Proof of existence of integral solutions ($a_{1}, a_{2}, \ldots . ., a_{n}$) of the equation $\mathbf{a}_{1} \mathbf{p}_{1}{ }^{m}+\mathbf{a}_{2} \mathbf{p}_{2}{ }^{m}+\ldots \ldots+\mathbf{a}_{n} \mathbf{p}_{\mathrm{n}}{ }^{\mathrm{m}}=0$ for any integer " m " greater than or equal to one, for sequence of prime $p_{1}, p_{2}, \ldots, p_{n}$

Prashanth R. Rao
Abstract: We prove using Bezout's identity that $\mathrm{a}_{1} \mathrm{p}_{1}{ }^{m}+\mathrm{a}_{2} \mathrm{p}_{2}{ }^{m}+\ldots . . .+\mathrm{a}_{\mathrm{n}} \mathrm{p}_{\mathrm{n}}{ }^{m}=0$ has integral solutions for $a_{1}, a_{2}, \ldots \ldots, a_{n}$, where $p_{1}, p_{2}, \ldots, p_{n}$ is a sequence of distinct prime and m is any integer larger than or equal to 1.

Proof:

If $p_{1}, p_{2}, p_{3}, \ldots \ldots . . . p_{n}$ be " n " distinct primes and " m " is an integer greater or equal to one, then there exists integers $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ (not all zero) such that ,
$\mathrm{a}_{1} \mathrm{p}_{1}{ }^{\mathrm{m}}+\mathrm{a}_{2} \mathrm{p}_{2}{ }^{\mathrm{m}}+\ldots \ldots+\mathrm{a}_{\mathrm{n}} \mathrm{p}_{\mathrm{n}}{ }^{\mathrm{m}}=0$
Since $p_{1}, p_{2}, p_{3}, \ldots, p_{n}$ are n distinct primes, therefore the terms $p_{1}{ }^{m}, p_{2}{ }^{m}$, $p_{3}{ }^{m}, \ldots \ldots . ., p_{n}{ }^{m}$ are pair wise co-prime and gcd $\left(p_{1}{ }^{m}, p_{2}{ }^{m}, p_{3}{ }^{m}, \ldots \ldots . ., p_{n}{ }^{m}\right)=1$ This also implies $\operatorname{gcd}\left(p_{1}{ }^{m}, p_{2}{ }^{m}, p_{3}{ }^{m}, \ldots, p_{n-1}{ }^{m}\right)=1$

Therefore using Bezout's identity there must exist ($\mathrm{n}-1$) integers $\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}, \ldots, \mathrm{b}_{\mathrm{n}-1}$ (not all zero) such that
$\mathrm{b}_{1} \mathrm{p}_{1}{ }^{\mathrm{m}}+\mathrm{b}_{2} \mathrm{p}_{2}{ }^{\mathrm{m}}+\ldots \ldots+\left(\mathrm{b}_{\mathrm{n}-1}\right)\left(\mathrm{p}_{\mathrm{n}-1}\right)^{\mathrm{m}}=1$
Multiplying both sides with $\left(-a_{n} p_{n}{ }^{m}\right)$ where we choose a_{n} is a non-zero integer,
$\left(-a_{n} p_{n}{ }^{m}\right) b_{1} p_{1}{ }^{m}+\left(-a_{n} p_{n}{ }^{m}\right) b_{2} p_{2}{ }^{m}+\ldots \ldots \ldots . .+\left(-a_{n} p_{n}{ }^{m}\right)\left(b_{n-1}\right)\left(p_{n-1}\right)^{m}=\left(-a_{n} p_{n}{ }^{m}\right)$
Replacing $\left(-a_{n} p_{n}{ }^{m}\right) b_{1}$ by a_{1}, $\left(-a_{n} p_{n}{ }^{m}\right) b_{2}$ by a_{2},
\qquad $\left(-a_{n} p_{n}{ }^{m}\right)\left(b_{n-1}\right)$ by a_{n-1}

We have
$\mathrm{a}_{1} \mathrm{p}_{1}{ }^{m}+\mathrm{a}_{2} \mathrm{p}_{2}{ }^{\mathrm{m}}+\ldots \ldots+\mathrm{a}_{\mathrm{n}-1} \mathrm{p}_{\mathrm{n}-1}{ }^{\mathrm{m}}=\left(-\mathrm{a}_{\mathrm{n}} \mathrm{p}_{\mathrm{n}}{ }^{\mathrm{m}}\right)$
or
$\mathbf{a}_{1} p_{1}{ }^{m}+\mathbf{a}_{2} p_{2}{ }^{m}+\ldots \ldots+a_{n-1} p_{n-1}{ }^{m}+a_{n} p_{n}{ }^{m}=0$
where $a_{1}, a_{2}, a_{3}, \ldots . . ., a_{n}$ are integers (not all zero).

