Khmelnik S.I.

The Second Solution of Maxwell's Equations

Annotation

A new solution of Maxwell equations for vacuum is presented. First it must be noted that the proof of the solution's uniqueness is based on the Law of energy conservation which is not observed (for instantaneous values) in the known solution. The presented solution does not violate the Law of energy conservation. Besides, in this solution the electrical and magnetic components of intensity are shifted in phase.

A detailed proof is given for interested readers.

Contents

1. Introduction
2. Solution of Maxwell's Equations
3. Energy Flows
4. Intensities
5. Discussion

Appendix 1
Appendix 2
References

1. Introduction

Recently criticism of validity of Maxwell equations is heard from all sides. The confidence of critics is created first of all by the violation of the Law of energy conservation. And certainly "the density of electromagnetic energy flow (the module of Umov-Pointing vector) pulsates barmonically. Doesn't it violate the Law of energy conservation?" [1]. certainly, it is violated, if the electromagnetic wave satisfies the known solution of Maxwell equations. But there is no other solution: "The proof of solution's uniqueness in general is as follows. If there are two different solutions, then their difference due to the system's linearity, will also be a solution, but for zero charges and currents and for zero initial conditions. Hence, using the expression for electromagnetic field energy we must conclude that the difference between solutions is equal to zero, which means that the solutions are identical. Thus the mniqueness of Maxwell equations solution is proved" [2]. So, the uniqueness of solution is being proved on the base of using the law which is violated in this solution.

Another result following from the existing solution of Maxwell equations is phase synchronism of electrical and magnetic components of energy in an electromagnetic wave. This is contrary to the idea of constant transformation of electrical and magnetic components of energy in an electromagnetic wave. In [1], for example, this fact is called "one of the vices of the classical electrodynamics".

Such results following from the known solution of Maxwell equations allow doubting the authenticity of Maxwell equations. However, we must stress that these results follow only from the found solution. But this solution, as has been stated above, can be different.

Further we shall deduct another solution of Maxwell equation, in which the density of electromagnetic energy flow remains constant in time, and electrical and magnetic components of intensities in the electromagnetic wave are shifted in in phase.

2. Solution of Maxwell's Equations

First we shall consider the solution of Maxwell equation for vacuum. These equations in GHC system are as follows [3]:

$$
\begin{aligned}
& \operatorname{rot}(E)+\frac{1}{c} \frac{\partial H}{\partial t}=0, \\
& \operatorname{rot}(H)-\frac{1}{c} \frac{\partial E}{\partial t}=0, \\
& \operatorname{div}(E)=0 \\
& \operatorname{div}(H)=0
\end{aligned}
$$

In cylindrical coordinates system r, φ, z these equations look as follows:

$$
\begin{align*}
& \frac{E_{r}}{r}+\frac{\partial E_{r}}{\partial r}+\frac{1}{r} \cdot \frac{\partial E_{\varphi}}{\partial \varphi}+\frac{\partial E_{z}}{\partial z}=0 \tag{1}\\
& \frac{1}{r} \cdot \frac{\partial E_{z}}{\partial \varphi}-\frac{\partial E_{\varphi}}{\partial z}=M_{r} \tag{2}\\
& \frac{\partial E_{r}}{\partial z}-\frac{\partial E_{z}}{\partial r}=M_{\varphi} \tag{3}\\
& \frac{E_{\varphi}}{r}+\frac{\partial E_{\varphi}}{\partial r}-\frac{1}{r} \cdot \frac{\partial E_{r}}{\partial \varphi}=M_{z} \tag{4}\\
& \frac{H_{r}}{r}+\frac{\partial H_{r}}{\partial r}+\frac{1}{r} \cdot \frac{\partial H_{\varphi}}{\partial \varphi}+\frac{\partial H_{z}}{\partial z}=0 \tag{5}
\end{align*}
$$

$$
\begin{align*}
& \frac{1}{r} \cdot \frac{\partial H_{z}}{\partial \varphi}-\frac{\partial H_{\varphi}}{\partial z}=J_{r} \tag{6}\\
& \frac{\partial H_{r}}{\partial z}-\frac{\partial H_{z}}{\partial r}=J_{\varphi}, \tag{7}\\
& \frac{H_{\varphi}}{r}+\frac{\partial H_{\varphi}}{\partial r}-\frac{1}{r} \cdot \frac{\partial H_{r}}{\partial \varphi}=J_{z}, \tag{8}\\
& J=\frac{1}{c} \frac{\partial E}{\partial t} \tag{9}\\
& M=-\frac{1}{c} \frac{\partial H}{\partial t} . \tag{10}
\end{align*}
$$

For the sake of brevity further we shall use the following notations:

$$
\begin{align*}
& c o=-\cos (\alpha \varphi+\chi z+\omega t), \tag{11}\\
& s i=\sin (\alpha \varphi+\chi z+\omega t), \tag{12}
\end{align*}
$$

where e α, χ, ω - are certain constants. Let us present the unknown functions in the following form:

$$
\begin{align*}
& J_{r}=j_{r}(r) c o, \tag{13}\\
& J_{\varphi}=j_{\varphi}(r) s i, \tag{14}\\
& J_{z} \cdot=j_{z}(r) s i, \tag{15}\\
& H_{r} .=h_{r}(r) c o \text {, } \tag{16}\\
& H_{\varphi}=h_{\varphi}(r) s i, \tag{17}\\
& H_{z}=h_{z}(r) s i, \tag{18}\\
& E_{r} .=e_{r}(r) s i, \tag{19}\\
& E_{\varphi}=e_{\varphi}(r) c o, \tag{20}\\
& E_{z} \cdot=e_{z}(r) c o, \tag{21}\\
& M_{r} .=m_{r}(r) c o, \tag{21}\\
& M_{\varphi}=m_{\varphi}(r) s i, \tag{22}\\
& M_{z} .=m_{z}(r) s i, \tag{23}
\end{align*}
$$

where $j(r), h(r), e(r), m(r)$ - certain function of the coordinate r.
By direct substitution we can verify that the functions (13-23) transform the equations system (1-10) with three arguments r, φ, z into equations system with one argument r and unknown functions $j(r), h(r), e(r), m(r)$.

In Appendix 1 it is shown that for such a system there exists a solution of the following form:

$$
\begin{align*}
& \frac{e_{r}(r)}{r}+e_{r}^{\prime}(r)-\frac{e_{\varphi}(r)}{r} \alpha=0 \tag{24}\\
& \frac{e_{\varphi}(r)}{r}+e_{\varphi}^{\prime}(r)+\frac{e_{r}(r)}{r} \cdot \alpha=0 \tag{25}\\
& \frac{h_{r}(r)}{r}+h_{r}^{\prime}(r)-\frac{h_{\varphi}(r)}{r} \alpha=0, \tag{26}\\
& \frac{h_{\varphi}(r)}{r}+h_{\varphi}^{\prime}(r)+\frac{h_{r}(r)}{r} \cdot \alpha=0, \tag{27}\\
& h_{\varphi}(r)=e_{r}(r) \tag{28}\\
& h_{r}(r)=-e_{\varphi}(r) \tag{29}\\
& \chi=\frac{\omega}{c} \tag{30}
\end{align*}
$$

Thus we have got a monochromatic solution of the equation system (1-10). A transition to polychromatic solution can be achieved with the aid of Fourier transform.

If it exists in cylindrical coordinate system, then it exists in any other coordinate system. It means that we have got a common solution of Maxwell equations in vacuum.

3. Energy Flows

The density of electromagnetic flow is Pointing vector

$$
\begin{equation*}
S=\eta E \times H \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta=c / 4 \pi \tag{2}
\end{equation*}
$$

In cylindrical coordinates r, φ, z the density flow of electromagnetic energy has three components $S_{r}, S_{\varphi}, S_{z}$, directed along вдОль the axis accordingly. They are determined by the formula

$$
S=\left[\begin{array}{l}
S_{r} \tag{4}\\
S_{\varphi} \\
S_{z}
\end{array}\right]=\eta(E \times H)=\eta\left[\begin{array}{l}
E_{\varphi} H_{z}-E_{z} H_{\varphi} \\
E_{z} H_{r}-E_{r} H_{z} \\
E_{r} H_{\varphi}-E_{\varphi} H_{r}
\end{array}\right]
$$

From (2.12-2.17, 3.4) follows that the flow passing through a given section of the wave in a given moment, is:

$$
\bar{S}=\left[\begin{array}{l}
\overline{S_{r}} \tag{5}\\
\overline{S_{\varphi}} \\
\overline{S_{z}}
\end{array}\right]=\eta \iint_{r, \varphi}\left[\begin{array}{l}
s_{r} \cdot s i^{2} \\
s_{\varphi} \cdot s i \cdot c o \\
s_{z} \cdot s i \cdot c o
\end{array}\right] d r \cdot d \varphi
$$

where

$$
\begin{align*}
& s_{r}=\left(e_{\varphi} h_{z}-e_{z} h_{\varphi}\right) \\
& s_{\varphi}=\left(e_{z} h_{r}-e_{r} h_{z}\right) \tag{6}\\
& s_{z}=\left(e_{r} h_{\varphi}-e_{\varphi} h_{r}\right)
\end{align*}
$$

In Appendix 1 it is shows that $h_{z}(r)=0, \quad e_{z}(r)=0$. Consequently, $s_{r}=0, s_{\varphi}=0$, i.e. the energy flow extends only along the axis OZ and is equal to

$$
\begin{equation*}
\bar{S}=\overline{S_{z}}=\eta \iint_{r, \varphi}\left[s_{z} \cdot s i \cdot c o\right] d r \cdot d \varphi \tag{7}
\end{equation*}
$$

We'll find s_{z}. From (2.28, 2.29), we obtain:

$$
\begin{align*}
& e_{r} h_{\varphi}=e_{r}^{2} \tag{8}\\
& e_{\varphi} h_{r}=-e_{\varphi}^{2} . \tag{9}
\end{align*}
$$

From (7, 8, 9), we obtain:

$$
\begin{equation*}
s_{z}=\left(e_{r}^{2}+e_{\varphi}^{2}\right) \tag{10}
\end{equation*}
$$

In this way,

$$
\begin{equation*}
\bar{S}=\eta \iint_{r, \varphi}\left[\left(e_{r}^{2}+e_{\varphi}^{2}\right) \cdot s i \cdot c o\right] d r \cdot d \varphi \tag{11}
\end{equation*}
$$

In Appendix 2 shows that at a constant speed \boldsymbol{C} of propagation of the wave from (11) we obtain

$$
\begin{equation*}
\bar{S}=\frac{c}{16 \alpha \pi}(\cos (4 \alpha \pi)-1) \int_{r}\left(\left(e_{r}^{2}+e_{\varphi}^{2}\right) d r\right) \tag{12}
\end{equation*}
$$

The flow (12) does not depend on t, φ, z. Главное, The main thing is that the value does not change with time, and this complies with the Law of energy conservation.

4. Intensities

The equations system (2.24-2.29) is determined - there are 6 equations for 4 functions $e_{r}, e_{\varphi}, h_{r}, h_{\varphi}$ and two $\operatorname{scalars} \alpha, \omega$. Considering this system we can see that it is equivalent to two equations $(2.24,2.25)$ for the functions e_{r}, e_{φ}. The two other functions h_{r}, h_{φ} are determined by $(28,29)$ and satisfy the equations $(26,27)$.

The two differential equations $(2.24,2.25)$ can be solved for the given initial conditions and given α. First we shall consider the equations

$$
\begin{equation*}
\frac{a y}{x}-y^{\prime}=0 \tag{1}
\end{equation*}
$$

The solution of this equation is as:

$$
\begin{equation*}
y=x^{a}, \tag{2}
\end{equation*}
$$

Equations $(2.24,2.25)$ can be replaced by equations of the form

$$
\begin{align*}
& \left(e_{r}+e_{\varphi}\right)^{\prime}+\frac{\left(e_{r}+e_{\varphi}\right)}{r}(1-\alpha)=0, \tag{3}\\
& \left(e_{r}-e_{\varphi}\right)^{\prime}-\frac{\left(e_{r}-e_{\varphi}\right)}{r}(1+\alpha)=0, \tag{4}
\end{align*}
$$

In accordance with (2) we find:

$$
\begin{align*}
& \left(e_{r}+e_{\varphi}\right)=A r^{\alpha-1}, \tag{5}\\
& \left(e_{r}-e_{\varphi}\right)=A r^{\alpha+1}, \tag{6}
\end{align*}
$$

This implies:

$$
\begin{align*}
& e_{r}=\frac{A}{2}\left(r^{\alpha-1}+r^{\alpha+1}\right), \tag{7}\\
& e_{\varphi}=\frac{A}{2}\left(r^{\alpha-1}-r^{\alpha+1}\right) . \tag{8}
\end{align*}
$$

where $(A \backslash 2)$ - is the amplitude of intensity. Also

$$
\begin{equation*}
\left(e_{r}^{2}+e_{\varphi}^{2}\right)=\left(\frac{A}{2}\right)^{2}\left(\left(r^{\alpha-1}+r^{\alpha+1}\right)^{2}+\left(r^{\alpha-1}-r^{\alpha+1}\right)^{2}\right) \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(e_{r}^{2}+e_{\varphi}^{2}\right)=\left(r^{2(\alpha-1)}+r^{2(\alpha+1)}\right) \tag{10}
\end{equation*}
$$

Fig.1. SecondSolMax.m

From $(7,8)$ it follows that these functions are decreasing modulo for

$$
\begin{equation*}
\alpha<-1 . \tag{11}
\end{equation*}
$$

This condition is physically caused, and we shall take it into account further. Fig. 1 shows, for example, graphics of functions $(7,8,10)$ for $\alpha=-1.25$.

From (10, 3.12), we obtain:

$$
\begin{equation*}
\bar{S}=\frac{c A}{16 \alpha \pi}(\cos (4 \alpha \pi)-1) \int_{r}\left(r^{2(\alpha-1)}+r^{2(\alpha+1)}\right) d r . \tag{12}
\end{equation*}
$$

Let R be the radius of the circular front of the wave. Then

$$
\begin{align*}
& S_{\mathrm{int}}=\int_{r=0}^{R}\left(r^{2(\alpha-1)}+r^{2(\alpha+1)}\right) d r=\left(\frac{R^{(2 \alpha-1)}}{(2 \alpha-1)}+\frac{R^{(2 \alpha+3)}}{(2 \alpha+3)}\right) . \tag{13}\\
& S_{a l f a}=\frac{1}{\alpha}(\cos (4 \alpha \pi)-1) . \tag{14}\\
& \bar{S}=\frac{c A}{16 \pi} S_{a l f a} S_{\mathrm{int}} . \tag{15}
\end{align*}
$$

For $\alpha<-1$ the functions $(7,8)$ are decreasing modulo. Fig. 2 shows the function $S_{a l f a}(\alpha)$ (13) and Fig. 3 shows the function $S_{\text {int }}(\alpha)$, where the condition (11) is taken into account. On Fig. the upper and lower curves refer accordingly to $R=200$ and $R=100$.

Since the energy flow must be positive, we shall further use the condition

$$
\begin{equation*}
-1.5<\alpha<-1 . \tag{16}
\end{equation*}
$$

Since the energy flow and the energy are related by the expression $S=W \cdot c$, then from (15) we can find the energy of a wavelength unit:

$$
\begin{equation*}
\bar{W}=\frac{A}{16 \pi} S_{a l f a} S_{\mathrm{int}} . \tag{17}
\end{equation*}
$$

To demonstrate that the components of the wave (2.13-2.23) are in antiphase, in Fig. 4 shows the functions

$$
c o=-\cos (\alpha \varphi+\chi z+\omega t), s i=\sin (\alpha \varphi+\chi z+\omega t)
$$

or equivalent to them at $z=c t$ function

$$
c o=-\cos \left(\alpha \varphi+\frac{2 \omega}{c} z\right), \quad \text { si }=\sin \left(\alpha \varphi+\frac{2 \omega}{c} z\right) .
$$

At $\varphi=0, \frac{2 \omega}{c}=0.1$ these functions take the form $c o=-\cos (z)$, $s i=\sin (z)$ and shown in Fig. 4.

Fig. 5 shows the vectors of intensities originating from the point $A(r, \varphi)$. Let us remind that $h_{\varphi}(r)=e_{r}(r)$ and $h_{r}(r)=-e_{\varphi}(r)$ - see (2.28, 2.29). The directions of vectors $e_{r}(r)$ and $e_{\varphi}(r)$ are chosen according to Fig. 1: $e_{r}(r)>0, e_{\varphi}(r)<0$. Note that the vectors E, H are always orthogonal. The sum of the modules of these vectors is determined from $(2.17,2.18,2.20,2.21,2.28,2.29)$ and is equal to

$$
\begin{aligned}
& W=E^{2}+H^{2}= \\
& =\left(e_{r}(r) s i\right)^{2}+\left(e_{\varphi}(r) s i\right)^{2}+\left(h_{r}(r) c o\right)^{2}+\left(h_{\varphi}(r) c o\right)^{2}= \\
& =\left(\left(e_{r}(r)\right)^{2}+\left(e_{\varphi}(r)\right)^{2}\right) s i^{2}+\left(\left(h_{r}(r)\right)^{2}+\left(h_{\varphi}(r)\right)^{2}\right) c o^{2}= \\
& =\left(\left(e_{r}(r)\right)^{2}+\left(e_{\varphi}(r)\right)^{2}\right)\left(s i^{2}+c o^{2}\right)=\left(e_{r}(r)\right)^{2}+\left(e_{\varphi}(r)\right)^{2}
\end{aligned}
$$

or

$$
\begin{equation*}
W=\left(e_{r}(r)\right)^{2}+\left(e_{\varphi}(r)\right)^{2} \tag{18}
\end{equation*}
$$

- см. также (10) и рис. 1. Таким образом, плотность энергии электромагнитной волны постоянна на всех точках окружности данного радиуса.
- see also (10) and Fig. 1. Thus, the density of electromagnetic wave energy is constant in all points of a circle of this radius.

The solution exists also for changed signs of the functions (2.11, 2.21). This case is shown on Fig 6. Fig. 5 and Fig. 6 illustrate the fact that there are two possible type of electromagnetic wave circular polarization.

Рис. 5.

Рис. 6.

5. Discussion

The resulting solution describes a wave. The main distinctions from the known solution are as follows:

1. Instantaneous (and not average by certain period) energy flow does not change with time, which complies with the Law of energy conservation.
2. The energy flow has a positive value
3. The energy flow extends along the wave.
4. Magnetic and electrical intensities on one of the coordinate axes r, φ, z phase-shifted by a quarter of period.
5. The solution for magnetic and electrical intensities is a real value.
6. The solution exists at constant speed of wave propagation.
7. The existence region of the wave DOES NOT expand, as evidenced by the existence of laser.
8. The vectors of electrical and magnetic intensities are orthogonal.
9. There are two possible types of electromagnetic wave circular polarization.
10. The wave and its energy are determined if the parameters A, ω, R, α are specified. For given R, \bar{S} the parameter α can be found.

Appendix 1

Let us consider the solution of equations (2.1-2.10) in the form of (2.13-2.23). Further the derivatives of r will be designated by strokes. We write the equations $(2.1-2.10)$ in view of $(2.11,2.12)$ in the form

$$
\begin{align*}
& \frac{e_{r}(r)}{r}+e_{r}^{\prime}(r)-\frac{e_{\varphi}(r)}{r} \alpha-\chi \cdot e_{z}(r)=0, \tag{1}\\
& -\frac{1}{r} \cdot e_{z}(r) \alpha+e_{\varphi}(r) \chi=m_{r}(r), \tag{2}\\
& -e_{r}(r) \chi-e_{z}^{\prime}(r)=m_{\varphi}(r), \tag{3}\\
& \frac{e_{\varphi}(r)}{r}+e_{\varphi}^{\prime}(r)+\frac{e_{r}(r)}{r} \cdot \alpha=m_{z}(r), \tag{4}
\end{align*}
$$

$$
\begin{align*}
& \frac{h_{r}(r)}{r}+h_{r}^{\prime}(r)-\frac{h_{\varphi}(r)}{r} \alpha-\chi \cdot h_{z}(r)=0, \tag{5}\\
& -\frac{1}{r} \cdot h_{z}(r) \alpha+h_{\varphi}(r) \chi=j_{r}(r), \tag{6}\\
& -h_{r}(r) \chi-h_{z}^{\prime}(r)=j_{\varphi}(r), \tag{7}\\
& \frac{h_{\varphi}(r)}{r}+h_{\varphi}^{\prime}(r)+\frac{h_{r}(r)}{r} \cdot \alpha-j_{z}(r)=0, \tag{8}\\
j= & \frac{\omega}{c} e \tag{9}\\
m= & -\frac{\omega}{c} h \tag{10}
\end{align*}
$$

We multiply (8) on $(-\chi)$ and take into account (9). Then we get:

$$
\begin{equation*}
-\frac{\chi \cdot h_{\varphi}(r)}{r}-\chi \cdot h_{\varphi}^{\prime}(r)-\frac{\chi \cdot h_{r}(r)}{r} \cdot \alpha+\frac{\chi \omega}{c} \cdot e_{z}(r)=0, \tag{11}
\end{equation*}
$$

or

$$
\begin{equation*}
-\frac{c \chi}{\omega} \frac{h_{\varphi}(r)}{r}-\frac{c \chi}{\omega} h_{\varphi}^{\prime}(r)-\frac{c \chi}{\omega} \frac{h_{r}(r)}{r} \cdot \alpha+\chi \cdot e_{z}(r)=0 \tag{12}
\end{equation*}
$$

Comparing (1) and (12), we see that they are the same, if

$$
\begin{align*}
& \frac{c \chi}{\omega} h_{\varphi}(r)=e_{r}(r) \tag{13}\\
& -\frac{c \chi}{\omega} h_{r}(r)=e_{\varphi}(r) \tag{14}
\end{align*}
$$

It is important to note that this comparison is valid only for. $e_{z}(r) \neq 0$. In the equations $(13,14)$ we shall perform substitution according to (9):

$$
\begin{align*}
& \chi h_{\varphi}(r)=j_{r}(r) \tag{15}\\
& -\chi h_{r}(r)=j_{\varphi}(r) \tag{16}
\end{align*}
$$

Equations $(15,16)$ coincide with $(6,7)$ for $h_{z}(r)=0$. This implies
Lemma 1. The equation system (1,5-9) for $e_{z}(r) \neq 0$ is compatible only if $h_{z}(r)=0$.

Let us now consider the case when $e_{z}(r)=0$. Then according to (9) , we obtain $j_{z}(r)=0$ and the initial system (1,5-8) will take the form:

$$
\begin{align*}
& \frac{e_{r}(r)}{r}+e_{r}^{\prime}(r)-\frac{e_{\varphi}(r)}{r} \alpha=0 \tag{17}\\
& \frac{h_{r}(r)}{r}+h_{r}^{\prime}(r)-\frac{h_{\varphi}(r)}{r} \alpha-\chi \cdot h_{z}(r)=0 \tag{18}
\end{align*}
$$

$$
\begin{align*}
& -\frac{1}{r} \cdot h_{z}(r) \alpha+h_{\varphi}(r) \chi=j_{r}(r) \tag{19}\\
& -h_{r}(r) \chi-h_{z}^{\prime}(r)=j_{\varphi}(r) \tag{20}\\
& \frac{h_{\varphi}(r)}{r}+h_{\varphi}^{\prime}(r)+\frac{h_{r}(r)}{r} \cdot \alpha=0 \tag{21}
\end{align*}
$$

We substitute (9) into (17). Then we get:

$$
\begin{equation*}
\frac{j_{r}(r)}{r}+j_{r}^{\prime}(r)-\frac{j_{\varphi}(r)}{r} \alpha=0 \tag{22}
\end{equation*}
$$

We substitute $(19,20)$ into (22). Then we get:

$$
-\frac{1}{r^{2}} \cdot h_{z}(r) \alpha+\frac{1}{r} \cdot h_{\varphi}(r) \chi-\frac{1}{r} \cdot h_{z}^{\prime}(r) \alpha+h_{\varphi}^{\prime}(r) \chi-\left(-h_{r}(r) \chi-h_{z}^{\prime}(r)\right) \frac{\alpha}{r}=0
$$ or

$$
\begin{align*}
& -\frac{1}{r^{2}} \cdot h_{z}(r) \alpha+\frac{1}{r} \cdot h_{\varphi}(r) \chi+h_{\varphi}^{\prime}(r) \chi+h_{r}(r) \frac{\chi \alpha}{r}=0 \tag{23}\\
& \frac{h_{\varphi}(r)}{r}+h_{\varphi}^{\prime}(r)+\frac{h_{r}(r)}{r} \cdot \alpha=0 \tag{21}
\end{align*}
$$

For the calculation of three intensities we shall get three equations (19, $21,23)$. Let us exclude $h_{\varphi}^{\prime}(r)$ from $(21,23)$:

$$
-\frac{1}{r^{2}} \cdot h_{z}(r) \alpha+\frac{1}{r} \cdot h_{\varphi}(r) \chi-\left(\frac{1}{r} \cdot h_{\varphi}(r)+h_{r}(r) \frac{\alpha}{r}\right) \chi+h_{r}(r) \frac{\chi \alpha}{r}=0
$$

or $\frac{-1}{r^{2}} \cdot h_{z}(r) \alpha=0$, or $h_{z}(r)=0$. Thus, for $j_{z}(r)=0$ the condition $h_{z}(r)=0$ must also be complied. Hence there follows

Lemma 2. The equations system (1, 5-9) for $e_{z}(r)=0$ is compatible only if $h_{z}(r)=0$.

From Lemmas 1 and 2 follows
Lemma 3. The equations system (1, 5-9) is compatible only for $h_{z}(r)=0$ and, according to (10), $m_{z}(r)=0$.

Similarly we can prove
Lemma 4. The equations system $(1-5,10)$ is compatible only for $e_{z}(r)=0$ and, according to (9), $j_{z}(r)=0$.

From Lemmas 3 and 4 follows
Lemma 5. System (1-10) is compatible only for $h_{z}(r)=0$, $e_{z}(r)=0, m_{z}(r)=0, j_{z}(r)=0$.

Therefore, the initial equations system (1-10) takes the form:

$$
\begin{align*}
& \frac{e_{r}(r)}{r}+e_{r}^{\prime}(r)-\frac{e_{\varphi}(r)}{r} \alpha=0, \tag{24}\\
& e_{\varphi}(r) \chi=-\frac{\omega}{c} h_{r}(r) \tag{25}\\
& -e_{r}(r) \chi=-\frac{\omega}{c} h_{\varphi}(r), \tag{26}\\
& \frac{e_{\varphi}(r)}{r}+e_{\varphi}^{\prime}(r)+\frac{e_{r}(r)}{r} \cdot \alpha=0, \tag{27}\\
& \frac{h_{r}(r)}{r}+h_{r}^{\prime}(r)-\frac{h_{\varphi}(r)}{r} \alpha=0, \tag{28}\\
& \quad h_{\varphi}(r) \chi=\frac{\omega}{c} e_{r}(r), \tag{29}\\
& -h_{r}(r) \chi=\frac{\omega}{c} e_{\varphi}(r) \tag{30}\\
& \frac{h_{\varphi}(r)}{r}+h_{\varphi}^{\prime}(r)+\frac{h_{r}(r)}{r} \cdot \alpha=0 \tag{31}
\end{align*}
$$

We multiply (26) on (29). Then we get:

$$
-e_{r}(r) h_{\varphi}(r) \chi^{2}=-\left(\frac{\omega}{c}\right)^{2} e_{r}(r) h_{\varphi}(r)
$$

or

$$
\begin{equation*}
\chi=\frac{\omega}{c} \tag{32}
\end{equation*}
$$

We substitute (32) into $(26,29)$. Then we get:

$$
\begin{equation*}
h_{\varphi}(r)=e_{r}(r) \tag{33}
\end{equation*}
$$

Thus, under the condition (32) the equations $(26,29)$ are equivalent to one equation (36). A similar relationship follows from $(25,30)$:

$$
\begin{equation*}
h_{r}(r)=-e_{\varphi}(r) \tag{34}
\end{equation*}
$$

Thus, the system (24-31) is equivalent to the system $(24,27,28,31-34)$.

Appendix 2

In (3.11) it is shown that the energy flow passing through the wave cross-section, is

$$
\begin{equation*}
\bar{S}=\eta \iint_{r, \varphi}\left[\left(e_{r}^{2}+e_{\varphi}^{2}\right) \cdot s i \cdot c o\right] d r \cdot d \varphi \tag{1}
\end{equation*}
$$

Let the speed of wave propagation is constant and equal to \mathcal{C}. Then,

$$
\begin{equation*}
z=c t \tag{2}
\end{equation*}
$$

Then from (2, 2.11, 2.12, 2.30), we obtain:

$$
\begin{equation*}
c o=-\cos (\alpha \varphi+\chi z+\omega t)=-\cos (\alpha \varphi+(2 \omega / c) z) \tag{3}
\end{equation*}
$$

and similarly,

$$
\begin{equation*}
s i=\sin (\alpha \varphi+(2 \omega / c) z) \tag{4}
\end{equation*}
$$

Due to (3, 4), we can rewrite (1) as:

$$
\begin{equation*}
\bar{S}=\frac{-1}{2} \eta \iint_{r, \varphi}\left[\left(e_{r}^{2}+e_{\varphi}^{2}\right) \sin (2(\alpha \varphi+(2 \omega / c) z))\right] d r d \varphi \tag{5}
\end{equation*}
$$

When $z=0$ on the axis $o z$ have:

$$
\begin{equation*}
\bar{S}=\frac{-1}{2} \eta \iint_{r, \varphi}\left[\left(e_{r}^{2}+e_{\varphi}^{2}\right) \sin (2 \alpha \varphi)\right] d r d \varphi . \tag{6}
\end{equation*}
$$

Further, from (6) we find:

$$
\begin{equation*}
\bar{S}=-\frac{\eta}{2} \int_{r}\left(\left(e_{r}^{2}-e_{\varphi}^{2}\right)\left(\int_{\varphi} \sin (2 \alpha \varphi) d \varphi\right) d r\right) \tag{7}
\end{equation*}
$$

We have:

$$
\begin{equation*}
\int_{\varphi} \sin (2 \alpha \varphi) d \varphi=\int_{0}^{2 \pi} \sin (2 \alpha \varphi) d \varphi=\frac{1}{2 \alpha}(1-\cos (4 \pi \alpha)) \tag{8}
\end{equation*}
$$

From (7,8), we obtain:

$$
\begin{equation*}
\bar{S}=-\frac{\eta}{4 \alpha}(1-\cos (4 \alpha \pi)) \int_{r}\left(\left(e_{r}^{2}+e_{\varphi}^{2}\right) d r\right) . \tag{9}
\end{equation*}
$$

Substituting here (3.2), we finally obtain:

$$
\begin{equation*}
\bar{S}=\frac{c}{16 \alpha \pi}(\cos (4 \alpha \pi)-1) \int_{r}\left(\left(e_{r}^{2}+e_{\varphi}^{2}\right) d r\right) . \tag{10}
\end{equation*}
$$

Obviously, for any choice of the point $z=0$ on the axis OZ last relation is maintained.

References

1. Kann K.B. Electrodynamics. Electromagnetic waves, http://electrodynamics.narod.ru/em-waves.html
2. The bias current and Maxwell's equations, http://www.webpoliteh.ru/subj/dinamo/767-25-tok-smeshheniya-i-sistema-uravnenij-maksvella.html
3. Rozanov N.N. Special sections of mathematical physics. Part 3. The electromagnetic waves in a vacuum. ITMO. St. Petersburg, 2005.
