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Abstract: A paper by C. Corda (A Clarification on the Debate on “the Original Schwarzschild
Solution”, EJTP 8, No. 25 (2011) 65-82 ) purports equivalence of Schwarzschild’s original solu-
tion (1916) and Hilbert’s subsequent solution (1917), the latter commonly but incorrectly called
‘Schwarzschild’s solution’. The derivation of Schwarzschild’s actual solution by Corda is, in fact,
a copy of Schwarzschild’s original derivation with only changes in notation and equation number-
ing. It adds nothing new to the problem. Corda’s subsequent arguments on gravitational collapse
follow those advanced by Misner, Thorne, and Wheeler for Hilbert’s solution, in their book ‘Grav-
itation’, and suffer thereby from the very same shortfalls. Consequently, Corda has failed to prove
his alleged equivalence of the Schwarzschild and Hilbert solutions. Moreover, it is not difficult
to prove that these are not equivalent. Furthermore, all methods employed to otherwise ‘extend’
Droste’s solution into Hilbert’s solution thus producing a black hole constitute a violation of the
rules of pure mathematics and are invalid.
c©Electronic Journal of Theoretical Physics. All rights reserved.
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1 Introduction

One hundred years ago, on the 13th of January 1916, Karl Schwarzschild communicated his solution
to Einstein’s gravitational field for a ‘mass point’. Then, less than five years ago, on the 25th of
May 2011, a paper by Christian Corda was published which reproduced most of Schwarzschild’s
paper. In a prelude on page 70 of his paper, Corda stated,

“In our approach we will suppose again that a(r,t) = 0, but, differently from the stan-
dard analysis, we will assume that the length of the circumference centred in the origin
of the coordinate system is not 2πr. We release an apparent different physical assump-
tion, i.e. that arches of circumference are deformed by the presence of mass of the
central body M. Note that this different physical hypothesis permits to circumnavigate
the Birkhoff Theorem [4] which leads to the ‘standard Schwarzschild solution’ [3].”

Then, before launching into his modifications of Schwarzschild’s equations, Corda stated, again on
page 70,
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“Then, we proceed assuming k = −mr2, where m is a generic function to be determined
in order to obtain the length of circumferences centred in the origin of the coordinate
system are not 2πr. In other words, m represents a measure of the deviation from 2πr
of circumferences centred in the origin of the coordinate system.”

Corda’s special generic function m = m(r) plays no special role since it already appeared in
Schwarzschild’s paper as G = G(r), where it deformed nothing.

Schwarzschild’s solution [1] for Einstein’s equations Rµν = 0 is,

ds2 =
(
1− α

R

)
dt2 −

(
1− α

R

)−1

dR2 −R2
(
dθ2 + sin2 θ dϕ2

)
R =

(
r3 + α3

)1/3
, 0 ≤ r (1.1)

Hilbert’s solution [2] is,

ds2 =

(
1− 2m

r

)
dt2 −

(
1− 2m

r

)−1

dr2 − r2
(
dθ2 + sin2 θ dϕ2

)
0 ≤ r (1.2)

Corda [3] has argued that Schwarzschild’s original solution (1916) is equivalent to Hilbert’s
solution (1917)∗. It is evident that Schwarzschild’s solution is singular (i.e. undefined) only
at r = 0. Prima facie, Hilbert’s solution seems to be singular at r = 2m and at r = 0, by
which the black hole originated. In Eq.(1.1), r =

√
x2 + y2 + z2, where x, y, z are Cartesian

coordinates for Euclidean 3-space, and so r is the radius of a Euclidean sphere centred at the
origin of coordinates. Nonetheless neither R nor r is the radius of anything or even a distance
in Eq.(1.1)†, and similarly r in Eq.(1.2) is neither radius nor distance therein. Now let r′ be the
radius of a Euclidean sphere. It is routinely claimed that in Eq.(1.2), r = r′ =

√
x2 + y2 + z2

(e.g. Einstein [4]), from which the black hole was constructed. This is incorrect because in (1.2),
r =

√
x2

0 + y2
0 + z2

0 +
√

(x− x0)2 + (y − y0)2 + (z − z0)2 = r0+r′ where r0 =
√

x2
0 + y2

0 + z2
0 =

2m is the distance of the centre of a Euclidean sphere from the origin of coordinates and r′ its
radius, which has been explained elsewhere [5, 6, 7]. Only when x0 = y0 = z0 = 0 = r0 does
r = r′ =

√
x2 + y2 + z2. When a sphere initially centred at the origin of coordinates is moved, it

takes its centre with it, and the position of the Euclidean sphere is specified by the coordinates
of its centre (x0, y0, z0) so that r0 =

√
x2

0 + y2
0 + z2

0 , whereupon the radius r′ of the sphere is no

longer given by r = r′ =
√

x2 + y2 + z2, but by r′ =
√

(x− x0)2 + (y − y0)2 + (z − z0)2. The
intrinsic geometry of a sphere is not altered by changing its position and so its radius does not
change with a change of position. When Hilbert set r2 as the coefficient of

(
dθ2 + sin2 θ dϕ2

)
in

the derivation of his solution, he unwittingly shifted the centre of Schwarzschild’s Euclidean sphere
from r = r0 = 0 to the coordinates (x0, y0, z0) at the distance r0 =

√
x2

0 + y2
0 + z2

0 = 2m from the
origin of coordinates, mistakenly thinking the centre still at r = 0. Hilbert shifted Schwarzschild’s

∗In Eq.(1.1) c = 1, in Eq.(1.2) c = 1 and Newton’s gravitational constant G = 1.
†Although Eq.(1.1) and Eq.(1.2) are spherically symmetric they non-Euclidean. Hence the radius in Eq.(1.1)

and Eq.(1.2) is not r. The radius must be calculated from the non-Euclidean equations, so that the Euclidean
radial distance corresponds to the different non-Euclidean radial distance. There are two different but related
spaces involved; Euclidean space and non-Euclidean space.
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Euclidean sphere but left its centre behind. The result was fantastic. David Hilbert had separated
the Euclidean sphere from its centre and even placed the centre outside the sphere. Consequently,
Hilbert’s solution is not equivalent to Schwarzschild’s, and black hole theory violates the rules of
pure mathematics. Accordingly, Corda has incorrectly argued that in (1.1), −α ≤ r, in order
to produce two singularities in the fashion of Hilbert’s solution leading to the black hole: Corda
incorrectly argues that −α ≤

√
x2 + y2 + z2 in (1.1).

2 Notation Manipulation

Schwarzschild used the following notation in his paper: F, G, H, x1, x2, x3, x4, f1, f2, f3, where
F, G, H, f1, x1, f2, f3 are functions of r =

√
x2 + y2 + z2, and x1 = r3/3, x2 = − cos θ, x3 = ϕ, x4 =

t.
Corda used the following notation in his paper: l,m, h, X, Y, Z, t, A, B, C, where l,m, h, X,A, B, C

are functions of r =
√

x2 + y2 + z2.
That Corda’s derivation of Schwarzschild’s solution is merely a point by point copy of

Schwarzschild’s is demonstrated by comparisions:

Schwarzschild:
ds2 = Fdt2 −

(
G + Hr2

)
dr2 −Gr2

(
dθ2 + sin2 θ dϕ2

)
(6)

x1 =
r3

3
, x2 = − cos θ, x3 = ϕ (7)

ds2 = Fdx2
4 −

(
G

r4
+

H

r2

)
dx2

1 −Gr2

[
dx2

2

1− x2
2

+ dx2
3

(
1− x2

2

)]
(8)

Corda:
ds2 = hdr2 −mr2

(
dθ2 + sin2 θ dϕ2

)
+ ldt2 (5)

X =
r3

3
, Y = − cos θ, Z = ϕ (6)

ds2 = ldt2 +
h

r4
dX2 −mr2

[
dY 2

1− Y 2
+ dZ2

(
1− Y 2

)]
(7)

Inspection reveals that Corda’s equations (5), (6) and (7) are precisely Schwarzschild’s equa-
tions (6), (7) and (8) respectively, with the following change of notation: l = F, h = − (G + Hr2) ,
m = G, X = x1, Y = x2, Z = x3, t = x4. In his Eq.(5) Corda has also rearranged the order of the
components of Schwarzschild’s Eq.(6).

At his Eqs.(8) Corda sets A ≡ −h/r4, B ≡ mr2, C ≡ l, and rewrites his Eq.(7) as,

ds2 = Cdt2 − AdX2 −B
dY 2

1− Y 2
−BdZ2

(
1− Y 2

)
(10)

Compare this to Schwarzchild’s Eq.(9),

ds2 = f4dx2
4 − f1dx2

1 − f2
dx2

2

1− x2
2

− f3dx2
3

(
1− x2

2

)
(9)
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Corda’s Eq.(10) is just Schwarzschild’s Eq.(9) relabelled with C = f4, t = x4, A = f1, X =
x1, B = f2 = f3 (since f2 = f3 in Schwarzschild’s analysis), Y = x2 and Z = x3.

Corda then goes on to the Riemann-Christoffel symbols of the second kind at his Eqs.(11). They
are the same as Schwarzschild’s, except for Corda’s relabelling, and the fact that Schwarzschild [1]
did not number them. Since there are ten such pairs of symbols, only a few are listed by way of
example:

Schwarzschild:

Γ1
11 = −1

2

1

f1

∂f1

∂x1

, Γ1
22 = +

1

2

1

f1

∂f2

∂x1

1

1− x2
2

, Γ3
31 = −1

2

1

f2

∂f2

∂x1

. . .

Corda:

ΓX
XX = − 1

2A

∂A

∂X
, ΓX

Y Y =
1

2A

∂B

∂X

1

1− Y 2
, ΓZ

Z1 = −1

2

1

B

∂B

∂X
. . . (11)

wherein Corda set A = f1, X = x1, B = f2, Y = x2, Z = x3. He also rearranged the order of the
ten Riemann-Christoffel symbols appearing in Schwarzschild’s paper.

Equations (13), (14), (15), and (16) in Corda’s paper are precisely Schwarzschild’s equations
(b), (a), (c) and (d) respectively, rearranged to equate to zero, and embellished with Corda’s
relabelling:

Schwarzschild:

∂

∂x1

(
1

f1

∂f1

∂x1

)
=

1

2

(
1

f1

∂f1

∂x1

)2

+

(
1

f2

∂f2

∂x1

)2

+
1

2

(
1

f4

∂f4

∂x1

)2

(a)

Corda:
∂

∂X

(
1

A

∂A

∂X

)
− 1

2

(
1

A

∂A

∂X

)2

−
(

1

B

∂B

∂X

)2

− 1

2

(
1

C

∂C

∂X

)2

= 0 (14)

Schwarzschild:
∂

∂x1

(
1

f1

∂f2

∂x1

)
= 2 +

1

f1f2

(
∂f2

∂x1

)2

(b)

Corda:
∂

∂X

(
1

A

∂B

∂X

)
− 2− 1

AB

(
∂B

∂X

)2

= 0 (13)

Schwarzschild:
∂

∂x1

(
1

f1

∂f4

∂x1

)
=

1

f1f4

(
∂f4

∂x1

)2

(c)

Corda:
∂

∂X

(
1

A

∂C

∂X

)
− 1

AC

(
∂C

∂X

)2

= 0 (15)
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Schwarzschild:
1

f1

∂f1

∂x1

+
2

f2

∂f2

∂x1

+
1

f4

∂f4

∂x1

= 0 (d)

Corda:
1

A

∂A

∂X
+

2

B

∂B

∂X
+

1

C

∂C

∂X
= 0 (16)

Corda’s relabelling is clear, nowithstanding his rearrangment of Schwarzschild’s equations to equal
zero: X = x1, A = f1, B = f2, C = f4.

Corda’s Eqs. (17) and (18) are relabelled copies of Schwarzschild’s equations (c′) and (c′′),

Schwarzschild:
∂

∂x1

(
1

f4

∂f4

∂x1

)
=

1

f1f4

∂f1

∂x1

∂f4

x1

(c′)

1

f4

∂f4

x1

= αf1, (α integration constant) (c′′)

Corda:
∂

∂X

(
1

C

∂C

∂X

)
=

1

AC

∂A

∂X

∂C

X
(17)

1

C

∂C

X
= αA, (18)

“where α is an integration constant.”

and his Eqs. (19) and (20) relabelled copies of Schwarzschild’s next two but unnumbered equations,
with Schwarzschild’s latter equation multiplied by −1:

Schwarzschild:

∂

∂x1

(
1

f1

∂f1

∂x1

+
1

f4

∂f4

∂x1

)
=

(
1

f2

∂f2

∂x1

)2

+
1

2

(
1

f1

∂f1

∂x1

+
1

f4

∂f4

∂x1

)2

−2
∂

∂x1

(
1

f2

∂f2

∂x1

)
= 3

(
1

f2

∂f2

∂x1

)2

Corda:
∂

∂X

(
1

A

∂A

∂X
+

1

C

∂C

∂X

)
=

(
1

B

∂B

∂X

)2

+
1

2

(
1

A

∂A

∂X
+

1

C

∂C

∂X

)2

(19)

2
∂

∂X

(
1

B

∂B

∂X

)
= −3

(
1

B

∂B

∂X

)2

(20)

The relabelling is X = x1, A = f1, C = f4, B = f2. Note that Corda’s Eq.(20) is Schwarzschild’s
second unnumbered equation multiplied through by −1.
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Corda’s Eqs.(21) and (22) are numbered and relabelled copies of Schwarzschild’s very next two
unnumbered equations,

Schwarzschild:
1

f2

∂f2

∂x1

=
2

3x1 + ρ

f2 = λ (3x1 + ρ)2/3 (λ integration constant)

Corda:
1

B

∂B

∂X
=

2

3X + b
(21)

B = d (3X + b)2/3 (22)

“where d is an integration constant.”

Once again Corda’s relabelling of Schwarzschild’s unnumbered equations is clearly evident: B =
f2, X = x1, d = λ, b = ρ. To set d = 1 Corda next invokes the same condition that Schwarzschild
applied at his Eq.(10) to fix his λ = 1:

Schwarzschild:
f2 = (3x1 + ρ)2/3 (10)

Corda:
B = (3X + b)2/3 (23)

The copy precedure continues, with Corda’s reproduction of Schwarzschild’s derivation in mod-
ified raiment. Indeed, immediately after his Eq.(23) Corda presents an unnumbered equation. The
corresponding equation in Schwarzschild’s paper is also unnumbered. They are as follows:

Schwarzschild:
∂f4

∂x1

= αf1f2 =
α

f 2
2

=
α

(3x1 + ρ)4/3

Corda:
∂C

∂X
= αAC =

α

B2
= α (3X + b)−

4
3

Here the relabelling is also obvious.
Corda’s Eqs.(24) and (25) are again just relabelled copies of Schwarzschild’s Eqs.(11) and (12)

respectively:

Schwarzschild:
f4 = 1− α (3x1 + ρ)−1/3 (11)

f1 =
(3x1 + ρ)−4/3

1− α (3x1 + ρ)−1/3
(12)
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Corda:

C = 1− α (3X + b)−
1
3 (24)

A =
(3X + ρ)−

4
3

1− α (3X + b)−
1
3

(25)

The relabelling is, C = f4, A = f1, X = x1, b = ρ.
Corda’s Eq.(26) is a relabelled copy of Schwarzschild’s Eq.(13) and his three Eqs.(27) are rela-

belled combinations of Schwarzschild’s unnumbered equations immediately following the latter’s
Eq.(13), as follows:

Schwarzschild:
ρ = α3 (13)

f1 =
1

R4

1

1− α/R
, f2 = f3 = R2, f4 = 1− α/R

R = (3x1 + ρ)1/3 =
(
r3 + α3

)1/3

Corda:
b = α3 (26)

A =
(
r3 + α3

)− 4
3

[
1− α

(
r3 + α3

)− 1
3

]−1

B =
(
r3 + α3

)2/3
(27)

C = 1− α
(
r3 + α3

)− 1
3

Clearly, from Schwarzschild’s Eq.(13) Corda (Eq.(26)) has relabelled b = ρ and from Schwarzschild’s
unnumbered equations, Corda (Eqs.(27)) relabelled A = f1, B = f2, C = f4.

At his Eq.(28) Corda has simply reproduced Schwarzschild’s Eq.(14)∗ wherein he has explicitly

substituted Schwarzschild’s R = (r3 + α3)
1/3

, and altered the sequence of terms in the metric:

Schwarzschild:

ds2 = (1− α/R) dt2 − dR2

1− α/R
−R2

(
dθ2 + sin2 θ dϕ2

)
, R =

(
r3 + α3

)1/3
(14)

Corda:

ds2 =

[
1− α

(r3 + α3)
1
3

]
dt2 −

(
r3 + α3

) 2
3
(
sin2 θ dϕ2 + dθ2

)
+ (28)

−d (r3 + α3)
2
3

1− α

(r3+α3)
1
3

∗See Eq.(1) herein.
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Then, according to the standard practice of cosmology, Corda assigned, at his Eq.(30), by
means of Newton’s expression for escape speed, α = rg = 2GM/c2, and also, according to common
cosmology practice, set c = 1 and G = 1 so that α = rg = 2M , where M is alleged to be the mass
that is the source of a gravitational field:

Corda:

ds2 =

1− rg(
r3 + r3

g

) 1
3

 dt2 −
(
r3 + r3

g

) 2
3
(
sin2 θ dϕ2 + dθ2

)
+ (30)

−
d

(
r3 + r3

g

) 2
3

1− rg

(r3+r3
g)

1
3

Corda then remarks,

“Historically, the line-element (30) represents ‘the original Schwarzschild solution’ to
Einstein field equations as it has been derived for the first time by Karl Schwarzschild
in [3] with a slight different analysis.”

There are two additional problems here: (1) Schwarzschild [1] did not assign α = rg = 2M
in his solution, as even a cursory reading of his original paper attests; (2) Corda’s ‘analysis’ is
nothing but a reproduction of Schwarzschild’s derivation. Corda’s “slight different analysis” is
different only by his relabelling of the variables, functions and constants of Schwarzschild, with
some rearrangement of terms and different numbering of equations, but otherwise precisely the
same in every other respects by virtue of it being a reproduction.

At his Eq.(31) Corda relabelled Schwarzschild’s ‘auxilliary quantity’ R,

Schwarzschild:

R =
(
r3 + α3

)1/3

Corda:

r̂ =
(
r3 + r3

g

)1/3
(31)

Here Corda has set r̂ = R and rg = α, where rg = 2M .
Finally, at his Eq.(32), Corda presents Schwarzschild’s solution (the latter’s Eq.(14)), again

embellished with α = rg, renumbering, and rearrangement of terms,

Schwarzschild:

ds2 =
(
1− α

R

)
dt2 − dR2

1− α/R
−R2

(
dθ2 + sin2 θ dϕ2

)
, R =

(
r3 + α3

)1/3
(14)

Corda:

ds2 =
(
1− rg

r̂

)
dt2 − r̂2

(
sin2 θ dϕ2 + dθ2

)
− dr̂2

1− rgbr (32)

wherein r̂ =
(
r3 + r3

g

)
, rg = α.

Since Corda’s derivation of Schwarzschild’s actual solution is nothing but a relabelled point by
point copy of Schwarzschild’s derivation, he has contributed nothing new to the solution of the
problem.
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3 The spherical surface

The surface embedded in Schwarzschild’s metric is,

ds2 = R2
(
dθ2 + sin2 θ dϕ2

)
(3.1)

This expression is an instance of the First Fundamental Quadratic Form of a surface. The intrinsic
geometry of a surface is entirely independent of any space it which it might be embedded. The most
important feature of the intrinsic geometry of a surface is its Gaussian curvature∗. The Gaussian
curvature K of the above surface is easily calculated at K = 1/R2 [7, 8, 9, 10, 11, 14]. Herein is
the true meaning of R. Hence, in Hilbert’s metric K = 1/r2. Since K is a positive constant the
surface (3.1) is a spherical surface [11, 14]. Since they are non-Euclidean, r is neither the radius
nor even a distance in the metrics of Schwarzschild or Hilbert. The ‘Schwarzschild radius’ is not
the radius of anything in these metrics. Yet cosmology maintains that the ‘Schwarzschild radius’
or ‘gravitational radius’ (i.e. r = rg = 2m in Hilbert’s solution) is the radius of the event horizon
of a black hole of mass m. On page 79 of his paper Corda conforms to cosmology:

“This assumption enables the origin of the coordinate system to be not a single point,
but a spherical surface having radius equal to the gravitational radius, i.e. the surface
of the Schwarzschild sphere. . . . In fact, a coordinate transform that transfers the origin
of the coordinate system, which is the surface having radius equal to the gravitational
radius, in a non-dimensional material point in the core of the black hole, re-obtains the
solution re-adapted by Hilbert.”

4 Corda’s deformed circumference

Corda makes much of his function m = m(r):

Corda

m =
(r3 + α3)

2
3

r2
(29)

On page 70 of his paper [3] he writes,

“. . . we will assume that the length of the circumference centred in the origin of the
coordinate system is not 2πr. We release an apparent different physical assumption,
i.e. that arches of circumference are deformed by the presence of mass of the central
body M.”

On page 73 he writes,

“Hence, we understand that the assumption to locate the mathematical singularity of
the function A at X = 0 coincides with the physical condition that the length of the

circumference centred in the origin of the coordinate system is 2π (r3 + α3)
1
3 , which

is different from the value 2πr. This is the apparent fundamental physical difference
between this solution and the ‘standard Schwarzschild solution’ (1), i.e. the one enabled
by Hilbert. . . ”

∗The Theorema Egregium of Gauss.
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However, there is nothing either physically or mathematically meaningful in Corda’s circum-
ference assumption for the simple fact that he has confounded r in Schwarzschild’s solution and r
in Hilbert’s solution as being the radial distance∗ in both. Moreover, Corda’s m is nothing but a
relabelling of Schwarzschild’s G, i.e. m(r) = G(r), noted in §2 above, and so it already appears in
Schwarzschild’s Eq.(8), where it does not deform anything. This is easily seen by the fact that the
length of a closed geodesic in the spherical surface embedded in Schwarzschild’s metric is given by,

C = 2πR (4.1)

which is indifferent to the functional form that R takes [5, 6, 10, 11]. If R(r) = r then C = 2πr;

if R(r) = (r3 + α3)
1/3

then C = 2π (r3 + α3)
1/3

; if R = (α− r) then C = 2π (α− r). In Eq.(4.1)
the quantity R does not care how its value is assigned, and neither does C†.

Corda’s function m deforms nothing, because it is simply the ratio of the Gaussian curvatures
of two different spherical surfaces. Recall that the Gaussian curvature KM of the spherical surface
in Minkowski’s metric is KM = 1/r2 and the Gaussian curvature KS of the corresponding spherical

surface in Schwarzschild’s metric is KS = 1/R2 = 1/ (r3 + α3)
2/3

. Then,

m =
(r3 + α3)

2
3

r2
=

R2

r2
=

KM

KS

= G (4.2)

which has nothing to do with a deformation of a circumference.

5 Gravitational collapse

In §3 of his paper, Corda mimics the analysis of Misner, Thorne and Wheeler [12], which he admits

he reproduces, except for replacing their r with Schwarzschild’s R = (r3 + α3)
1/3

, wherein Corda
sets α = rg = 2M (the ‘Schwarzschild’ or ‘gravitational’ radius). He has therefore not added
anything new to the issue. In any event, mathematical and seemingly physical arguments for the
extension of Schwarzschild’s solution to −α ≤ r =

√
x2 + y2 + z2 are easily proven to require

violation of the rules of pure mathematics, and so they are invalid.

6 The infinite equivalence class

The important issues are the invariant curvature scalars and the infinite equivalence class from
which all admissible equivalent specific expressions of the solution for Rµν = 0‡ are obtained.

The quantity R in Schwarzschild’s solution and the quantity r in Hilbert’s solution can be
replaced by any analytic function Rc(r) without violating Rµν = 0 or spherical symmetry. However,
not simply any analytic function of r is permissible for a solution to Einstein’s ‘gravitational field’
Rµν = 0. Satisfaction of the field equations is a necessary but insufficient condition. For example,

∗It is standard in cosmology to erroneously treat r in Hilbert’s solution as radial distance, despite having
numerous ‘definitions’ for it, as is particularly evident in the notion of the ‘Schwarzschild radius’ (i.e. the radius of
the ‘event horizon’); but it is in fact neither a radius nor a distance in the these metrics (see for example, [14]).

†Of course, the range on r in all cases must also be correctly specified.
‡Einstein’s ‘Field Equations of Gravitation in the Absence of Matter’ [13, § 14].
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replace Hilbert’s r with Rc(r) = er. The resulting metric is singular only at r = ln 2m. At
r = 0 nothing special happens; on the unproven assumption that r < ln 2m is permissible. But
Rc(r) = er is itself impermissible because the resulting metric is not asymptotically flat. The
infinite equivalence class of permissible analytic functions Rc(r) must be ascertained.

The metric for Minkoswki spacetime in Cartesian coordinates is,

ds2 = c2dt2 − dx2 − dy2 − dz2 (6.1)

where c is the speed of light in vacuo∗. Changing to spherical coordinates, Eq.(6.1) becomes,

ds2 = c2dt2 − dr2 − r2
(
dθ2 + sin2 θ dϕ2

)
(6.2)

which is spherically symmetric. The spatial section of Eq.(6.1) is,

dσ2 = dx2 + dy2 + dz2 (6.1b)

which is Euclidean. The spatial section of Eq.(6.2) is,

dσ2 = dr2 + r2
(
dθ2 + sin2 θ dϕ2

)
(6.2b)

which is spherically symmetric about r = 0 for three-dimensional Euclidean space.
Since at least 1896 it has been known that the most general metrical ground-form with spherical

symmetry for three-dimensional space is,

ds2 = A2dR2
c + R2

c

(
dθ2 + sin2 θ dϕ2

)
(6.3)

where Rc = Rc(r), A = A (Rc(r)), and r =
√

x2 + y2 + z2 is the r in Eq.(6.2b). Eq.(6.3) is, in
general, non-Euclidean. Note that Eqs. (6.1b), (6.2b) and (6.3) are positive definite, i.e. the signs
of the coefficients of the differential elements are all positive†. Note also that if Rc(r) = r and
A(r) = 1, then the Euclidean Eq.(6.2b) is recovered.

The required infinite equivalence class must satisfy the following fundamental requirements, in
accordance with Einstein’s [4] prescription:

1. it must be static,

2. it must be spherically symmetric,

3. it must satisfy Rµν = 0,

4. it must be asymptotically flat.

The infinite equivalence class has been derived elsewhere [5, 6, 10, 11, 14, 15, 16], and it is
given by,

ds2 =

(
1− α

Rc

)
dt2 −

(
1− α

Rc

)−1

dR2
c −R2

c

(
dθ2 + sin2 θ dϕ2

)
∗That is, c = 2.998× 108m/s.
†The signature is fixed at (+,+,+).
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Rc = (|r − r0|n + αn)
1/n

, r, r0 ∈ <, n ∈ <+ (6.4)

Here α is a positive real constant, r0 and n entirely arbitrary constants. Note that the spatial
section of Eq.(6.4) is precisely of the form of Eq.(6.3), generalised from Eq.(6.2b). Choosing
r0 = 0, n = 3, r ≥ r0 produces Schwarzschild’s solution Eq.(1.1). Choosing r0 = 0, n = 1, r ≥ r0

produces Brillouin’s solution [17]. Choosing r0 = α, n = 1, r ≥ r0 produces Droste’s solution [18].
However, Hilbert’s solution is not an element of the infinite set (6.4), and thus it is not equivalent
to Schwarzschid’s solution, contrary to Corda’s claims. Note that Hilbert’s solution is specifically
an alleged ‘extension’ of Droste’s solution, and hence invalid by the very choice of Droste’s solution
(since selection of Droste’s solution places the centre of a Euclidean sphere at the point (x0, y0, z0)
at the distance r0 =

√
x2

0 + y2
0 + z2

0 = α from the origin of coordinates for Minkowski space). The
reader can easily verify for himself that Eq.(6.4) satisfies all four conditions required by Einstein.

Since every element of Eq.(6.4) is equivalent, then if any element thereof can be ‘extended’ to
form a black hole, then every element must be extendible in the same fashion. Conversely, if any
element of Eq.(6.4) cannot be extended, then none can be extended, on account of equivalence.
It is evident that no element of Eq.(6.4) can be extended to form a black hole because the latter
requires that in Eq.(6.4), 0 ≤ Rc, which is impossible because |r − r0|n is never less than zero.
The metric Eq.(6.4) is singular at only one point, r = r0. To amplify this fact, set r0 = 0, n = 2,

such that Rc = (r2 + α2)
1/2

. Then the resulting metric is well defined for all real values of r,
except r = 0. Note that r2 ≥ 0 and therefore Rc ≥ α necessarily. Since this particular equivalent
metric cannot be extended to produce a black hole, no element of Eq.(6.4) can be extended to
produce a black hole, due to equivalence. Consequently, neither Droste’s solution can be extended
to yield Hilbert’s ‘solution’ nor Schwarzschild’s solution be extended to −α ≤ r =

√
x2 + y2 + z2.

Hilbert’s solution is invalid and so the black hole is invalid. The theory of black holes requires that
|r − r0|n < 0, which is a violation of the rules of pure mathematics, and so the theory of black
holes is false.

The role of r is now apparent. Consider a sphere of radius r′ = |r − r0| in Euclidean 3-space
(i.e. the spatial section of Minkowski spacetime) such that r and r0 lie on the same radial line
through the origin of coordinates r = 0. Then the centre of the sphere is located at a point
with Cartesian coordinates (x0, y0, z0) at a distance r0 =

√
x2

0 + y2
0 + z2

0 from the origin of the
coordinate system. The equation of this sphere in Cartesian coordinates is,

(x− x0)
2 + (y − y0)

2 + (z − z0)
2 = (r − r0)

2 = r′2 (6.5)

Only when x0 = y0 = z0 = 0 = r0, is the sphere centred at the origin of the coordinate system. In
any case, the radius of the sphere is |r − r0| no matter where in Euclidean 3-space the sphere is
centred, as illustrated in Fig.1∗.

The radius |r − r0| in Euclidean 3-space (i.e. the spatial section of Minkowski spacetime) is
mapped by Eq.(6.4) into the corresponding radius Rp in Schwarzschild non-Euclidean 3-space (i.e.
the spatial section of Schwarzschild spacetime) [5, 6, 10, 11, 14, 15, 16],

Rp =

∫
dRc√
1− α

Rc

=
√

Rc (Rc − α) + α ln

(√
Rc +

√
Rc − α√

α

)
Rc = (|r − r0|n + αn)

1/n
, r, r0 ∈ <, n ∈ <+ (6.6)

∗The third dimension x has been suppressed for ease of illustration.
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Fig. 1: A Euclidean sphere of radius r′ centred at r = r0 (Cartesian coordinates (x0, y0, z0) at a distance
r = r0 =

√
x2

0 + y2
0 + z2

0 from the origin O; r and r0 lying in the same radial line through O). Schwarzschild
centred at the origin O but Hilbert, by setting the coefficient of

(
dθ2 + sin2 θ dϕ2

)
at r2, unwittingly

centred at r0 = α = 2m (see Eq.(6.4)), mistakenly thinking he had centred at r = 0, thereby separating
the sphere from its centre, misplacing its centre at r = 0. In other words, Hilbert unwittingly moved
Schwarzschild’s Euclidean sphere in Minkowski space to r = r0 leaving its centre behind at r = 0. The
large circle denotes a sphere relative to the origin of coordinates. The small circle denotes the sphere
actually involved in Hilbert’s solution. Thus, when r′ = 0, r = r0, the latter misinterpreted as the radius
of a black hole event horizon, with r = 0 misinterpreted as an infinitely dense ‘physical’ singularity of a
black hole, where spacetime curvature is ‘infinite’∗. Note that as r′ grows its sphere engulfs the origin O
and beyond, so none of Euclidean 3-space is left out. Cosmology however, seeks to stop at r = 0, all the
while attempting to drive the centre of the sphere r′ down to r = 0 when in fact it is at r0 = α = 2m.
When r = 0 in Hilbert’s solution, the radius r′ = r0 =

√
x2

0 + y2
0 + z2

0 and the centre of the sphere at
(x0, y0, z0), as Eq.(6.5) attests. Hilbert confounded the origin of the coordinate system for the centre of
the Euclidean sphere, and so his solution is invalid.
————
∗There are forces in General Relativity, but gravity is not one of them, because it is ‘spacetime curvature’.
Infinite spacetime curvature is therefore infinite gravity.

Note that Rp (r0) = 0 ∀r0 ∀n (the centre of the non-Euclidean sphere is located at Rp (r0)),

although the metric itself is undefined there (and only there). Also note that Rc(r0) = α ∀r0 ∀n.
Following §3 above, Rc(r) maps the the Gaussian curvature K = 1/ |r − r0|2 of the spherical

surface of a sphere centred anywhere in Minkowski spacetime, into the corresponding Gaussian
curvature K = 1/R2

c of the spherical surface embedded in Schwarschild spacetime.
Hence, in general, by Eq.(6.4) and Eq.(6.6), the radius |r − r0| of a Euclidean sphere centred

at the point (x0, y0, z0) in Minkowski spacetime is mapped into the corresponding radius Rp of
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a non-Euclidean sphere centred at Rp(r0) = 0 in Schwarzschild spacetime, and the Gaussian
curvature 1/ |r − r0|2 of the spherical surface embedded in Minkowski spacetime is mapped to
the corresponding Gaussian curvature 1/R2

c of the spherical surface embedded in Schwarzschild
spacetime. From this it follows that choosing Rc(r) = r (i.e. r0 = α = 2m and n = 1 in Eq.(6.4))
shifts the centre of the Euclidean sphere associated with Hilbert’s solution, to a point (x0, y0, z0)
at a distance

√
x2

0 + y2
0 + z2

0 = 2m from the origin of coordinates of the associated Euclidean space
and so the radius of that Euclidean sphere is zero when r = r0 = 2m, then making Rp(r0) = 0
in Schwarzschild spacetime. Note that r and r0 are just distances (scalars) from the origin of
coordinates and so vector notation is not required. Indeed, considering vectors ~r and ~r0, if they are
collinear then the radius r′ of the Euclidean sphere is r′ = |~r − ~r0| = |r − r0| where r = |~r| and r0 =
|~r0|. Consequently, when Hilbert set the coefficient of

(
dθ2 + sin2 θ dϕ2

)
to r2, he unwittingly moved

the centre of Schwarzschild’s Euclidean sphere from r = 0 to r = 2m so that instead of r = r′=√
x2 + y2 + z2 he should have obtained r =

√
x2

0 + y2
0 + z2

0 +
√

(x− x0)2 + (y − y0)2 + (z − z0)2

= r0 + r′ so that when the radius r′ of the Euclidean sphere, centred at the point (x0, y0, z0), is
zero, i.e. when x = x0, y = y0, z = z0, r = r0 =

√
x2

0 + y2
0 + z2

0 . Hilbert confounded the radius r′ of
the Euclidean sphere with the radius r from the origin of the coordinate system of the associated
Euclidean space. This is amplified by the fact that since r and r0 lie on the very same radial line
through the origin of coordinates,√

x2 + y2 + z2 =
√

x2
0 + y2

0 + z2
0 +

√
(x− x0)2 + (y − y0)2 + (z − z0)2 (6.6)

so that when x = x0, y = y0, z = z0, Eq.(6.6) reduces to the identity,√
x2

0 + y2
0 + z2

0 =
√

x2
0 + y2

0 + z2
0

in which case,

r = r0 =
√

x2
0 + y2

0 + z2
0

because the radius r′ of the Euclidean sphere has now converged to r′ = 0 at the centre of the
sphere, located at the point (x0, y0, z0) at the distance r = r0 =

√
x2

0 + y2
0 + z2

0 from the origin of
the coordinate system. The origin of the coordinate system of the spatial section of Minkowski
spacetime is always at r = 0 but the centre of the Euclidean sphere need not be there - it can be
placed anywhere, as Eq.(6.4) and Eq.(6.5) permit, illustrated in Fig.1.

If ~r and ~r0 are not collinear, then the radius vector ~r ′ of the Euclidean sphere is ~r ′ = (~r − ~r0)
the radius of that sphere is r′ = |~r ′| = |~r−~r0| (see Fig.2), and all other related expressions become,
trivially, scalar functions of a vector variable:

Rp =

∫
dRc√
1− α

Rc

=
√

Rc (Rc − α) + α ln

(√
Rc +

√
Rc − α√

α

)
Rc = (|~r − ~ro|n + αn)

1/n
, ~r, ~ro ∈ R3, n ∈ <+

Then as ~r → ~r0, ~r ′ → ~O and r′ → 0.
Note that |r − r0| means that (r − r0) may be ≥ 0 or ≤ 0, or both. In fact, when r = 0

the radius of the Euclidean sphere is r′ = | − r0| = r0 =
√

x2
0 + y2

0 + z2
0 . By elementary analytic
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Fig. 2: The radius vector ~r ′ of the Euclidean sphere centred at the pointed end of the position vector ~r0

is ~r ′ = (~r − ~r0) and the radius of that sphere is r′ = |~r − ~r0|. As the vector ~r → ~r0 the radius vector of
the Euclidean sphere ~r ′ → ~O and so the radius r′ → 0.

geometry, r can take values less than zero because −r is the radius pointing in the opposite
direction to r.

Consider Schwarzschild’s unnumbered equation, 3x1 = α3 − ρ. To eliminate the integration
constant ρ he had two obvious choices, (a) ρ = α3 or (b) ρ = 0. Schwarzschild chose (a) “In
order that this discontinuity coincides with the origin”[1]. If he chose (b) he would have obtained
Droste’s solution [18], in which case the centre of the Euclidean sphere is moved along any radial
line to the point (x0, y0, z0), at the distance r = r0 =

√
x2

0 + y2
0 + z2

0 from the origin of coordinates
(as depicted in Fig.1).

It follows that all the scalar curvature invariants are finite - contrary to cosmology, there are
no curvature singularities anywhere [5, 6, 7, 8, 9, 10, 11, 14, 15, 21].

7 Isotropic coordinates

The infinite equivalence class for Schwarzchild spacetime can be expressed in isotropic coordinates
[14, 15, 19]∗:

ds2 =

(
1− α

4Rc

)2

(
1 + α

4Rc

)2 dt2 −
(

1 +
α

4Rc

)4

dR2
c −R2

c

(
1 +

α

4Rc

)4 (
dθ2 + sin2 θ dϕ2

)
∗Here c = 1.
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Rc =
[
|r − r0|n +

(α

4

)n]1/n

, r, r0 ∈ <, n ∈ <+

The radius Rp is given by,

Rp =

∫ (
1 +

α

4Rc

)2

dRc = Rc +
α

2
ln

(
4Rc

α

)
− α2

8Rc

+
α

4

Note that Rp(r0) = 0 ∀r0 ∀n and Rc(r0) = α/4 ∀r0 ∀n. Clearly no element of this infinite
equivalence class can be ‘extended’ to produce a black hole, as amplified by the case r0 = 0, n = 2.

A similar result is obtained for the Reissner-Nordström solution in isotropic coordinates [14,
15, 19]. In no case can a black hole solution be obtained, for the reason that it constitutes a
violation of the rules of pure mathematics in the same fashion as for Hilbert’s solution.

8 Other black holes

The Kerr-Newman solution subsumes the Kerr, Reissner-Nordström, and Schwarzschild solutions.
In similar fashion the Kerr-Newman configuration requires an infinite equivalence class for its
solution. The infinite equivalence class is [14, 15, 20]:

ds2 = −∆− a2 sin2 θ

ρ2
dt2 − 2a sin2 θ (R2

c + a2 −∆)

ρ2
dtdϕ +

(R2
c + a2)

2 − a2∆ sin2 θ

ρ2
sin2 θ dϕ2

+
ρ2

∆
dR2

c + ρ2 dθ2

∆ = R2
c − αRc + a2 + q2, ρ2 = R2

c + a2 cos2 θ, Rc = (|r − r0|n + ξn)
1/n

, r, r0 ∈ <, n ∈ <+

ξ =
α

2
+

√
α2

4
− q2 − a2 cos2 θ, a2 + q2 <

α2

4

Note that no element of this infinite equivalence class can be extended to produce a black hole,

once again amplified by the case r0 = 0, n = 2. Consequently there is no black hole. If there is
no ‘angular momentum’, a = 0 and the Reissner-Nordström solution is recovered. If charge q = 0
the Kerr solution is recovered. If a = 0 and q = 0 the Schwarzschild solution is recovered. In all
cases, contrary to cosmology, there are curvature singularities nowhere [14].

9 Conclusions

Corda’s derivation of Schwarzschild’s solution is merely a point by point reproduction of
Schwarzschild’s derivation, embellished with relabelling of Schwarzschild’s variables and functions,
renumbering of his equations, rearrangment of elements of his equations, and numbering of his
unnumbered equations. Corda has thereby not advanced anything new to the solution of the
problem.

16



Corda’s claim that Schwarzschild’s solution and Hilbert’s solution are equivalent is demonstra-
bly false. Droste’s solution and Brillouin’s solution are equivalent to Schwarzschild’s solution. The
solution to Rµν = 0 requires an infinite equivalence class in order to provide for all permissible
‘transformations of coordinates’. Hilbert’s solution is not an element of the infinite equivalence
class and is therefore invalid, amplified by the fact that Hilbert’s solution is an alleged extension
of Droste’s solution, which cannot be extended by its very selection. The ‘extension’ of Droste’s
solution to Hilbert’s solution to produce a black hole constitutes a violation of the rules of pure
mathematics and so it is invalid. It is from the extension of Droste’s solution that Hilbert enabled
the black hole. Hence, the theory of black holes is invalid.

Corda’s claim that “the length of the circumference centred in the origin of the coordinate
system is not 2πr” is false because the length of a closed geodesic in a spherical surface always has
the form 2πR, being indifferent to how R is assigned a value. Corda’s assertion that r in Hilbert’s
solution and Schwarzschild’s solution is radial distance therein, although standard cosmology, is
demonstrably false. The ‘Schwarzschild radius’ is not the radius of anything, or even a distance,
in the Schwarzschild metric or Hilbert’s metric. It is therefore not the radius of a black hole event
horizon.

Corda’s [3] conclusion that “. . .Hilbert was not wrong but they are definitely wrong the authors
who claim that ‘the original Schwarzschild solution’ implies the non existence of BHs” is incorrect.
The black hole is a product of violations of the rules of pure mathematics and therefore false.
Schwarzschild’s solution does not permit a black hole. Since the Michell-Laplace dark body does
not share the properties of the black hole, it is not a black hole [14, 22]. Hence, there is no
legitimate mathematical theory of black holes.
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