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Einstein’s relativity contends that time, as measured by clocks, slows with increasing speed, becoming 
especially noticeable as the speed of light is approached.  Discussions of this usually focus on constant speeds, 
albeit near the speed of light, and phenomena such as muon decay (near light speed), or even the Hafele-Keating 
experiment (at much slower speeds), are cited as ‘proof.’  Dissident scientists often contend that time remains 
invariant, although clocks may appear to run slower at increasing speeds.  At least one such scientist contends 
that accelerated clocks can run both slower and faster, an interesting departure that I decided to examine via 
some examples.  To the extent that my examples are correct, I too would agree with this conjecture, namely 
that, while time remains invariant, clocks can run faster and slower when accelerated (but not at constant 
velocity). 

 
 

1. Introduction 
 
While perusing Don E. Sprague’s website on “Complex 

Relativity” (http://complexrelativity.com), I read the following 
discussion: 
 

Clocks lose time but also gain time.  The Hafele and 
Keating experiment has atomic clocks going around 
the world showing less time in one direction but time 
gain in the other direction. We know that Einstein 
predicts that time slows with movement and 
eventually time is varied to a singularity where time 
end which is an impossibility.  Since Einstein 
predicts that time slows, the Hafele and Keating 
experiment refutes Einstein.  The clocks in the Hafele 
and Keating experiment show both a time loss and a 
time gain. According to Einstein, they just have time 
loss. Thus, the time gain portion goes against 
Einstein.  However; the clock gain and loss is 
accurately predicted using CM [Classical 
Mechanics] and ChR [Classical hierarchy Relativity] 
with relative c. That is because ChR specifies that 
acceleration of a clock will result in a clock change 
in reading or clock error.  Any examination of the 
Hafele-Keating experiment must consider the total 
acceleration of the clocks as they relate to the known 
universe.  
 
Consider an atomic clock experiment with the clock 
moved up a foot and down a foot resulting in a clock 
reading variation or error.  This acceleration of the 
clock caused a loss of synchronization in the clock as 
predicted in ChR.  The combination of the Hafele and 
Keating and the atomic clock one foot elevation 
experiments are confirmation that Maxwell/Einstein 
constant c relativity is wrong.  It is proof that ChR 
with relative c is correct.   
 
The combination of the Hafele and Keating 
experiment and the atomic clock 1 foot acceleration 
could loosely be considered to be the ChR equivalent 
of the Eddington observation about Einstein’s 
relativity where he interpreted a gravitational lens 
bending light as confirmation that the time changed. 
In the case of the accelerating clocks, there isn’t any 
way to interpret the clock gain as conformation of 

Einstein that predicts just time loss. There can only 
be clock error with accelerated clocks as specified in 
ChR.  
 
It isn’t a matter of if Einstein is wrong while CM and 
ChR with constant space and constant progression of 
time and relative speed of light is correct in a 
hierarchy of frame relativity. It is just a question of 
when and how the physics world will acknowledge 
the truth I have shown. 

 
Others have disputed the contention that the Hafele-

Keating results support Einstein’s relativity (e.g., Spencer and 
Shama, “Analysis of the Hafele-Keating Experiment,” Third 
Natural Philosophy Alliance Conference, Flagstaff, Arizona, 
June 1996; Kelly, “Hafele & Keating Tests: Did They Prove 
Anything?”  [http://www.anti-relativity.com/hafelekeating 
debunk.htm]).  Never being one to accept Einstein’s conjecture 
that time slows due to movement at constant velocity, I 
nevertheless never considered the possibility of clocks (not 
time) showing variation under accelerated movement.  The 
above discussion prompted me to consider this possibility by 
postulating three examples of acceleration: (1) change in speed, 
but not direction; (2) change in direction but not speed; and (3) 
change in both speed and direction.  As my ‘clock,’ I postulate 
a gun shooting a projectile into a target, with the time between 
ejection from the gun and striking of the target becoming the 
unit of time measurement. 
 
2. Case 1.  Acceleration due to Change in Speed 

but not Direction 
 

In Figure 1, a boxcar of length two (arbitrary units) has a 
pair of guns (grey) mounted to fire in opposite directions at its 
midpoint (shown here as ‘upper’ and ‘lower’).  At time 0, when 
the boxcar is stationary, both guns fire projectiles at equal 
speeds of u0 = 1/sec (s).  At an infinitesimal time later (0+), the 
boxcar, and therefore the two fixed guns, is accelerated to the 
right at a0+ = 1/s2 (white arrows).  Since both projectiles have 
already left their guns, neither ‘feels’ this acceleration, so each 
continues on its path at the original, constant speed.  After 1 s, 
the boxcar has traveled x = (1/s2)(1 s)2/2 = 0.5 to the right, now 
also the positions of the two guns (now with speeds of v1 = 
[1/s2][1 s] = 1/s to the right).  Relative to their starting points in 
the boxcar, the projectiles have now reached the following 
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positions: lower at +0.5, upper at –1.5 (having passed through 
the left wall of the box car). 

 

 
FIGURE 1.  Case 1 – Boxcar Accelerating in Speed only, 

not Direction (Top Shows Boxcar at Time 0 and 0+; 
Bottom Shows Boxcar at Time = 1 s) 

 
When stationary, an observer measures the ‘standard’ unit 

of time on the boxcar as that for a projectile to reach a wall, the 
same for each gun-projectile system.  However, now the 
accelerated observer, assuming equal-speed projectiles, would 
conclude a clock calibrated to the upper gun runs faster than 
one calibrated to the lower gun because its projectile reaches a 
wall sooner – and that the upper clock runs faster than 
‘standard’ time while the lower one runs slower.  Direction 
matters. 

 
3. Case 2.  Acceleration due to Change in 

Direction but not Speed 
 
For the next two cases, it is convenient to examine circular 

motion, as that inherently involves directional acceleration and, 
if rotational speed is changed, acceleration in speed as well.  
First, we consider the case of acceleration due only to 
directional change, as shown in Figures 2 and 3.  In Figure 2, a 
carousel (torus) rotates at a constant speed of 2π radians/s, such 
that the tangential speeds vt of the inner and outer rims are 2/s 
and 6/s, respectively, given the radii shown (in arbitrary length 
units).  A grey gun fixed to the inner rim, with its end rotating 
at vt = 2/s, shoots a projectile from Point 0 at radial speed vr = 
(100/π)/s such that it travels at speed v = ([2/s]2 + 
[{100/π}/s]2)0.5 = 31.89/s at angle α = arctan (2/[100/π]) = 
0.06275 radian (3.595o).  It follows Path 0-B to hit the outer 
rim at Point B after traveling a length of {2cos(π-α) + ([2cos(π-
α)]2 + 32)0.5}/2π = 0.6370, using the law of cosines.  The 
elapsed time is (0.6370)/(31.89/s) = 0.01997 s.  Point A, on the 
outer rim, immediately above the gun, rotates to Point A’ = 
(0.01997 s)(2π radians/s) = 0.1255 radian (7.191o) from the 

original Point A.  Point B corresponds to rotation by arccos 
{(π2/6) (10/π2 -0.63702)} = 0.04185 radian (2.398o). 

Define a new time unit, the ‘zek’ (z), as the time for the 
projectile to hit the outer rim.  When stationary, one z = (3/π - 
1/π)/([100/π]/s) = 0.02 s. When rotating as shown, one z = 
0.01997 s, i.e., ‘time’ appears to have sped up by (0.02 – 
0.01997)/0.02 = 0.001313 (~0.13%).  But really time has not 
varied; only the directional acceleration has caused an apparent 
speeding up by ~0.13%.  If we use the projectile hitting the 
outer rim as a clock and standardize it when the carousel is 
stationary (one z), we conclude that, when accelerated, the 
clock runs faster (1 + 0.001313 = 1.001313 z by the standard 
clock). 

 
FIGURE 2.  Case 2 – Carousel Rotating at Constant 

Speed with Gun Mounted on Inner Rim – Directional 
Acceleration Only 

 

 
FIGURE 3.  Case 2 – Carousel Rotating at Constant 

Speed with Gun Mounted on Outer Rim – Directional 
Acceleration Only 

 



Figure 3 is the same as Figure 2, but now with the gun 
mounted on the outer rim.  With its end rotating at vt = 6/s, it 
shoots a projectile from Point 0 at radial speed vr = (100/π)/s 
such that it travels at speed v = ([6/s]2 + [{100/π}/s]2)0.5 = 
31.93/s at angle α = arctan (6/[100/π]) = 0.1863 radian (10.67o).  
It follows Path 0-B to hit the inner rim at Point B after traveling 
a length of {6 cos α - ([6 cos α]2 - 32)0.5}/2π = 0.6738, again 
using the law of cosines.  The elapsed time is 
(0.6738)/(31.93/s) = 0.02111 s.  Point A, on the inner rim, 
immediately below the gun, rotates to Point A’ = (0.02111 
s)(2π radians/s) = 0.1326 radian (7.598o) from original Point A.  
Point B corresponds to rotation by arccos {(π2/6) ([10/π2 -
0.67382)} = 0.4029 radian (23.08o). 

Now define the zek (z) as the time for the projectile to hit 
the inner rim.  When stationary, one z again = 0.02 s. When 
rotating as shown, one z = 0.02111 s, i.e., ‘time’ appears to 
have slowed by (0.02111 – 0.02)/0.2 = 0.05523 (~5.5%), an 
opposite effect.  But really time has not varied; only the 
directional acceleration has caused an apparent slowing by 
~5.5%. If we again use the projectile hitting the inner rim as a 
clock and standardize it when the carousel is stationary (one z), 
we conclude that, when accelerated, the clock runs slower (1 - 
0.05523 = 0.94477 z by the standard clock).  As with Case 1, 
direction matters.  
 
4. Case 3.  Acceleration due to Change in Both 

Speed and Direction 
 
For the final two cases, we continue with our rotating 

carousel, but now with the addition of acceleration in rotational 
speed.  In Figure 4, the carousel rotates as before, with the grey 
gun mounted on the inner rim shooting a projectile as before.  
However, now at an infinitesimal time later (0+), the carousel 
is accelerated at 2π radians/s2, such that the tangential 
accelerations at of the inner and outer rims are 2/s2 and 6/s2, 
respectively (grey arrows). The projectile does NOT 
experience this acceleration and, as before (Figure 2), reaches 
the outer rim in 0.01997 s. Because the carousel now speeds 
up, it will rotate by [4π radians/s + (2π radians/s2)(0.01997 
s)](0.01997 s)/2 = 0.1268 radian (7.262o), such that the 
projectile strikes the outer rim at Point B’, with a perceived 
trajectory 0-B’ now of length [(10 – 6 cos[0.1268])/π2]0.5 = 
0.6404. 

 
When the carousel was not speeding up, the trajectory 0-

B length was 0.6370 and required 0.01997 s (1.001313 z) to 
reach the outer rim. Now the length (trajectory 0-B’) is longer 
(0.6404) and requires 0.6404/([100/π]/s) = 0.02012 s, or 
([1.001313 z][0.02012 s]/[0.01997 s]) = 1.008644 z, to reach 
the outer rim.  That is, more time has elapsed, which means the 
additionally accelerated clock (speed plus direction) now runs 
faster by (1.0086443 – 1.001313)/(1.001313) = 0.007321 
(~0.73%). 

 
Figure 5 is the same as Figure 4, but now with the grey 

gun mounted on the outer rim with its end rotating at vt = 6/s.  
Again, at an infinitesimal time later (0+), the carousel is 
accelerated at 2π radians/s2, such that the tangential 
accelerations at of the inner and outer rims are 2/s2 and 6/s2, 
respectively (grey arrows).  The projectile does NOT 
experience this acceleration and, as in Figure 3, again reaches 
the inner rim in 0.02111 s. Because the carousel now speeds 

up, it will rotate by [4π radians/s + (2π radians/s2)(0.02111 
s)](0.02111 s)/2 = 0.1340 radian (7.677o), such that the 
projectile strikes the inner rim at Point B’, with a perceived 
trajectory 0-B’ now of length [(10 – 6 cos[0.1340])/π2]0.5 = 
0.6409. 

 
FIGURE 4.  Case 3 – Carousel Rotating at Increasing 

Speed with Gun Mounted on Inner Rim – Both Speed and 
Directional Acceleration 

 

 
FIGURE 5.  Case 3 – Carousel Rotating at Increasing 

Speed with Gun Mounted on Outer Rim – Both Speed and 
Directional Acceleration 

 
When the carousel was not speeding up, the trajectory 0-

B length was 0.6738 and required 0.02111 s (0.94477 z) to 
reach the inner rim (remember the zek has different durations 
based on direction). Now the length (trajectory 0-B’) is shorter 



(0.6409) and requires 0.6409/([100/π]/s) = 0.02013 s, or 
([0.94477 z][0.02013 s]/[0.02111 s]) = 0.90132 z, to reach the 
inner rim.  That is, less time has elapsed, which means the 
additionally accelerated clock (speed plus direction) now runs 
slower by (0.94477 – 0.90132)/(0.94477) = 0.04599 (~4.6%).  
Again, as with Cases 1 and 2, direction matters.  
 
5. Conclusion 
 

Can accelerating clocks run both faster and slower?  
Sprague believes so and provides his arguments on his website.  
I endeavored to examine this possibility using three cases 
considering both speed and directional changes as part of 
acceleration.  As a result, I come to the same conclusion.  This 
does not imply any belief in the variation of time itself, whether 
under constant or accelerating velocities, but merely a physical 
effect on an accelerating ‘clock.’  It also does not imply any 
belief that a clock moving at a constant velocity, even near the 
speed of light, will show any variation.  The key is acceleration.  
And direction matters. 
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