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ABSTRACT
The Sequential Importance Resampling (SIR) method is the
core of the Sequential Monte Carlo (SMC) algorithms (a.k.a.,
particle filters). In this work, we point out a suitable choice
for weighting properly a resampled particle. This observation
entails several theoretical and practical consequences, allow-
ing also the design of novel sampling schemes. Specifically,
we describe one theoretical result about the sequential esti-
mation of the marginal likelihood. Moreover, we suggest a
novel resampling procedure for SMC algorithms called par-
tial resampling, involving only a subset of the current cloud of
particles. Clearly, this scheme attenuates the additional vari-
ance in the Monte Carlo estimators generated by the use of
the resampling.

Index Terms— Importance Sampling; Sequential Impor-
tance Resampling; Sequential Monte Carlo; Particle Filtering.

1. INTRODUCTION

Sequential Monte Carlo (SMC) methods have become essen-
tial tools for Bayesian analysis in statistical signal processing
[2, 7, 8, 11, 15]. SMC algorithms are based on the importance
sampling technique [4, 6, 5, 10, 13, 16] and its sequential ver-
sion known as Sequential Importance Sampling (SIS) [9, 12].
Another essential piece of SMC is the application of resam-
pling procedures [3, 9]. The combination of SIS and resam-
pling is often referred as Sequential Importance Resampling
(SIR).

Since the unnormalized importance weight of a resampled
particle cannot be computed analytically using the standard IS
weight definition, in the classical SIR formulation, the users
consider only the estimators involving normalized weights.
The concept of the unnormalized weight of a resampled par-
ticle is usually not considered, i.e., its computation is avoided
and omitted [7, 8, 9].

In this work, we propose a proper unnormalized impor-
tance weight for a resampled particle which provides unbi-
ased IS estimators, following the Liu’s definition of a proper
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weighted sample [12, Section 2.5.4]. The introduction of this
unnormalized proper weight for a resampled particle yields
several interesting consequences. Here, we describe two of
them.

First, we point out that all the estimators derived in the
SIS approach can also be employed in SIR using the weight
definition of a resampled particle introduced here. We show it
considering the estimation of the marginal likelihood (a.k.a.,
Bayesian evidence or partition function) [9, 15, 16]. In SIS,
there are two possible estimators of the marginal likelihood
which are completely equivalent [15]. Using the proper un-
normalized weight for a resampled particle, we show that we
can employ two equivalent estimators of the marginal likeli-
hood also in SIR. They coincide with the estimators in SIS
as special case, when no resampling is applied. Furthermore,
we describe an alternative resampling procedure for SMC al-
gorithms, called partial resampling, involving only a subset
of the current population of particles. This scheme attenuates
the additional variance in the Monte Carlo estimators gener-
ated by the use of resampling steps. Moreover, it can reduce
the loss of diversity in the population of particle due to the
application of the resampling.

2. IMPORTANCE SAMPLING

Let us denote the target probability density function (pdf) as
π̄(x) = 1

Zπ(x) (known up to a normalizing constant) with

x = x1:D = [x1, x2, . . . , xD] ∈ X ⊆ RD×η,

where xd ∈ Rη for all d = 1, . . . , D. We consider the Monte
Carlo approximation of complicated integrals involving the
target π̄(x) and a square-integrable function h(x), e.g.,

I = Eπ̄[h(X)] =
∫
X
h(x)π̄(x)dx, (1)

where X ∼ π̄(x). In general, generating samples directly
from the target π̄(x) is impossible. Thus, one usually consid-
ers a (simpler) proposal pdf, q(x). The expression below

Eπ̄[h(X)] = Eq[h(X)w(X)],

=
1
Z

∫
X
h(x)

π(x)
q(x)

q(x)dx, (2)



where w(x) = π(x)
q(x) : X → R, suggests an alternative proce-

dure. Indeed, we can draw N samples (also called particles)
x1, . . . ,xN from q(x),1 and then assign to each sample the
following unnormalized weights

w(xn) =
π(xn)
q(xn)

, n = 1, . . . , N. (3)

If the target function π(x) is normalized, i.e., Z = 1, π̄(x) =
π(x), a natural (unbiased) IS estimator [12, 16] is defined as

ÎN =
1
N

N∑
n=1

w(xn)h(xn), ÎN
P−−−−→

N→∞
I, (4)

where xn ∼ q(x), n = 1, . . . , N . If the normalizing constant
Z is unknown, defining the normalized weights,

w̄(xn) =
w(xn)∑N
i=1 w(xi)

, n = 1, . . . , N, (5)

an alternative self-normalized (biased) IS estimator [12, 16]
is

IN =
N∑
n=1

w̄(xn)h(xn), IN
P−−−−→

N→∞
I. (6)

Moreover, an unbiased estimator of marginal likelihood, Z =∫
X π(x)dx, is given by

Ẑ =
1
N

N∑
i=1

w(xi), Ẑ
P−−−−→

N→∞
Z, (7)

where we have avoided the subindex N , in order to simplify
the notation in the rest of the work.

2.1. Concept of proper weighted sample

Although the weights of Eq. (3) are broadly used in the liter-
ature, the concept of a properly weighted sample, suggested
in [16, Section 14.2] and in [12, Section 2.5.4], can be used to
construct more general weights. More specifically, following
the definition in [12, Section 2.5.4], a set of weighted sam-
ples is considered proper with respect to the target π if, for
any square integrable function h,

Eq[w(xn)h(xn)] = cEπ̄[h(xn)], ∀n = {1, . . . , N}, (8)

where c is a constant value, also independent from the index
n, and the expectation of the left hand side is performed, in
general, w.r.t. to the joint pdf of w(x) and x, i.e., q(w,x).
Namely, the weight w(x), (for a given value of x), could even
be considered a random variable.

1We assume that q(x) > 0 for all x where π̄(x) 6= 0, and q(x) has
heavier tails than π̄(x).

3. IMPORTANCE WEIGHT OF A RESAMPLED
PARTICLE

Let us consider the following multinomial resampling proce-
dure [3, 7, 8]:

1. Draw N particles xn ∼ q(x) and weight them with
w(xn) = π(xn)

q(xn) , with n = 1, . . . , N .

2. Draw one particle x̃′ ∈ {x1, . . . ,xN} from the discrete
probability mass

π̂(x|x1:N ) =
N∑
n=1

w̄(xn)δ(x− xn), (9)

where w̄(xn) = w(xn)PN
i=1 w(xi)

.

Question 1. What is the distribution of the resampled par-
ticle x̃′ (not conditioned to x1:N )? We can easily write its
corresponding density as

q̃(x) =
∫
XN

[
N∏
i=1

q(xi)

]
π̂(x|x1:N )dx1:N . (10)

where π̂ is given in Eq. (9). However, the integral above
cannot be computed analytically.

Question 2. Can we obtain a proper importance weight
associated to the resampled particle x̃? As a consequence
of the previous observations, we are not able to evaluate the
corresponding standard importance weight, w(x̃) = π(ex)eq(ex) .

For solving this issue, let us consider N resampled par-
ticles x̃1, . . . , x̃N independently obtained by the resampling
procedure above. In SMC and adaptive IS applications, [4,
6, 7, 8], the unnormalized importance weights of x̃1, . . . , x̃N
are not usually needed, but only the normalized ones. Thus, a
well known proper strategy [7, 8, 9] in this case is to set

w(x̃1) = w(x̃2) = . . . = w(x̃N ), (11)

and, as a consequence, the normalized weights are

w̄(x̃1) = w̄(x̃2) = . . . = w̄(x̃N ) =
1
N
. (12)

The reason why this approach is suitable lies on the Liu’s def-
inition of proper importance weights in Section 2.1. Indeed,
considering the random variable X̃ ∼ π̂(x|x1:N ), we have

Ebπ[h(X̃)|x1:N ] =
∫
h(x)π̂(x|x1:N )dx,

=
N∑
n=1

w̄(xn)h(xn) = IN . (13)

where xn ∼ q(x) for n = 1, . . . , N , are considered fixed in
the expectation Ebπ[h(X̃)|x1:N ]. Let us resample M times.



The self-normalized IS estimator using the R resampled par-
ticles is

ĨM =
1
M

M∑
m=1

h(x̃m) P−−−−→
M→∞

Ebπ[h(X̃)|x1:N ] = IN . (14)

Hence, we have

ĨM
P−−−−→

M→∞
IN

P−−−−→
N→∞

I, (15)

due to Eqs. (13)-(14). This proves that the choice w̄(x̃n) =
1
N , for all n, is proper by Liu’s definition. However, for sev-
eral theoretical and practical reasons (some of them discussed
below), it is interesting to define also a proper unnormalized
importance weight of a resampled particle. Let us consider
the following definition.

Definition 1. A proper choice for an unnormalized impor-
tance weight (following Section 2.1) of a resampled particle
x̃ ∈ {x1, . . . ,xN} is

w(x̃) = Ẑ =
1
N

N∑
i=1

w(xi). (16)

Considering N independent resampled particles, Note that
with this definition we again have

w(x̃1) = w(x̃2) = . . . = w(x̃N ),

so that also w̄(x̃n) = 1
N , for all n = 1, . . . , N .

Remark 1. The previous definition allows is to estimate Z
using the resampled particles as well. Indeed,

Z̃ =
1
N

N∑
i=1

w(x̃i) =
1
N

(
NẐ

)
= Ẑ, (17)

is an unbiased estimator of Z (equivalent to Ẑ).

4. APPLICATION IN SIR

Let recall x = x1:D = [x1, x2, . . . , xD] ∈ X ⊆ RD×η where
xd ∈ Rη for all d = 1, . . . , D and let us consider a target pdf
π̄(x) factorized as

π̄(x) ∝ π(x) = γ1(x1)
D∏
d=2

γd(xd|x1:d−1), (18)

where γ1(x1) is a marginal pdf and γd(xd|x1:d−1) are
conditional pdfs. We also denote the joint probability of
[x1, . . . , xd],

π̄d(x1:d) =
1
Zd
πd(x1:d), (19)

where

πd(x1:d) = γ1(x1)
d∏
j=2

γj(xj |x1:j−1).

Clearly, π̄(x) ≡ π̄D(x1:D). We can also consider a proposal
pdf decomposed in the same fashion,

q(x) = q1(x1)q2(x2|x1) · · · qD(xD|x1:D−1).

In a batch IS scheme, given the n-th sample xn = x
(n)
1:D ∼

q(x), we assign the importance weight

w(xn) =
π(xn)
q(xn)

=
γ1(x(n)

1 )γ2(x(n)
2 |x

(n)
1 ) · · · γD(x(n)

D |x
(n)
1:D−1)

q1(x(n)
1 )q2(x(n)

2 |x
(n)
1 ) · · · qD(x(n)

D |x
(n)
1:D−1)

.

The previous expression suggests a recursive procedure for
computing the importance weights. Indeed, in a sequential
Importance sampling (SIS) approach [7, 8], we can write

w
(n)
d = w

(n)
d−1β

(n)
d =

d∏
j=1

β
(n)
j , n = 1, . . . , N, (20)

where we have set

w
(n)
1 = β

(n)
1 =

π(x(n)
1 )

q(x(n)
1 )

and β
(n)
d =

γd(x
(n)
d |x

(n)
1:d−1)

qd(x
(n)
d |x

(n)
1:d−1)

,

(21)
for d = 2, . . . , D. Clearly, w(xn) ≡ w

(n)
D . The estimator

of the normalizing constant Zd =
∫

Rd×η πd(x1:d)dx1:d at the
d-th iteration is

Ẑd =
1
N

N∑
n=1

w
(n)
d =

1
N

N∑
n=1

w
(n)
d−1β

(n)
d , (22)

=
1
N

N∑
n=1

 d∏
j=1

β
(n)
j

 . (23)

Again, Z ≡ ZD and Ẑ ≡ ẐD. However, an alternative for-
mulation is often used [8, 9]

Zd =
d∏
j=1

[
N∑
n=1

w̄
(n)
j−1β

(n)
j

]
=

d∏
j=1

[∑N
n=1 w

(n)
j∑N

n=1 w
(n)
j−1

]
,

= Ẑ1

d∏
j=2

[
Ẑj

Ẑj−1

]
= Ẑ1

Ẑ2

Ẑ1

. . .
Ẑd

Ẑd−1

= Ẑd. (24)

Therefore, in SIS, Ẑd in Eq. (22) and Zd in Eq. (24) are
equivalent formulations of the same estimator of Zd [15].

4.1. Estimators of the marginal likelihood in SIR

Sequential Importance Resampling (SIR) [12, 16, 17, 18]
combines the SIS approach with the application of the re-
sampling procedure described in Section 3. Considering the
proper importance weight of a resampled particle given in



Definition 1 and recalling that w(n)
d the weight at the d-th

iteration, we obtain the following recursion, w(n)
1 = β

(n)
1 and

w
(n)
d = w

(n)
d−1β

(n)
d , (25)

for d = 2, . . . , D, where

w
(n)
d−1 =

{
w

(n)
d−1, without resampling at (d− 1)-th it.,

Ẑd−1, with resampling at (d− 1)-th it.,
(26)

i.e., if a resampling is applied at (d − 1)-th iteration then
ξ

(n)
d−1 = Ẑd−1, ∀n = 1, . . . , N .

Remark 2. Using the Definition 1 and the recursive definition
of the weightsw(n)

d in Eqs. (25)-(26), Ẑd andZd are both con-
sistent and equivalent estimators of the marginal likelihood,
also in SIR. Namely, the two estimators are

Ẑd =
1
N

N∑
n=1

w
(n)
d , Zd =

d∏
j=1

[
N∑
n=1

w̄
(n)
j−1β

(n)
j

]
(27)

are equivalent, Ẑd ≡ Zd. For instance, if the resampling is
applied at each iteration, they become

Zd =
d∏
j=1

[
1
N

N∑
n=1

β
(n)
j

]
, (28)

Ẑd = Ẑd−1

[
1
N

N∑
n=1

β
(n)
d

]
=

d∏
j=1

[
1
N

N∑
n=1

β
(n)
j

]
, (29)

and clearly coincide.

Remark 3. Let us focus on the marginal likelihood esti-
mators at the final iteration, i.e., Ẑ = ẐD and Z = ZD.
Without using the Definition 1 and the recursive definition
of the weights w(n)

d in Eqs. (25)-(26), the only estimator of
the marginal likelihood that can be properly computed in
SIR is Z, that involves only the computation of the normal-
ized weights w̄(n)

d (omitting the values of the corresponding
unnormalized ones).

5. PARTIAL RESAMPLING

The core of Sequential Monte Carlo methods is the SIR ap-
proach [7, 8, 17]. Namely, the weights are constructed re-
cursively as in (20) and resampling steps, involving all the
particles, are applied at some iterations. The combination of
both, SIS and resampling schemes, is possible in the standard
SIR approach only if the entire set of particles is employed in
the resampling [7, 8], so that the assumption

w(x̃1) = w(x̃2) = . . . = w(x̃N ), (30)

is enough for computing IN and Z, since w̄(x̃n) = 1
N for all

n ∈ {1, . . . , N}. If Definition 1 is used and then the recursive

expression (25)-(26) is applied, we can define a resampling
procedure involving only a subset of particles, as described
in the following. We consider to apply a partial resampling
scheme at the d-th iteration:

1. Choose randomly without replacement a subset of
M ≤ N samples,

R = {x(j1)
d , . . . , x

(jM )
d },

contained within the set ofN particles {x(1)
d , . . . , x

(N)
d }.

Let us denote also the set

N = {x(1)
d , . . . , x

(N)
d }\R,

of the particles which do not take part in the resam-
pling.

2. Give the set R, resample with replacement M par-
ticles according to the normalized weights w̄(jm)

d =
w

(jm)
dPM

k=1 w
(jk)
d

, for m = 1, . . . ,M , obtaining R̃ =

{x̃(1)
d , . . . , x̃

(M)
d }. Clearly, R̃ ⊆ R.

3. For all the resampled particles in R̃ set

w
(m)
d =

1
M

m∑
k=1

w
(jk)
d , (31)

for m = 1, . . . ,M , whereas the unnormalized impor-
tance weights of the particles in N remains invariant.

4. Go forward to the iteration d + 1 of the SIR method,
using the recursive formula (20).

The procedure above is valid since yields proper weighted
samples by Liu’s definition. If M = N , it coincides with the
traditional resampling procedure. This approach can reduce
the loss of diversity due to the application of the resampling
[7, 8, 12].

6. CONCLUSIONS

In this work, we have introduced a proper choice of the unnor-
malized weight assigned to a resampled particle. This choice
entails several theoretical and practical consequences. We
have described two of them, regarding (1) the estimation of
the marginal likelihood and, (2) the application of a partial
resampling involving only a subset of the cloud of particles,
within SIR techniques. Other novel algorithms (based on the
partial resampling perspective) and theoretical consequences
(also affecting well-known the MCMC techniques, such as
the particle Metropolis-Hastings method [1, 14], and parallel
SMC implementations) will be highlighted out in an extended
version of this work. Several numerical simulations will be
also included.
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