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Abstract

We propose a Clifford algebra based model, which includes local gauge symme-
tries SO(1, 3) ⊗ SUL(2) ⊗ UR(1) ⊗ U(1) ⊗ SU(3). There are two sectors of bosonic
fields as Majorana and electroweak bosons. The Majorana boson sector is responsi-
ble for flavor mixing and neutrino Majorana masses. The electroweak boson sector
is composed of scalar Higgs, pseudoscalar Higgs, and antisymmetric tensor compo-
nents. The LHC 750 GeV diphoton resonance is explained by the flavon, which is
the pseudo-Nambu-Goldstone boson of ūsc̄d four-quark condensation. The flavon
results from spontaneous symmetry breaking of a global phase symmetry involving
first and second generation quarks. Being a standard model singlet, the four-fermion
condensation is a potential dark matter candidate.
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1 Introduction

The experiments at LHC recently indicated a diphoton resonance at about 750 Gev[1, 2],
in addition to the earlier finding of Higgs boson with mh = 125 Gev[3, 4]. Scenarios
with either an isospin singlet state or an isospin doublet state can not accommodate the
observed signal and an extended particle content is necessary[5, 6, 7, 8, 9, 10, 11, 12, 13].

We propose a Clifford algebra based model which encompasses Yang-Mills interac-
tions as well as gravity. The 750 GeV diphoton resonance corresponds to a pseudo-
Nambu-Goldston boson of underlying four-quark condensation. No further extended
particle content is needed.

With the purpose of studying 3 generations of standard model fermions, a ternary
Clifford vector is introduced alongside 6 binary Clifford vectors. The flavor projection
operators facilitate flavor mixing via Majorana bosons.

The current paper is a continuation of our previous work[14, 15], which is based on
three premises. Firstly, both gravity and Yang-Mills interactions should be treated as
gauge theories and integrated in a single overarching framework. The key is to take a
page from effective field theory, where an infinite number of terms allowed by symmetry
requirements should be included in a generalized action. Only the first order terms of the
action are relevant in low-energy limit.

The second premise is that all idempotent projections of the original algebraic spinor
should be realized as fermions of physical world. In other words, no spinor projection
should be casually discarded. Hence, finding the right Clifford algebra turns out to be
a simple process of counting numbers of fermion species. There are 16 Weyl fermions
(including right-handed neutrino) with 16 × 4 = 64 real components in one generation.
Clifford algebra C`0,6, with 26 = 64 degrees of freedom, seems to be a natural choice.

The third premise is that rotations should be generalized. As well known in Clifford
algebra approaches, a rotation is realized by a rotor, which is an exponential of bivec-
tors. It rotates a vector into another vector. However, a rotor could be defined to be an
exponential of any multivectors. It could rotate a vector into a multivector, generaliz-
ing definition of rotations. Hence, one can entertain large symmetry groups with lower
dimensional Clifford algebras, whereas the same symmetry groups would otherwise re-
quire higher Clifford dimensions within the conventional framework. While the conven-
tional Dirac matrix operators γ1, γ2, γ3 correspond to vectors in C`0,6, the matrix operator
γ0 corresponds to a trivector γ0 = Γ1Γ2Γ3. Lorentz boost rotations are represented as
exponentials of Clifford 4-vectors Γ1Γ2Γ3γ1, Γ1Γ2Γ3γ2, Γ1Γ2Γ3γ3.

This paper is structured as follows: Section 2 introduces binary Clifford algebra, gauge
symmetries, and the action of the world. In section 3, an additional ternary Clifford al-
gebra is defined. The Majorana boson sector, flavor mixing, and 750 Gev diphoton res-
onance are discussed. In section 4, we study electroweak boson sector. In section 5, we
touch upon the topic of grand unification. In the last section we draw our conclusions.

2



2 Gauge- and Diffeomorphism-Invariant Action

2.1 6D Clifford Algebra

We begin with a review of orthogonal Clifford algebra C`0,6. It is defined by anticommu-
tators of orthonormal vector basis (γj,Γj; j = 1, 2, 3)

[γj, γk] =
1

2
(γjγk + γkγj) = −δjk, (1)

[Γj,Γk] = −δjk, (2)
[γj,Γk] = 0, (3)

where j, k = 1, 2, 3. All basis vectors are space-like. There are
(

6
k

)
independent k-vectors.

The complete basis for C`0,6 is given by the set of all k-vectors. Any multivector can be
expressed as a linear combination of 26 = 64 basis elements.

Two trivectors

γ0 = Γ1Γ2Γ3, (4)
Γ0 = γ1γ2γ3 (5)

square to 1, so they are time-like. The orthonormal vector-trivector basis {γa, a = 0, 1, 2, 3}
defines space-time Clifford algebra C`1,3, with

ηab = 〈γaγb〉 =


+1, 0, 0, 0
0,−1, 0, 0
0, 0,−1, 0
0, 0, 0,−1

 , (6)

where 〈· · · 〉 means scalar part of enclosed expression. The reciprocal vectors {γa} are
defined by

γaηab = γb, (7)

thus
〈γaγb〉 = δab . (8)

Here we adopt the summation convention for repeated indices. Notice that γ0 is a trivec-
tor, rather than a vector.

The unit pseudoscalar

i = Γ1Γ2Γ3γ1γ2γ3 = γ0γ1γ2γ3 = γ0Γ0 (9)

squares to −1, anticommutes with odd-grade elements, and commutes with even-grade
elements.
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Reversion of a multivector M ∈ C`0,6, denoted M̃ , reverses the order in any product of
vectors. For any multivectors M and N , there are algebraic properties

(MN)˜ = ÑM̃, (10)
〈MN〉 = 〈NM〉 . (11)

The magnitude of a multivector M is defined as

|M | =
√
〈M †M〉, (12)

where
M † = −iM̃i, (13)

is the Hermitian conjugate.

2.2 Algeraic Spinor

Algebraic spinor ψ ∈ C`0,6 is a multivector , which is expressed as a linear combination
(with Grassmann-odd coefficients) of all 26 = 64 basis elements.

Spinors with left/right chirality correspond to odd/even multivectors

ψ = ψL + ψR, (14)

ψL =
1

2
(ψ + iψi) (15)

ψR =
1

2
(ψ − iψi). (16)

A projection operator squares to itself. Idempotents are a set of projection operators

P0 =
1

4
(1 + iJ1 + iJ2 + iJ3) =

1

4
(1 + 3iJ), (17)

P1 =
1

4
(1 + iJ1 − iJ2 − iJ3), (18)

P2 =
1

4
(1− iJ1 + iJ2 − iJ3), (19)

P3 =
1

4
(1− iJ1 − iJ2 + iJ3), (20)

Pq = P1 + P2 + P3 =
3

4
(1− iJ), (21)

P± =
1

2
(1± Γ0Γ3), (22)
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where

J1 = γ1Γ1, J2 = γ2Γ2, J3 = γ3Γ3, (23)

J =
1

3
(J1 + J2 + J3), (24)

P0 + P1 + P2 + P3 = P0 + Pq = 1, (25)
PaPb = δab, (a, b = 0, 1, 2, 3), (26)
P+ + P− = 1. (27)

Here P0 is lepton projection operator, Pq is quark projection operator, and Pj are color
projection operators. The bivectors Jj appearing in the color projectors Pj suggest an
interesting duality between 3 space dimensions and 3 colors of quarks.

Now we are ready to identify idempotent projections of spinor

ψ = (P+ + P−)(ψL + ψR)(P0 + P1 + P2 + P3) (28)

with left-handed leptons, red, green, and blue quarks
νL = P+ψLP0,
eL = P−ψLP0,
uL = P+ψLP1 + P+ψLP2 + P+ψLP3 = P+ψLPq,
dL = P−ψLP1 + P−ψLP2 + P−ψLP3 = P−ψLPq,

(29)

and right-handed leptons, red, green, and blue quarks
νR = P−ψRP0,
eR = P+ψRP0,
uR = P−ψRP1 + P−ψRP2 + P−ψRP3 = P−ψRPq,
dR = P+ψRP1 + P+ψRP2 + P+ψRP3 = P+ψRPq.

(30)

2.3 Symmetries

Spinors transformation as

ψL → eΘLOR+ΘWLψLe
ΘJ−ΘSTR ,

ψR → eΘLOR+ΘWRψRe
ΘJ−ΘSTR .

(31)

It is worth noting that all gauge transformations are with Grassmann-even rotation an-
gles, so that the transformed spinors remain to be Grassmann-odd.

There are Lorentz SO(1, 3) gauge transformations

{γaγb} ∈ ΘLOR, (a, b = 0, 1, 2, 3, a 6= b), (32)
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weak isospin SU(2)L gauge transformations acting on left-handed fermions

{1

2
Γ2Γ3,

1

2
Γ1Γ3,

1

2
Γ1Γ2} ∈ ΘWL, (33)

weak U(1)R gauge transformation acting on right-handed fermions

{1

2
Γ1Γ2} ∈ ΘWR, (34)

J U(1) gauge transformation

{1

2
J} ∈ ΘJ , (35)

and color SU(3) gauge transformations
T1, T2, T3,
T4, T5,
T6, T7,
T8

 =


1
4
(γ1Γ2 + γ2Γ1), 1

4
(Γ1Γ2 + γ1γ2), 1

4
(Γ1γ1 − Γ2γ2),

1
4
(γ1Γ3 + γ3Γ1), 1

4
(Γ1Γ3 + γ1γ3),

1
4
(γ2Γ3 + γ3Γ2), 1

4
(Γ2Γ3 + γ2γ3),

1
4
√

3
(Γ1γ1 + Γ2γ2 − 2Γ3γ3)

 ∈ ΘSTR.

(36)
It is remarkable that the gauge groups contain both gravitational (ΘLOR) and internal

gauge transformations.
Because the product of lepton projector P0 with any generator in color algebra (36) is

zero P0Tk = 0, leptons are invariant under color gauge transformation.
After symmetry breaking of ΘWR, ΘWL, and ΘJ via Majorana and electroweak Higgs

bosons, which will be detailed in later sections, the remaining electromagnetic U(1) sym-
metry is a synchronized double-sided gauge transformation

ψ → e
1
2
εEΓ1Γ2ψe

1
2
εEJ . (37)

where a shared rotation angle εE synchronizes the double-sided gauge transformation.
Thanks to the properties

JP0 = −iP0,

JPj =
1

3
iPj,

Γ1Γ2P± = ∓iP±,

(38)

electric charges qk as in
e

1
2

Γ1Γ2ψke
1
2
J = ψke

qki (39)

are calculated as qk = 0,−1, 2
3
, and−1

3
for neutrino, electron, up quarks, and down quarks,

respectively.

6



2.4 Gauge Field 1-Forms, Gauge-Covariant Derivatives, and Curvature
2-Forms

Gauge fields are Clifford-valued 1-forms (Clifforms with Grassmann-even coefficients)
on 4-dimensional space-time manifold (xµ, µ = 0, 1, 2, 3)

e = eµdx
µ = eaµγadx

µ, (40)

ω = ωµdx
µ =

1

4
ωabµ γaγbdx

µ ∈ ΘLOR, (41)

WL = WLµdx
µ =

1

2
(W 1

LµΓ2Γ3 +W 2
LµΓ1Γ3 +W 3

LµΓ1Γ2)dxµ ∈ ΘWL, (42)

WR = WRµdx
µ =

1

2
W 3
RµΓ1Γ2dx

µ ∈ ΘWR, (43)

C = Cµdx
µ =

1

2
CJ
µJdx

µ ∈ ΘJ , (44)

G = Gµdx
µ = Gk

µTkdx
µ ∈ ΘSTR, (45)

where e is vierbein, ω is gravity spin connection, G is strong interaction, and the rest are
electroweak related interactions. Notice that we adopt the same notation for vierbein e ,
mathematical number e, and electron e. One should be able to differentiate them based
on contexts.

The vierbein field e acts like space-time frame field, which is essential in building all
actions as diffeomorphism-invariant integration of 4-forms on 4-dimensional space-time
manifold. The space-time manifold is initially without metric. It’s the vierbein field which
gives notion to metric

gµν = 〈eµeν〉 = eaµe
b
νηab. (46)

Local gauge transformations are coordinate-dependent gauge transformations. Gauge
fields obey local gauge transformation laws

e(x) → eΘLOR(x)e(x)e−ΘLOR(x), (47)

ω(x) → eΘLOR(x)ω(x)e−ΘLOR(x) − (deΘLOR(x))e−ΘLOR(x), (48)

WL(x) → eΘWL(x)WL(x)e−ΘWL(x) − (deΘWL(x))e−ΘWL(x), (49)

WR(x) → WR(x)− (deΘWR(x))e−ΘWR(x), (50)

C(x) → C(x)− e−ΘJ (x)(deΘJ (x)), (51)

G(x) → eΘSTR(x)G(x)e−ΘSTR(x) + eΘSTR(x)(de−ΘSTR(x)) (52)

where d = dxµ∂µ.
It’s worth emphasizing that gravity related fields e(x) and ω(x) are treated as gauge

fields with local gauge transformation properties, as the rest Yang-Mills gauge fields.
Gauge-covariant derivatives of spinor fields ψL/R(x) are defined by

DψL = (d+ ω +WL)ψL + ψL(C −G), (53)
DψR = (d+ ω +WR)ψR + ψR(C −G). (54)
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The gravitational spin connection ω is essential in maintaining local Lorentz covariance
of DψL/R.

We introduce gauge curvature 2-forms by applying the covariant derivative to the
0-form spinor ψ and then to the 1-form spinor Dψ

D(DψL/R) = (d+ ω +WL/R)DψL/R −DψL/R(C −G)

= (R + FWL/WR)ψL/R(FJ − FSTR),
(55)

where gravity, left/right weak, J , and Strong force curvature 2-forms are

R = dω + ω2 =
1

2
Rµνdx

µdxν , (56)

FWL = dWL +W 2
L =

1

2
FWLµνdx

µdxν , (57)

FWR = dWR =
1

2
FWRµνdx

µdxν , (58)

FJ = dC =
1

2
FJµνdx

µdxν , (59)

FSTR = dG+G2 =
1

2
FSTRµνdx

µdxν . (60)

F µνk is defined by
F µνkηµαηνβ = F k

αβ, (61)

where k enumerates the Clifford components of each gauge field.
Notice that the connection fields are defined to absorb gauge coupling constants,

which neither appear in the definition of gauge-covariant derivatives of fermions DψL/R,
nor in the gauge curvature 2-forms such as FWL = dWL +W 2

L. Gauge coupling constants
will show up in the gauge field actions instead.

2.5 Gauge- and Diffeomorphism-Invariant Action of the World

The local gauge- and diffeomorphism-invariant action of the world is

SWorld =SSpinor−Kinetic

+SGravity + SY ang−Mills

+SMajorana−Y ukawa + SMajorana−Bosons

+SElectroweak−Y ukawa + SElectroweak−Bosons.

(62)

The spinor kinetic action is now written down as

SSpinor−Kinetic ∼
∫ 〈

ψ̄Lie
3DψL + ψ̄Rie

3DψR
〉
, (63)
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where e3 is vierbein 3-form, and ψ̄L/R is defined as

ψ̄L/R = ψ†L/Rγ0 = −iψ̃L/Riγ0 = ∓ψ̃L/Rγ0. (64)

Here outer products between differential forms are implicitly assumed.
One can write down the action for gravity as

SGravity ∼
∫ 〈

ie2(R +
Λ

24
e2)

〉
, (65)

where e2 is vierbein 2-form, R = dω + ω2 is spin connection curvature 2-form, and Λ is
cosmological constant.

The Yang-Mills action is written as

SY ang−Mills = SWL + SWR + SJ + SSTR,

SWL ∼
∫ 〈

(e2FWL)2
〉
/
〈
ie4
〉
,

SWR ∼
∫ 〈

(e2FWR)2
〉
/
〈
ie4
〉
,

SJ ∼
∫ 〈

(e2FJ)2
〉
/
〈
ie4
〉
,

SSTR ∼
∫ 〈

(e2FSTR)2
〉
/
〈
ie4
〉
,

(66)

where e4 is vierbein 4-form.
The Clifford algebra elements, which are related to left-(e, ω, WL, WR) and right-(C,

G)sided gauge fields, are formally assigned to two sets of Clifford algebras in Yang-Mills
action (and other actions without spinor fields). Elements from different sets formally
commute with each other. Here 〈· · · 〉means scalar part of both sets.

It’s understood that 4-form factor d4x in one of e2F in each Yang-Mills term should be
canceled out by 4-form factor d4x in the denominator before any further outer multiplica-
tion of differential forms as ∫ 〈

e2F

〈ie4〉
e2F

〉
. (67)

In this way, the Yang-Mills action is a diffeomorphism-invariant integration of 4-form on
4-dimensional space-time manifold.

There is no explicit Hodge dual in Yang-Mills action. Vierbein plays the role of Hodge
dual, when it acquires nonzero vacuum expectation value (VEV) in the case of flat space-
time, which will be discussed in next section.

Yukawa and Boson portions of the action will be subjects of later chapters.
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2.6 Local Lorentz Symmetry Breaking and Minkowskian space-time

Up to this point, the action of the world is constructed in curved space-time, with space-
time dependent vierbein and spin connection. In a vacuum with zero cosmological con-
stant Λ = 0, vierbein field e acquires a nonzero Minkowskian flat space-time VEV

< 0|e|0 >= δaµγadx
µ, (68)

while VEV of spin connection is zero

< 0|ω|0 >= 0. (69)

The space-time metric reduces to

gµν = 〈eµeν〉 = ηµν . (70)

The soldering form δaµγadx
µ breaks the independent local Lorentz gauge invariance and

diffeomorphism invariance. The action of the world is left with a residual global Lorentz
symmetry, with synchronized Clifford space and x coordinate space global Lorentz rota-
tions. Actually the specific form in VEV δaµγadx

µ is a result of coordinating the above two
kinds of global rotations.

With the substitution of vierbein and spin connection with their VEVs, the spinor ki-
netic action(63) in flat Minkowskian space-time can be rewritten as

SSpinor−Kinetic =

∫ 〈
ψ̄Lγ

µDµψL + ψ̄Rγ
µDµψR

〉
d4x, (71)

where
DµψL/R = (∂µ +WL/Rµ)ψL/R + ψL/R(Cµ −Gµ). (72)

Similarly, the Yang-Mills action(66) can be rewritten as

SY ang−Mills =− 1

4g2
WL

∫
F k
WLµνF

µνk
WLd

4x

− 1

4g2
WR

∫
FWRµνF

µν
WRd

4x

− 1

4g2
J

∫
FJµνF

µν
J d4x

− 1

4g2
STR

∫
F k
STRµνF

µνk
STRd

4x,

(73)

where gWL, gWR, gJ , and gSTR are dimensionless gauge coupling constants.
In the following chapters, however, we will stay with local Lorentz gauge invariant

curved space-time formulation.
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2.7 Relation to Conventional Matrix Formulation

A map [14] can be constructed by placing the Dirac column spinor ψ̂ in one-to-one corre-
spondence with the algebraic spinor. And the mappings for the operators are

γ̂µψ̂ ↔ γµψ, (µ = 0, 1, 2, 3) (74)

îψ̂ ↔ ψi, (75)

γ̂5ψ̂ ↔ −iψi (76)

where î is the conventional unit imaginary number, and γ̂µ and γ̂5 are the Dirac matrix
operators.

We will not go into the details of further mappings in this paper.

3 Majorana Bosons, Flavor Structure, and 750 Gev Dipho-
ton Resonance

3.1 Ternary Clifford Algebra and Flavor Projection Operators

With the purpose of studying 3 generations of fermions, we turn to another kind of Clif-
ford algebra involving ternary communication relationships rather than the usual binary
ones. Let’s consider ternary C`T1, which is defined by

[ζ, ζ, ζ] = ζ3 = 1, (77)

with ζ commuting with C`0,6

ζγj − γjζ = 0, (78)
ζΓj − Γjζ = 0. (79)

Flavor projection operators are define by

PG1 =
1

3
(1 + eθ

′+θζ + e−θ
′−θζ2) (80)

=
1

3
P0(1 + ζ + ζ2) +

1

3
Pq(1 + e−θζ + eθζ2), (81)

PG2 =
1

3
(1 + eθ

′
ζ + e−θ

′
ζ2) (82)

=
1

3
P0(1 + e−θζ + eθζ2) +

1

3
Pq(1 + eθζ + e−θζ2), (83)

PG3 =
1

3
(1 + eθ

′−θζ + e−θ
′+θζ2) (84)

=
1

3
P0(1 + eθζ + e−θζ2) +

1

3
Pq(1 + ζ + ζ2), (85)
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where

PG1 + PG2 + PG3 = 1, (86)
PGjPGk = δjk, (j, k = 1, 2, 3), (87)

θ =
2π

3
i, θ′ =

2π

3
I, (88)

I =
1

2
(i+ 3J), I2 = −1, (89)

and P0 and Pq are lepton and quark projection operators, respectively.
We label 3 generations of spinors as ψL/Rj , valued in C`0,6. The spinor kinetic action

involves 3 families of fermions as

SSpinor−Kinetic ∼
∫ 〈

ψ̄Ljie
3DψLjPGj + ψ̄Rjie

3DψRjPGj
〉
, (90)

without flavor-mixing cross terms. Here 〈· · · 〉means scalar part of both C`0,6 and C`T1.
Flavor-mixing is induced via Majorana Boson fields, which is the subject of next sec-

tion.

3.2 Yukawa Action and Flavor Mixing

Fields in Majorana boson section interact with right-handed fermions only. The Lorentz,
isospin, and color singlet Majorana boson section contains two fields

φMAJ = φ†MAJ = φν + Φ. (91)

The neutrino Higgs field φν = φν† is valued in Clifford space spanned by 2 trivectors

{Γ0P0, iΓ0P0}. (92)

It obeys gauge transformation rules

φν → e−Θ̌WR−ΘJφνeΘ̌WR+ΘJ , (93)

where

Θ̌WR =
1

2
εWRi (94)

shares rotation angle εWR with

ΘWR =
1

2
εWRΓ1Γ2. (95)

Boson field

Φ = Φ12 + Φ13 + Φ31 + Φ23 (96)
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is valued in Clifford space spanned by scalar and pseudoscalar

{1, i}. (97)

It is invariant under all gauge interaction transformations. It plays an essential role in
LHC 750 Gev diphoton resonance, and is a potential dark matter candidate.

We can write Majorana Yukawa action of right-handed fermions as

SMajorana−Y ukawa ∼ yjk

∫ 〈
φνPGj ν̄Rje

4eεjkΓ1Γ2Γ2Γ3νRkPGk
〉

+Y12

∫ 〈
Φ12PG1ūR1e

4dR2PG2ūR2e
4dR1

〉
/
〈
ie4
〉

+ h.c.

+Y13

∫ 〈
Φ13PG1ūR1e

4eR3PG3ν̄R3e
4dR1

〉
/
〈
ie4
〉

+ h.c.

+Y31

∫ 〈
Φ31PG3ūR3e

4eR1PG1ν̄R1e
4dR3

〉
/
〈
ie4
〉

+ h.c.

+Y23

∫ 〈
Φ23PG2ν̄R2e

4eR3PG3ν̄R3e
4eR2

〉
/
〈
ie4
〉

+ h.c.,

(98)

where yjk and Yjk are Majorana Yukawa coupling constants, and eεjkΓ1Γ2 are phase factors.
There are four fermions in the Yukawa terms of Φjk, different from Higgs boson φν ,

which interacts with two fermions. The four-fermion Yukawa coupling constants Yjk are
of mass dimension −3. Thus it is nonrenormalizable. A later section will discuss the
effective theory point of view and the issue of nonrenormalizability.

Since e
2π
3
i phases in flavor projections operators anticommute with Clifford odd fields,

there are properties
PG1φ

ν = φνPG1,

PG2φ
ν = φνPG3,

PG3φ
ν = φνPG2,

(99)

according to the definition of flavor projection operators (81, 83, 85). Therefore, there
are flavor-mixing Yukawa terms between 2nd and 3rd generation neutrinos. Likewise,
allowable flavor-changing four-fermion Yukawa terms are also dictated by the properties
of flavor projections operators. Notice that there are flavor-mixing four-fermion Yukawa
terms between all generations.

After φν and Φ acquire nonzero VEVs, which will be investigated in later section, the
flavor mixing between right-handed fermions is represented by neutrino Majorana mass
terms and four-fermion interaction terms. Higher order processes can introduce further
effective mixing between generations. One may potentially couple above effects with
appropriate choices of Majorana and electroweak Yukawa coupling constants to explain
the quite different patterns of CKM and PMNS matrices.

Electroweak Yukawa coupling constants of quarks are usually larger than leptons. If
Majorana Yukawa coupling constants follow the same pattern, Y12 should be the largest.
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Hence, the Yukawa term with Y12 is the dominant one. In the following analysis we will
concentrate on this term, and treat the model as if Φ = Φ12. The treatment of other fields
Φ13,Φ31, and Φ23 should follow the same logic as Φ12. We will not explicitly study them
here after.

3.3 Global Phase Symmetry and Flavon

As mentioned earlier, Φ boson is invariant under all gauge transformations related to
gauge interactions. Nevertheless, there is a global phase symmetry under the following
transformations

Φ → Φeθi, (100)

u1 = u → ueθui, (101)

d1 = d → deθdi, (102)

u2 = c → ceθci, (103)

d2 = s → seθsi, (104)

where

θ = (θu − θd)− (θc − θs), (105)

and u, d, c, and s are up, down, charm, and strange quarks. The phase θ measures rotation
angle difference between first and second generation quarks in ūsc̄d.

In the event of spontaneous symmetry breaking (SSB), there will be a massive sigma
mode and a massless Nambu-Goldstone mode. As opposed to the Higgs mechanism, the
Nambu-Goldstone mode is not ’eaten’ by gauge field.

Notice that above global symmetry is an approximate symmetry, in the sense that the
electroweak section spoils the symmetry explicitly. The Nambu-Goldstone mode is not
exactly massless. The size of the mass grows with the strength of the explicit symmetry
breaking. A not-quite-massless would-be Nambu-Goldstone particle for an approximate
symmetry is often called a pseudo-Nambu-Goldstone (PNG) boson. We call this PNG
boson flavon, as it represents phase differences between flavors.

3.4 Symmetry Breaking and Majorana Masses

Majorana Boson action reads

SMajorana−Bosons = SMajorana−Kenetic − VMajorana, (106)

with
SMajorana−Kenetic(φ

ν) ∼
∫ 〈

(e3Dφν)2
〉
/
〈
ie4
〉
,

VMajorana−Bosons(φ
ν ,−µ2

ν , λν) ∼
∫

(−µ2
ν |φν |2 + λν |φν |4)

〈
ie4
〉
,

(107)
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and
SMajorana−Kenetic(Φ) ∼

∫ 〈
(e3DΦ)2

〉
/
〈
ie4
〉
,

VMajorana−Bosons(Φ,−µ2
Φ, λΦ) ∼

∫
(−µ2

Φ(Φ)2 + λΦ(Φ)4)
〈
ie4
〉
,

(108)

where

Dφν = (d− W̌R − C)φν + φν(W̌R + C), (109)
DΦ = dΦ, (110)

W̌R = W̌Rµdx
µ =

1

2
W 3
Rµidx

µ. (111)

Notice that φν and Φ have negative−µ2
ν and−µ2

Φ. It means that φν and Φ acquire nonzero
VEVs as

< 0|φν |0 >=
1√
2
υνe

αiΓ0P0 =
1√
2
eαi

µν√
λν

Γ0P0, (112)

< 0|Φ|0 >=
1√
2
υΦe

α12i =
1√
2
eα12i

µΦ√
λΦ

, (113)

As a result, the gauge symmetry related to gauge field

Z ′µ = W 3
Rµ − CJ

µ , (114)

and the global phase symmetry of Φ are spontaneously broken. Notice that the minus
sign in above equation stems from the fact that JP0 = −iP0.

After replacing φν and Φ with their VEVs, the Majorana Yukawa action reduces to

SMajorana−Y ukawa ∼ mjk

∫ 〈
eαiPGj ν̄Rje

4eεjkΓ2Γ3νRkPGkΓ0P0

〉
,

+
1√
2
Y12υΦ

∫ 〈
eα12iPG1ūR1e

4dR2PG2ūR2e
4dR1

〉
/
〈
ie4
〉

+ h.c.
(115)

with Majorana masses

mjk =
1√
2
yjkυν . (116)

Neutrino Majorana masses are much heavier than neutrino Dirac masses, if we assume

yjkυν >> yνυ, (117)

where constants yν and υ are electroweak Higgs ounterparts, which will be defined in
later section. Because of the hierarchy, very small effective masses are generated for neu-
trinos, known as seesaw mechanism.
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Now we express gauge fields W 3
R and CJ in terms of B and Z ′

W 3
Rµ = Bµ + (cosθ′W )2Z ′µ,

CJ
µ = Bµ − (sinθ′W )2Z ′µ,

(118)

where
cosθ′W =

gWR

gZ′
,

sinθ′W =
gJ
gZ′

,

gZ′ =
√
g2
WR + g2

J .

(119)

Gauge field B remains massless with an effective coupling of

gB =
gWRgJ
gZ′

, (120)

while gauge field Z ′ acquires a mass from neutrino part of the Majorana Kinetic action

MZ′ =
1

2
υνgZ′ . (121)

Higgs boson φν and the sigma mode of Φ acquire masses

mhν =
√

2µν ,

mΦ =
√

2µΦ.
(122)

3.5 LHC 750 Gev Diphoton Resonance from Flavon

If we assume that υν >> υ and υΦ >> υ, gauge boson Z ′, Higgs boson φν , and sigma
mode of Φ would be too heavy to be detected at electroweak energy scale. On the other
hand, the PNG flavon is not exactly massless, since the electroweak sector explicitly
breaks the global phase symmetry and can generate mass for it. The size of the flavon
mass is proportional to electroweak scale. Hence it is detectable at LHC.

The LHC 750 GeV diphoton resonance is explained by the flavon, which is the PNG
boson of four-quark condensation. Flavon results from spontaneous symmetry breaking
of the global phase symmetry involving first and second generation quarks.

A resonance starts with four quarks produced by two gluons. Two of the quarks turn
into other two quarks via the four-fermion Yukawa interaction with VEV υΦ. After one
further internal gluon line, the four quarks turn into a flavon via four-fermion Yukawa
term. The flavon propagates and finally decays in a reverted generation process. The
difference of the reverted process is that there are two external B boson lines instead of
two external gluon lines.

Gauge field B contains massive gauge field Z (upon electroweak symmetry breaking)
and massless electromagnetic gauge fieldA. Thus we are expecting detection of resonance
decaying into Z bosons as well, in addition to decaying into photons.
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3.6 Four-Fermion Condensation and Pseudo-Nambu-Goldstone-Boson

Boson sectors might be just an effective Ginzbrug-Landay-type description of the low en-
ergy physics represented by composite boson fields. One approach is to assume effective
four-quark interactions strong enough to induce top quark-antiquark condensation into
composite electroweak Higgs fields[16, 17, 18], via dynamical symmetry breaking mech-
anism in Nambu-Jona-Lasinio[19] like models.

Likewise, the Majorana boson fields might also be collective excitations of underly-
ing composite spinors. For example, φν and Φ could be effective representation of two-
neutrino and four-quark condensations

φ̌ν = yjkPGj ν̄Rje
4Γ2Γ3νRkPGk,

Φ̌ = Y12PG1ūRe
4sRPG2c̄Re

4dR/
〈
ie4
〉
.

(123)

The four-neutrino and eight-quark interactions are∫ 〈
(φ̌ν)2

〉
/
〈
ie4
〉

+

∫ 〈
(Φ̌)2

〉
/
〈
ie4
〉
. (124)

A collective mode is determined as the pole of bosonic channel of the four-fermion
interaction by summing to infinite order chains of bubble perturbation diagrams. The
leading order calculation goes by different names such as random-phase approximation,
Bethe-Salpeter T-matrix equation, and 1/N expansion.

If the Majorana bosonic field Φ is indeed a collective excitation of the underlying four
fermions, the first order approximation would involve summing to infinite order chains of
’bubble’ diagrams, linked together via eight-fermion contact interactions. Each ’bubble’
contains four lines of fermion propagators.

3.7 The Issue of Nonrenormalizability

The four-fermion Yukawa terms of Φ and four/eight-quark contact interactions are non-
renormalizable in the conventional sense.

For nonrenormalizable models, the renomalization procedure can be made only at the
cost of adding an increasing numbers of term to the original Lagrangian. In principle,
there is no problem with a theory having an infinite number of coupling constants as an
effective field theory[20]. However, the NJL model is often regarded as regularization-
dependent and its predictability is called into question.

A novel strategy for handling divergences is called implicit regularization [21]. It
avoids the critical step of explicit evaluation of divergent integrals. The finite parts are
separated from the divergent ones and integrated free from effects of regulation. The
application to NJL model reveals that calculations can be ambiguity-free and symmetry-
preserving can be obtained, making the NJL model predictive.

Likewise, we expect that models with four-fermion Yukawa interactions are as pre-
dictable as renormalizable theories.
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4 Electroweak Bosons

4.1 Electroweak Bosons and Yukawa Action

Electroweak boson field φEW interacts with both left-handed and right-handed fermions,
while Majorana boson field φMAJ interacts with right-handed fermions only. Electroweak
Boson field φEW spans the whole 32 component C`0,6 even space. It obeys gauge transfor-
mation rules

φEW → eΘLOR+ΘWLφEW e
−ΘLOR−ΘWR . (125)

It can be broken down into three sectors as

φEW = φS + φP + φAT , (126)

with scalar φS valued in Clifford space spanned by 4 multivectors

{1,ΓjΓk; j, k = 1, 2, 3, j 6= k}, (127)

pseudoscalar φP valued in Clifford space spanned by 4 multivectors

{i, iΓjΓk; j, k = 1, 2, 3, j 6= k}, (128)

and antisymmetric tensor φAT valued in Clifford space spanned by 4∗6 = 24 multivectors

{γaγb, γaγbΓjΓk; j, k = 1, 2, 3, j 6= k, a, b = 0, 1, 2, 3, a 6= b}. (129)

The scalar and pseudoscalar electroweak Higgs fields φS and φP transform as

φS/P → eΘWLφS/P e
−ΘWR , (130)

while up antisymmetric tensor electroweak boson field φAT transforms as

φAT → eΘLOR+ΘWLφAT e
−ΘLOR−ΘWR . (131)

Notice that φAT is not a Lorentz singlet, since it’s not invariant under local Lorentz gauge
transformations.

We can write electroweak Yukawa action of fermions as

SElectroweak−Y ukawa ∼∫ 〈
ψ̄Ljie

4φEW (yνj νRj + yejeRj + yuj uRj + ydj dRj)iPGj
〉

+

∫ 〈
(yνj ν̄Rj + yej ēRj + yuj ūRj + ydj d̄Rj)ie

4φ̄EWψLjiPGj
〉
,

(132)

where
φ̄EW = γ0φ

†
EWγ0 = γ0φ̃EWγ0 (133)

and yνj , y
e
j , y

u
j , and ydj are electroweak Yukawa coupling constants.
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4.2 Electroweak Boson Action, Symmetry breaking, and Dirac Mass

Electroweak boson action reads

SElectroweak−Bosons = SElectroweak−Kenetic − VElectroweak, (134)

with
SElectroweak−Kenetic(φS) ∼

∫ 〈
(e3( ¯DφS))(e3DφS)

〉
/
〈
ie4
〉

VElectroweak−Bosons(φS,−µ2
S, λS) ∼

∫
(−µ2

S|φS|2 + λS|φS|4)
〈
ie4
〉
,

(135)

and

SElectroweak−Kenetic(φP ), VElectroweak(φP ,−µ2
P , λP ),

SElectroweak−Kenetic(φAT ),

VElectroweak(φAT ,+µ
2
AT , λAT ) ∼

∫
(µ2

AT

〈
φ̄ATφAT

〉
+ λAT

〈
φ̄ATφAT

〉2
)
〈
ie4
〉
,

(136)

where

DφP/S = (d+WL)φP/S − φP/S(WR), (137)
DφAT = (d+ ω +WL)φAT − φAT (ω +WR), (138)

Notice that φS and φP have negative −µ2
S and −µ2

P . It means that φS and φP acquire
nonzero VEVs via SSB

< 0|φS|0 >=
1√
2
υS =

1√
2

µS√
λS
, (139)

< 0|φP |0 >=
1√
2
υP i =

1√
2

µP√
λP
i. (140)

The situation of φAT is a bit complicated, and will be discussed in later section. Let’s for
the moment assume that its VEV is zero.

After replacing φS, φP , and φAT with their VEVs, the electroweak Yukawa action re-
duces to ∫ 〈

(ν̄jie
4mν

j νji+ ējie
4me

jeji+ ūjie
4mu

juji+ d̄jie
4md

jdji)PGj
〉
, (141)

where ’complex’ (scalar plus pseudoscalar) Dirac masses are

m
ν/e/u/d
j =

1√
2
y
ν/e/u/d
j (υS + υP i) =

1√
2
y
ν/e/u/d
j υeβi, (142)

with
υ =

√
υ2
S + υ2

P ,

tan(β) =
υP
υS
.

(143)
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However the eβi phase factor can be canceled out via a global rotation of spinor

ψ → e−
1
2
βiψ, (144)

so that the fermion Dirac masses are ’real’ (scalar) valued. Notice that ie4 is a Clifford-
scalar-valued 4-form.

Since the experiments at LHC indicated only one Higgs boson with mh = 125 Gev[3,
4], there could be two scenarios. Case one is that both scalar and pseudoscalar Higgs
fields contribute to the electroweak symmetry breaking and their masses are degenerate

mh = mS = mP . (145)

Case two is that only one of them acquires a nonzero VEV (with negative −µ2), which is
the mh = 125 Gev Higgs. The other maintains a zero VEV (with positive µ2), which is still
waiting to be detected at LHC.

Now we express gauge fields W 3
L, B, and W 3

R in terms of A, Z, and Z ′

W 3
Lµ = Aµ + (cosθW )2Zµ,

Bµ = Aµ − (sinθW )2Zµ,

W 3
Rµ = Bµ + (cosθ′W )2Z ′µ = Aµ − (sinθW )2Zµ + (cosθ′W )2Z ′µ,

(146)

where
cosθW =

gWL

gZ
,

sinθW =
gB
gZ
,

gZ =
√
g2
WL + g2

B.

(147)

Electromatic field A remains massless with an effective coupling of

gA =
gWLgB
gZ

=
gWLgWRgJ√

gWLgWR + gWLgJ + gWRgJ
, (148)

while gauge field Z acquires a mass

MZ =
1

2
υgZ . (149)

4.3 Antisymmetric Tensor Boson and Dark Spin Current

As stated earlier, the antisymmetric tensor electroweak boson field φAT is not invariant
under local Lorentz gauge transformations. Hence, its boson potential should involve
Lorentz invariant 〈

φ̄ATφAT
〉

=
〈
γ0φ

†
ATγ0φAT

〉
, (150)
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as opposed to
|φAT |2 =

〈
φ†ATφAT

〉
, (151)

which is not Lorentz invariant.
It’s easy to see that

〈
φ̄ATφAT

〉
is not a positive definite quantity. Components of

{γaγb, γaγbΓjΓk; j, k = 1, 2, 3, j 6= k, a, b = 1, 2, 3, a 6= b}, (152)

have positive ’metric’ and components of

{iγaγb, iγaγbΓjΓk; j, k = 1, 2, 3, j 6= k, a, b = 1, 2, 3, a 6= b}, (153)

have negative ’metric’.
A zero VEV < 0|φAT |0 > is allowed only if µ2

AT = 0. On the other hand, nonzero
VEV can be acquired for any value of µ2

AT , including µ2
AT = 0. Nonzero VEV breaks both

Lorentz and electroweak symmetries. Replacing φAT with nonzero < 0|φAT |0 > in the
boson kinetic action, we have a Lorentz symmetry breaking term∫ 〈

(e3(ω < 0|φAT |0 > − < 0|φAT |0 > ω)̄)(e3(ω < 0|φAT |0 > − < 0|φAT |0 > ω))
〉
/
〈
ie4
〉

(154)
This spin connection ω related term can contribute to space-time torsion equation. We
call it ’dark spin current’. It is a counterpart of dark energy, with the former affecting
space-time torsion and the later affecting space-time curvature.

Since we know that modifications to torsion could have gravitational and cosmolog-
ical consequences[22, 23], it’s worth further research on the above antisymmetric-tensor-
induced scenario.

5 Possible Grand Unification Symmetries

Embolden by the power of Clifford algebra, we now explore more symmetries allowed
by an algebraic spinor. Let’s begin with general gauge transformations

ψ → eΘψeΘ′
, (155)

where eΘ and eΘ′ ∈ C`0,6 are independent gauge transformations. Spinor bilinear〈
ψ̃γ0ψ

〉
(156)

is invariant if

eΘ̃γ0e
Θ = γ0, (157)

eΘ′
eΘ̃′

= 1, (158)
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where we restrict our discussion to gauge transformations continuously connected to
identity. General solution of these equations includes Θ ∼ so(4, 4), which is a linear
combination of 28 gauge transformation generators

{γa, γaγb,ΓaΓb, iΓj,Γ0γjΓk; j, k = 1, 2, 3, a, b = 0, 1, 2, 3, a > b} ∈ Θ, (159)

and Θ′ ∼ sp(8), which is a linear combination of 36 gauge transformation generators of
pseudoscalar, all bivectors, and all trivectors

{i, γjΓk, γkγl,ΓkΓl, γ0,Γ0, γ0γjΓk,Γ0γjΓk; j, k, l = 1, 2, 3, k > l} ∈ Θ′. (160)

The de Sitter algebra ΘDS ∼ so(1, 4)

{γa, γaγb} ∈ ΘDS (161)

is a subalgebra of Θ.
The Clifford odd parts of Θ and Θ′ mix odd (left-handed ψL) and even (right-handed

ψR) spinors. Since we know that left- and right-handed spinors transform differentially,
only Clifford even subalgebras of Θ and Θ′ are permitted, namely

{γaγb,ΓaΓb} ∈ ΘEven ∼ so(1, 3)⊕ so(1, 3), (162)
{i, γjΓk, γkγl,ΓkΓl} ∈ Θ′Even ∼ u(1)⊕ so(6) ∼ u(1)⊕ su(4). (163)

The gauge transformations {ΓaΓb} can be further decomposed into weak transforma-
tions {ΓkΓl} and weak boost transformations {Γ0Γj}, which are counterparts of spacial
rotation {γkγl} and Lorentz boost transformations {γ0γj}.

Unitary algebra u(3) is embedded in {γjΓk, γkγl,ΓkΓl} ∼ su(4). Removing u(1) {J}
from u(3) defines the color algebra su(3).

Since there are left-handed weak su(2)L and right-handed weak u(1)R, one might ex-
pect left-right symmetric su(2)R as well. We can even go further and entertain the possi-
bility of two exact copies of left-handed ΘEvenL and right-handed ΘEvenR.

Of course, the grand unification symmetries studied in this section are speculative
in nature. If there is indeed grand unification scale physics involving ΘEvenL, ΘEvenR

and Θ′Even, either symmetry breaking or other mechanism is needed to prevent detec-
tion of gauge interactions related to pseudoscalar {i}, quark/lepton mixing su(4)	 u(3),
weak boost {Γ0Γj}, right-handed su(2)R, and differences between left-handed {γaγb}L
and right-handed {γaγb}R Lorentz transformations. It’s an interesting topic. Neverthe-
less, we leave grand unification to future research.

6 Conclusion

We propose a Clifford algebra based model. A ternary Clifford vector is introduced along-
side 6 binary Clifford vectors. The model includes local gauge symmetries SO(1, 3) ⊗
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SUL(2)⊗UR(1)⊗U(1)⊗SU(3). Both gravitational and Yang-Mills interactions are treated
as gauge fields.

There are two sectors of boson fields as Majorana and electroweak bosons. Majorana
boson field interacts with right-handed fermions only. Electroweak boson field interacts
with both left-handed and right-handed fermions.

The Majorana boson sector causes flavor mixing between all generations. Higher
order processes can introduce further effective mixing between generations. One may
potentially couple above effects with appropriate choices of Majorana and electroweak
Yukawa coupling constants to explain the quite different patterns of CKM and PMNS
matrices.

The LHC 750 GeV diphoton resonance is explained by the flavon, which is the pseudo-
Nambu-Goldstone boson of ūsc̄d four-quark condensation. The Flavon results from spon-
taneous symmetry breaking of a global phase symmetry involving first and second gen-
eration quarks. Flavon is not exactly massless, since the electroweak sector explicitly
breaks the global phase symmetry and can generate mass for it. The size of flavon mass
is proportional to electroweak scale.

We expect detection of resonance decaying into Z bosons as well, in addition to de-
caying into photons. Four-fermion condensation can also involve other 3 configurations
ūτ ν̄τd, t̄eν̄eb, and ν̄µτ ν̄τµ, in addition to ūsc̄d. Being standard model singlets, these con-
densations are potential dark matter candidates.

The neutrino Higgs field part of Majorana boson sector acquires a nonzero VEV via
SSB, inducing Majorana masses of right-handed neutrinos via Yukawa-like couplings.

The electroweak boson sector is composed of scalar, pseudoscalar, and antisymmet-
ric tensor components. Scalar and/or pseudoscalar Higgs fields break the electroweak
symmetry, contributing masses to fermions.

The antisymmetric tensor boson is not a Lorentz singlet. Its nonzero VEV would break
Lorentz and electroweak symmetries, giving rise to ’dark spin current’. ’Dark spin cur-
rent’ is a counterpart of dark energy, with the former affecting space-time torsion and the
later affecting space-time curvature. Since we know that modifications to torsion could
have gravitational and cosmological consequences[22, 23], it’s worth further research on
the antisymmetric-tensor-induced scenario.
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