  

= − + − 


∂
  

∂∫ . (2.10) 

 
Applying the /d ds derivative contained in the second term above then yields: 
 

2

2
0 2 2 2 2

B

A

dg dAdx dx d x dx e dx e
ds x g x A x

ds ds ds ds ds m ds m ds
x g x

µ ν ν ν σ
µνµ µ σ σ

µ
α α

µ σνα ν αδ δ δδ δ 
= − − + − 

 
∂ ∂∫ ,(2.11) 

 
for the first time revealing the acceleration 2 2/d x dsν  in the second term above. 
 

 Nest, we use the chain rules ( )/ /dg ds g dx dsα
µν α µν= ∂  and ( )/ /dA ds A dx dsα

σ α σ= ∂  to 

rewrite the third and fifth terms above, thus obtaining: 
 

2

2
2 2

0

2 2

B

A

dx dx d x dx dx
x g x g

ds ds ds ds dsds
e dx e dx

A x

x g

A
m d m d

x
s s

α
α µν

α

µ ν ν α ν
µ µ

µν α µν

σ α
σ

αα σσ δδ

δ δδ 
− − ∂ 

 =
 + − ∂ 
 

∂

∂
∫ . (2.12) 
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In the bottom line above, we may rename indexes α σ↔  in the last term, to find that we 

may rewrite ( ) ( ) ( )/ / /A dx ds x A dx ds F dx sx dxσ σ α σ
α σ ασ

α α
α σ δδ δ− =∂ ∂  using the 

electromagnetic field strength tensor F A Aα σασ σ α∂= −∂ , which has now appeared as a result of the 

variation.  So the above now simplifies to: 
 

2

2
0 2 2 2

B

A

dx dx d x dx dx e dx
ds x g xx g g F

ds ds ds ds ds m d
x

s

µ ν ν α ν σ
µ µ

µν α µν α
α α

α µν σδ δδδ 
= − − ∂ 

 
∂ +∫ .(2.13) 

 
 Now we rename indexes so that the xδ  terms all contain the index α , that is, so all of 
these terms are xαδ .  We then factor this out and interchange the first and second terms, obtaining: 
 

2

2
0 2 2 2

B

A

d x dx dx dx dx e dx
ds g g F

ds ds ds d
x

s ds
g

m ds

ν µ ν µ ν σ

α
α

α µν µ α σν ν αδ  
= − − ∂ + + 

 
∂∫ . (2.14) 

 
For material worldlines, 0ds≠ .  Likewise, while ( ) ( ) 0x A x Bσ σδ δ= =  at the boundaries, 

between these boundaries where the variation occurs, 0xσδ ≠ .  Thus, multiplying through by ½, 
for (2.14) to be true we must have: 
 

2

2

1
0

2

d x dx dx dx dx e dx
g g F

ds ds ds ds ds m ds
g

ν µ ν µ ν σ

αν µ α σµ ν αα ν= +− +∂ −∂ . (2.15) 

  
 Now we move the acceleration term to the left, split the term with 1 1

2 2g g gµ αν µ αν µ αν∂ = ∂ + ∂  

into two halves, rename some indexes while using the symmetry of gαν , and finally multiply 

through by gβα  and then raise indexes.  This all yields: 
 

( )
2

2

1

2

d x dx dx e dx
g g g F

ds ds ds m d
g

s

β µ ν σ
βα β

µ ναµ ν αα µ σν −∂ −∂ += ∂ . (2.16) 

 
But of course, we recognize that the Christoffel symbols ( )1

2 g g ggβ
µν α µ

βα
µ να ν αµν−Γ = − ∂∂ − ∂ .  

As a consequence, the above reduces to: 
 

2

2

d x dx dx e dx
F

ds ds ds m ds

β µ

µν

σ
β

ν
β

σ= −Γ + . (2.17) 

  
In the presence of gravitational and electromagnetic fields, this contains both the equations 

of gravitational motion and the Lorentz force law, obtained via the geodesic variation of the 
canonical invariant metric length element (2.1).  In the absence of gravitation, i.e., for gµν µνη=  

thus 0β
µνΓ = , this reduces to the Lorentz force law.  As a result, we have proved that the Lorentz 
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force law of electrodynamics may indeed be obtained from a geodesic variation confined 
exclusively to the four dimensions of ordinary spacetime geometry. 
 
3.  Conclusion and further lines for development 
 
 The result (2.17) proves that charged particles moving according to the Lorentz force law 
are in fact simply following geodesic paths in spacetime, so long as we use Weyl’s canonical 
prescription in form of ( )/dx d dx ds e m Aµ µ µ µχ→ = +  from (2.2) to define the linear metric 

element by 2ds g d dµ ν
µν χ χ=  as shown in (2.1). 

 

 Because the metric length 2ds g d dµ ν
µν χ χ=  of (2.1) under a variation 0

B

A
dsδ= ∫  

simultaneously provides a geodesic description of motion in a gravitational field and in an 
electromagnetic field, and because the prescription ( )/dx d dx ds e m Aµ µ µ µχ→ = +  is no more 

than a variant of Weyl’s gauge prescriptions p p eAµ µ µ µπ→ = +  in momentum space and 

D ieAµ µ µ µ∂ → = ∂ +  in configuration space and leads directly as well to Dirac’s equation 

( ) 0i D mµ
µγ ψ− =  for an interacting fermion, this may fairly be regarded as a classical metric-

level unification of electrodynamics with gravitation, using four spacetime dimensions only.  But 
what about the field equation 1

2T R g Rµν µν µνκ− = −  which specifies the gravitational dynamics? 

 
 Because the Lorentz force (2.17) is obtained by dilating the differential coordinate elements 
via ( )/dx d dx ds e m Aµ µ µ µχ→ = +  without in any way altering the metric tensor gµν  as is done, 

for example, in Kaluza-Klein theory, one may incorrectly conclude that the electromagnetic 
interaction does not affect spacetime curvature as represented by the Riemann tensor Rα

βµν  with 

the field dynamics specified by 1
2T R g Rµν µν µνκ− = − .   However, one must keep in mind that the 

Reimann tensor may be defined via ; ;,R V Vα
βµν α ν µ β ≡ ∂ ∂   as a measure of the extent to which 

the gravitationally-covariant derivatives ; V V Vα
µ β µ β µβ α∂ = ∂ − Γ  operating on a vector Vβ  do not 

commute.  Likewise, the field strength tensor Fνµ  may be defined via ,ieF V D D Vνµ β ν µ β ≡    as a 

measure of the extent to which the gauge-covariant derivatives ( )D V ieA Vµ β µ β= ∂ +  do not 

commute when operating on this same vector Vβ .  Indeed, this latter definition results in 

[ ] [ ] ,F D A A ie A Aνµ ν µ ν µ ν µ = = ∂ +    for a non-abelian gauge theory where , 0A Aν µ  ≠  , which 

simplifies to [ ]F Aνµ ν µ= ∂  for an abelian theory such a electrodynamics in which , 0A Aν µ  =  .   

 
Therefore, if we apply Weyl’s canonical prescription to the gravitationally-covariant 

derivatives by employing: 
 

( ); ;V V V D V ieA V Vα α
µ β µ β µβ α µ β µ µ β µβ α∂ = ∂ − Γ → = ∂ + − Γ , (3.1) 
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which is the same prescription that in the form ( )/dx d dx ds e m Aµ µ µ µχ→ = +  of (2.2) yielded 

the Lorentz force law in (2.17), and if we then use these derivatives (3.1) to canonically define the 
Riemann tensor as: 
 

; ;,R V D D Vα
βµν α ν µ β ≡   , (3.2) 

 

it can be expected as a consequence of ,ieF V D D Vνµ β ν µ β ≡    that the electrodynamic fields Fνµ  

and possibly potentialsAµ  will appear in the Riemann tensor and therefore in the field equation 
1
2T R g Rµν µν µνκ− = − .  Further, because ,ieF V D D Vνµ β ν µ β ≡    encompasses both abelian and 

non-abelian field strengths, the gravitational field equations using R Rα
βµ βµα=  and R Rσ

σ=  can 

be made not only to govern abelian electrodynamics, but also the non-abelian weak and strong 
interactions.   
 

Via such a path for further development, it may well be possible to unify gravitation not 
only with electrodynamics, but with the remaining weak and strong interactions, all while 
maintaining full consistency with quantum mechanics because the canonical gauge prescriptions 
p p eAµ µ µ µπ→ = +  and D ieAµ µ µ µ∂ → = ∂ +  and now ( )/dx d dx ds e m Aµ µ µ µχ→ = +  remain 

at the root of the entire development.  The main questions that would remain following such a 
unification, would be as to the specific non-abelian gauge groups that operate at any given energy 
ranging up to the Planck mass, and how the symmetry of those groups becomes broken at lower 
energies leading to the phenomenological group (3) (2) (1) (3) (1)C W Y C emSU SU U SU U× × → ×  and 

the fermions on which these groups act.  The author has previously published on these questions, 
and even shown how the three generations of quarks and leptons originate, at [9]. 
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