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Abstract    A kinetic energy-operated quantum wave equation is used to formulate 

alternate quantum fields:  an alternate Klein-Gordon field, an alternate Dirac field, an 

alternate Proca field, and an alternate Higgs field. 

The alternate Dirac field equations include a vacuum plane wave solution apart from 

the electron and positron solutions, lending support to the present formulation.  The 

alternate Klein-Gordon field shows scalar bosons transforming between a massive state 

and a massless, charge state at a particular scalar potential level.  The alternate Klein-

Gordon Lagrangian directly leads to both the alternate Proca field and the alternate Higgs 

field by a local U(1) gauge transformation.  The result shows vector bosons transforming 

between a massive state and a massless, charge state by a spontaneous breakdown of 

symmetry at a minimum potential trough similar to that of a Mexican hat or wine bottle 

potential in the Brout, Englert, and Higgs (BEH) mechanism, but more generally leaving 

open a possible presence of entirely different or many alternate Higgs bosons. 
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1.  Motivation 

The Lagrangian formalism in quantum field theory describes the massive scalar boson 

field by the Klein-Gordon equation, the spin half fermion field by the Dirac equation, and 

the massive vector boson field by the Proca equation, etc.  These relativistic quantum 

wave equations apply the quantum prescriptions to the total energy, E, which is the sum 

of the relativistic external kinetic energy and the internal (rest) energy, and to the 

relativistic momentum, P.  In general, however, the external kinetic energy and the 

internal energy, for instance spin energy, originate from two different motions that may 

be difficult to describe by a single set of wave equations.  In this paper we re-examine the 

marriage of quantum mechanics and special relativity and present an alternate 

formulation to resolve this fundamental problem. 

2.  Relativistic Energy-Momentum Relation 

 In this section and Section 3.1 that follows, we extract some of the prerequisite from 

the author’s previous paper [1].  We can write the relativistic energy–momentum relation 

in terms of the total energy, E, and momentum, P, of a particle [2-10],  

 42222
cMcPE +=  (1) 

where c is the speed of light and M the mass of the particle.   

Now the relativistic kinetic energy, T, may be written as  

 2
McET −= . (2) 

We can then rewrite the energy-momentum relation, Eq. (1), in terms of the kinetic 

energy and momentum in an alternate form,  

 2222 2 cPTMcT =+ . (3) 

If we define 
2

Mc≡E , the internal energy (many authors call this the rest energy) and 

υM≡P  to be the non-relativistic momentum, we can then call Eγγ =≡ 2
McE  to be the 

relativistic total energy and Pγυγ == MP  to be the relativistic momentum where 

2

2

11
c

υ
γ −=  is the Lorentz factor, v is the velocity of the particle.  

The energy-momentum relation, Eq. (1), may then be rewritten,  

 4

2

222
c

M
c 








+=

γ
PE , (4) 

in terms of the internal energy, non-relativistic momentum, and mass. We note that the 

equations (1) and (4) are of the same form except the mass M is replaced with M/γ, a 

relativistic mass or the mass normalized by the Lorentz factor, with 0 ≤ 1/γ ≤ 1.  As the 

velocity of the particle approaches the speed of light, Eq. (1) may blow up but Eq. (4) 

behaves well as the relativistic mass term goes to zero.  The 1/γ appears as a 

normalization factor; for instance each of the electron’s orbits in an atom has a particular 

angular velocity and radius hence a characteristic γ and 1/γ values.  It is crucial 

information for characterizing particles.   

In the same way, Eq. (3) may be rewritten as 

 
22

2
2 2

c
Mc

PTT =+
γ

, (5) 
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where T ≡ T/γ.  If a quantum wave equation is built based upon Eq. (4) or (5), the 

‘observable’ counterpart for a scripted quantity, for instance T for T or E for E, may easily 

be recovered by multiplying γ appropriately. 

3. Alternate Klein-Gordon Equation 

The quantum prescriptions are based upon de Broglie’s theory [8] that may be 

expressed by PPPP = ħk and E = ħω where ħ is the reduced Planck constant, k is the wave 

number and ω is the angular frequency [11].  The bold face indicates a 3-vector.   

All we are doing is to separate the external motion from the internal motion of a 

particle.  In Eq. (5), substituting T by 
t

i
∂

∂
h  and P by ∇hi  and operating on a scalar 

function Φ, we  then obtain, 

 Φ
∂

∂
=Φ








∇−

∂

∂

t

M
i

tc γh
2

1 2

2

2

2
. (6) 

The above may be rewritten as 

 (□ Φ∂=Φ∂∂≡Φ 0) αµ
µ i . (7) 

where □≡

µ
µ∂∂ , the d'Alembertian and 

 
γ

α
h

Mc2
≡ . (8) 

This is the kinetic energy-operated, mass-normalized, relativistic quantum wave equation, 

an extension of the Schrödinger equation in the free field.  Note that if we replace the 

d'Alembertian with 2∇−  and take the non-relativistic limit of the relativistic mass M/γ → 

M we recover the Schrödinger equation.  Conversely, the relativistic extension of the 

Schrödinger equation may be simply constructed by replacing 2∇−  in the Schrödinger 

equation with □≡

µ
µ∂∂  and the mass M with the relativistic mass M/γ. 

We now define a unit four vector,  

 
µµµµµ
3210 IIIII +++=  (9) 

where  

 





















≡





















≡





















≡





















≡





















≡

1

0

0

0

  ,

0

1

0

0

  ,

0

0

1

0

  ,

0

0

0

1

  ,

1

1

1

1

3210

µµµµµ IIIII . (10) 

When applied to the four derivative, it is understood that  

 
etc.  ;  ; 1100

3210

−∂=∂∂=∂

∂−∂−∂−∂=∂

µ
µ

µ
µ

µ
µ

II

I
 (11) 

This allows Eq. (7) to be rewritten in a more maneuverable form,  

 Φ∂=Φ∂∂ µ
µµ

µ α 0Ii  (12) 

The above is an alternate Klein-Gordon equation, a new relativistic quantum wave 

equation for spin zero massive particles that reduces to the Schrödinger equation in the 

nonrelativistic limit.  In the present formulation, it replaces the Klein-Gordon equation  
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 0

2

=Φ







+Φ∂∂

h

Mcµ
µ . (13) 

Now that we have an alternate Klein-Gordon equation, Eq. (12), it is a daunting task to 

reformulate the entire quantum field theory based upon the alternate equation.  Why do 

we want to do that?  After all, both Eq. (1) and (3) express the same relativistic energy-

momentum relation.  The difference, however, is where we apply the de Broglie’s theory  

and the author hopes to find if accounting for this difference may help simplifying some 

of the peculiar treatments in our quantum theories, such as renormalization and Higgs 

mechanism.  This paper focuses on formulating alternate Lagrangian densities for the 

quantum fields and some preliminary consequence of the new formulation. 

4. Spin ½ Fermion 

4.1 Alternate Dirac Equation 

The alternate Klein-Gordon equation, Eq. (12), may be decoupled into the bi-spinor 

equations by deploying the Dirac formalism [12].  This was done in the author’s previous 

work [1] and here we only state the result.   

We define I (or simply 1) to be a 2x2 unit matrix, and σ
i
 to be 2 x 2 Pauli matrices, γ

0
 to 

be the first of the 4x4 Dirac matrices (the others are γ
,i
; i = 1,2,3.)  By using the first of 

the following relationships, 

 









=+










−
=−

00

01
21

10

00
21

0

0

γ

γ

, (14) 

the quantum wave equation describing the spin half fermion may be written, 

 ( ) 01
0 =−+∂ Ψ

γ

Mc
γΨγi μ

μ
h . (15) 

This is the kinetic energy-operated, alternate Dirac equation compared to the Dirac 

equation,  

 0=−∂ Ψ
Mc

Ψiγ μ

μ

h
. (16) 

4.2 Lagrangian for the Alternate Dirac Equation 

A Dirac Lagrangian may be written as  

 ΨΨ−Ψ∂Ψ= 2Mcci µ
µγhL . (17) 

The Euler-Lagrange equations for the above are 

 

.0)( :EL2

and ,0 :EL1

=+∂

=−∂

Ψ
Mc

γΨi

Ψ
Mc

Ψiγ

μ

μ

μ

μ

h

h  (18) 

The two Euler-Lagrange equations represent a particle and its anti-particle, respectively.   

A local U(1) gauge transformation may be performed to Eq. (17) and the result is  
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( ) µ

µ
µν

µν

µ
µ

γ
π

γ

AqFF

Mcci

ΨΨ−−

ΨΨ−Ψ∂Ψ=

16

1
                        

2
hL

 (19) 

which then yields three Euler-Lagrange equations 

 

.0
4

1
 :EL3

0 :EL2

0 :EL1

=ΨΨ−∂

=Ψ++∂

=Ψ−−∂

µµν
µ

µ
µ

µ
µ

γ
π

γ

γ

qF

AqΨMcγΨi

AqMcΨΨγi

μ

μ

μ

μ

h

h

 
(20) 

Similarly, a Lagrangian for the alternate Dirac Equation may be constructed as  

 ( ) ΨΨ−+Ψ∂Ψ=
γ

γγ µ
µ

2
0 1

Mc
cihL  (21) 

of which the Euler-Lagrange equations are 

 

( )

( ) .01)(:EL2

and ,01:EL1

0

0

=−+∂−

=−+∂

Ψ
γ

Mc
γ

μ
γΨi

Ψ
γ

Mc
γΨγi μ

μ

µh

h

 (22) 

The two Euler-Lagrange equations represent a particle and its anti-particle, respectively.  

The Euler-Lagrange equations, Eq. (22), of the alternate Dirac Lagrangian closely match  

those of the Dirac Lagrangian, Eq. (18), the only but critical difference being each of Eq. 

(22) includes both the massive and massless interaction between spinors.  As discussed in 

[1], it can be shown each has plane wave solutions that include a constant solution, which 

can be set to be zero representing the vacuum state.  Eq. (18) lacks this solution and Dirac 

then had to hypothesize the existence of the so-called Dirac ‘sea’ [13].  The vacuum 

solution of Eq. (22) removes this difficulty Dirac tried to resolve and this fact lends 

support to the present formulation. 

The alternate Dirac Lagrangian, Eq. (21), may be gauge-transformed to,  

 

( )

( ) ,
16

1
                       

1
2

0

µ
µ

µν
µν

µ
µ

γ
π

γ
γγ

AqFF

Mc
ci

ΨΨ−−

ΨΨ−+Ψ∂Ψ= hL

 (23) 

which then yields three Euler-Lagrange equations 

 

( )

( )

.0
4

1
 :EL3

01 :EL2

01 :EL1

0

0

=ΨΨ−∂

=Ψ+−−∂

=Ψ−−+∂

µµν
µ

µ
µ

µ
µ

γ
π

γ
γ

γ

γ
γ

γ

qF

AqΨ
Mc

γΨi

AqΨ
Mc

Ψγi

μ

μ

μ

μ

h

h

 (24) 

The Euler-Lagrange equations, Eq. (24), of the alternate Dirac Lagrangian closely match  

those of the Dirac Lagrangian, Eq. (20), with the only but critical difference being that 

the first two of Eq. (24) include both the massive and massless interactions between 

spinors.  The gauge fields (EL3 of each) are exactly the same.  
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5.  Scalar Boson 

5.1  Lagrangian for the Alternate Klein-Gordon Equation 

Now let 21 φφ i+=Φ and 21
* φφ i−=Φ  where ϕ1 and ϕ2 are two real fields.  We can then 

write a Lagrangian for the alternate Klein-Gordon equation, Eq. (12), 

 ( )Φ∂Φ+Φ∂Φ∂= µ
µµ

µ α *

0

* IiL . (25) 

of which the Euler-Lagrange equations are,   

 
. :EL2

and , :EL1

*

0

*

0

Φ∂−=Φ∂∂

Φ∂=Φ∂∂

µ
µµ

µ

µ
µµ

µ

α

α

Ii

Ii
 (26) 

EL1 in the above is the same as Eq. (12).  EL2 represents its anti-particle.  The alternate 

Klein-Gordon Lagrangian, Eq. (25), describes a massive, scalar, spin-zero boson with 

mass  

 
c

M
h








=

2

γα
 (27) 

carried by Φ* times the time derivative of Φ.  Note that the ‘observable’ mass M includes 

a boost factor, γ, owing to its velocity. 

5.2  Massive and Massless Scalar Boson by Gauge Transformation 

A local U(1) gauge transformation may be performed for Eq. (25) via  

*
for  

for  

Φ−∂→

Φ+∂→

µµµ

µµµ

β

β

Bi

Ai

D

D
 (28) 

where  

 
c

q

h
≡β , (29) 

q is the charge of the particle, and A
μ
 and B

μ
 are some vector fields associated with Φ and 

Φ
*
, respectively. This leads to the gauge transformed, alternate Klein-Gordon Lagrangian 

density, 

 
( )[ ]

[ ],)()()(          
**

0

*

*

0

*

µ
µ

µ
µ

µ
µµ

µ
µµ

µ

ββαβ

α

BAiABI

Ii

Φ∂Φ−ΦΦ∂+−ΦΦ−

Φ∂Φ+Φ∂Φ∂=L
 (30) 

where α represents the mass, β represents the charge.   

It is interesting to note that when  

 
µµ αβ 0IB =  (31) 

i.e., B
μ
 = (

γq

Mc
22

, 0, 0, 0), the second term then vanishes and Eq. (30) reduces to,  

 ΦΦ∂+Φ∂Φ∂= )( **

µ
µµ

µ βAiL . (32) 

This represents a massless scalar boson with charge q in the vector field, A
μ
.  The 

Euler-Lagrange equations of it are 

 
.0:EL2

and ,0:EL1

** =Φ∂−Φ∂∂

=Φ∂+Φ∂∂

µ
µµ

µ

µ
µµ

µ

β

β

Ai

Ai
 (33) 
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Note that we can always select a particular B
μ
 without losing generality to obtain an A

μ
 

field equation.  Hence if we choose B
μ
 = (V, 0, 0, 0) with 

q

Mc
V

γ

22
= , where V is a scalar 

potential, then the massive scalar boson, Eq. (25), transforms into a massless scalar 

boson, Eq. (32).  We will bring γ to the left hand side and rewrite this condition to note 

that γV is the ‘observable’ potential, 

 
q

Mc
V

22
=γ . (34) 

Conversely, a massless scalar boson, Eq. (32) may be shown to transform to a massive 

scalar boson, Eq. (25), by assuming Aμ = Bμ, then gauge transforming via 

,for  

for  

*

0

0

Φ+∂→

Φ−∂→
µµµ

µµµ

α

α

Ii

Ii

D

D
 (35) 

and finally taking a similar condition as Eq. (31),  

 
µµ αβ 0IA = . (36) 

If further we choose A
μ
 = (V, 0, 0, 0) with V, a scalar potential, we then get 

 22 c

qV
M 








=

γ
 (37) 

and we can say the massless boson, Eq. (32), acquired mass M from charge q.  In 

Section 6.3, we will compare this to the acquired mass in the Higgs field.  Thus we see 

that scalar bosons transform between a massive state, Eq. (25), and a massless charge 

state, Eq. (32), at a particular scalar potential level.  We note that a Goldstone boson is 

not present.   

We note that the Lagrangian for the complex-valued scalar field according to the Klein-

Gordon equation, Eq. (13), may be written,  

 ( )( ) ΦΦ







−Φ∂Φ∂= *

2

*

h

Mcµ
µL

. 
(38) 

A local U(1) gauge transformation via Eqs. (28) and (29) leads to the gauge 

transformed,  Klein-Gordon Lagrangian, 

 
( )( )

[ ].)()(          **

*2*

2

*

µ
µ

µ
µ

µ
µµ

µ

β

β

BAi

AB
Mc

Φ∂Φ−ΦΦ∂+

ΦΦ+











ΦΦ








−Φ∂Φ∂=

h
L

 

(39) 

The above includes the Klein-Gordon Lagrangian, Eq. (38), as expected, and some 

terms showing the interaction among the scalar fields and the vector fields, but the mass 

term remains unchanged.  This presents a problem in the weak interactions where a 

transformation between massive and massless scalar field is required [14, 15].  In the 

following, the alternate formulation is shown to allow this to occur without resorting to a 

Higgs field. 

6.  Vector Boson 

We define the “Field Strength Tensors” for some vector fields, A
μ
 and B

μ
, respectively,  
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µννµµν

µννµµν

BBG

AAF

∂−∂=

∂−∂=
 (40) 

and introduce a gauge field, F
μν

Gμν, into the alternate Klein-Gordon Lagrangian, Eq. (25), 

to obtain 

 ( )[ ] µν
µν

µ
µµ

µ
π

α GF
c

i
Ii

h8

*

0

* −Φ∂Φ+Φ∂Φ∂=L . (41) 

Gauge transformation of the above according to Eq. (28) results in the following by use 

of Eq. (30), 

 
( )[ ]

[ ]µ
µ

µ
µ

µ
µµ

µν
µν

µ
µµ

µ

ββαβ

π
α

BAiABI

GF
c

i
Ii

)()()(    

8
**

0

*

*

0

*

Φ∂Φ−ΦΦ∂+−ΦΦ−

−Φ∂Φ+Φ∂Φ∂=
h

L
 (42) 

If Eq. (31) holds, then Eq. (42) reduces to  

 [ ] µν
µν

µ
µµ

µ
π

β GF
c

i
Ai

h8
)( ** −ΦΦ∂+Φ∂Φ∂=L  (43) 

We see that, in effect, the gauge transformation allows the massive gauge field, Eq. (41) 

to transform into a massless gauge field, Eq. (43).  By the gauge transformation via Eq. 

(35), the reverse is also true. 

Eq. (42) may be rearranged to 

 

( )[ ]

[ ]. )()(         

)(
216

12
         

**

0

*

*

0

*

µ
µ

µ
µ

µ
µµ

µν
µν

µ
µµ

µ

β

βα
π

α

BAi

ABI
q

iGF
c

i

Ii

Φ∂Φ−ΦΦ∂+







−ΦΦ+−+

Φ∂Φ+Φ∂Φ∂=

h

L

 (44) 

Eq. (44) combines a massive scalar field in the first square bracket, a massive vector 

field in the second square bracket, and the interaction of the scalar and the vector fields 

in the third square bracket. The last is the Noether’s conserved current of the fields [14, 

15].  In general, the above Lagrangian yields the following four Euler-Lagrange 

equations carried by the scalar fields, Φ
*
 and Φ, and the vector fields, Au and Bu, 

respectively: 

 

( )

( )

.0)(
4

1
:EL4

0)()(
4

1
:EL3

0)(           

)(:EL2

0)(            

)(:EL1

*

*

0

*

**

0

**

0

*

00

=Φ∂Φ−∂

=ΦΦ∂+





−ΦΦ+∂

=+Φ∂−∂Φ−

−Φ+Φ∂+Φ∂∂

=+Φ∂+∂Φ+

−Φ+Φ∂−Φ∂∂

νµν
µ

νννµν
µ

µµ
µ

µ
µ

µ
µµ

µ
µµ

µ

µµ
µ

µ
µ

µ
µµ

µ
µµ

µ

π

βα
π

ββ

βαβα

ββ

βαβα

qF

qBIiqG

BAiBi

ABIIi

BAiAi

ABIIi

 (45) 

EL1 and EL2 include a scalar boson with the mass given by Eq. (27) and the scalar 

boson-vector boson interaction terms.  If the Lorentz condition,  

 0=∂=∂ µ
µ

µ
µ BA , (46) 
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holds and if in addition the special gauge field condition, Eq. (31), is also met, these two 

transforms into a massless, charged scalar boson, Eq. (33).  If the special condition is not 

met, then the scalar boson interacts with the vector boson in the second term through 

both charge and mass, and in the fourth term through charge only.  EL3 describes a 

massive vector boson interacting with a scalar boson except for the special case, Eq. (31).  

EL4 is the Maxwell equation describing a massless vector boson with a current. 

6.1  Massless Gauge Vector Field 

From the second and the third term of Eq. (44), we can define a vector field, 

 

[ ]µ
µ

µ
µ

µ
µµ

µν
µν βα

π

BA
q

ABI
q

iGF

)()(
2

                       

)(
216

1

**

0

*

Φ∂Φ−ΦΦ∂+

−ΦΦ+−=L

. (47) 

We can obtain a pure vector field from this under certain conditions: for instance, if the 

vector fields satisfy Bμ = Aμ, the above then reads  

 

[ ] µ
µµ

µ
µµ

µν
µν βα

π

A
q

AAI
q

iFF

)()(
2

)(
216

1

**

0

*

Φ∂Φ−ΦΦ∂+

−ΦΦ+−=L

. (48) 

The square bracket term appears to be a Noether’s current.  We can take the divergence 

of it and use Eq, (26) to find 

 [ ] 0)()()( *

0

** =ΦΦ∂−=Φ∂Φ−ΦΦ∂∂ µ
µµµ

µ αIi  (49) 

since the Noether’s current is a conserved quantity.  Hence  

 )()()(
*

0

** ΦΦ−=Φ∂Φ−ΦΦ∂ µµµ αIi = Constant. (50) 

Eq. (48) then reduces to 

 µ
µ

µν
µν β

π
AAq

i
FF

216

1
−−=L  (51) 

after constant) a(
2

2

2

1

* K=+=ΦΦ φφ is absorbed by A
μ
.  This is a massless gauge boson 

field, or an alternate massless Proca Lagrangian, of which the Euler-Lagrange equation is 

 EL1: 0
4

1
=−∂ νµν

µ β
π

AiqF . (52) 

Note that qβ = q
2
/(ħc), but we keep β since it appears often separately in the following.   

6.2  Massive Gauge Vector Field 

We can obtain another pure vector field if the vector fields satisfy Bμ =  ̶ Aμ, Eq. (47) 

then reads  

 

.)(
2

)(
216

1

or ,)(
2

)(
216

1

*

0

*

*

0

*

µ
µ

µ
µµ

µν
µν

µ
µ

µ
µµ

µν
µν

βα
π

βα
π

B
q

BBI
q

iGG

A
q

AAI
q

iFF

ΦΦ∂−−ΦΦ−=

ΦΦ∂++ΦΦ+=

L

L

 (53) 
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If further the scalar field satisfies 0)( * =ΦΦ∂µ
, then again  

constant) a(
2

2

2

1

* K=+=ΦΦ φφ  and K can be absorbed by the vector field.  In this case, 

the above reduces to  

 

µ
µµ

µν
µν

µ
µµ

µν
µν

βα
π

βα
π

BBI
q

iGG

AAI
q

iFF

)(
216

1

or ,)(
216

1

0

0

−−=

++=

L

L

 (54) 

which may be called an alternate Proca Lagrangians, special cases of Eq. (44).  We can 

show by use of Eqs. (26) and (50), 

 
0)()(2

)(2)(

2

2

2

100

2

2211

*

00

2**

≥++∂∂+∂∂=

ΦΦ+Φ∂Φ∂=ΦΦ∂∂

φφαφφφφ

α

µ

µ

µ
µ

µ
µ

µ

µ

µ
µ

µ
µ

II

II
 (55) 

so long as  both 1φµ∂  and 2φµ∂  are time-like, which we assume to be given. It is 

interesting to note that these scalar field conditions,  

 
0)(

and ,0)(

*

*

≥ΦΦ∂∂

=ΦΦ∂
µ

µ

µ

 (56) 

define a local minimum potential along the circle, 02

2

2

1 =+ φφ , under which the above 

massive vector fields arise.  This is remarkably similar to the condition by which the 

Higgs boson field arises, i.e., the spontaneous symmetry breaking via the Mexican hat or 

wine bottle potential.  Eq. (56) does not exactly define Mexican hat potential but is more 

general in the sense that there may be many Φ
*
Φ circles that satisfy this. 

The Euler-Lagrange equations for Eq. (54), 
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 (57) 

are the alternate Proca equations with a relativistic mass M/γ = αħ/(2c).   

6.3  Comparison with the Higgs Field 

For comparisons, the Proca Lagrangian may be written as 

 ν
ν

µν
µν

ππ
AA

Mc
FF

2

8

1

16

1








+−=

h
L  (58) 

with the Euler-Lagrange equation, 

 0

2

=







+∂ νµν

µ A
Mc

F
h

. (59) 

According to the Proca Lagrangian, Eq. (58), mass is carried by the quadratic term of 

the vector field A
ν
 and may be created by a mechanism known as Brout-Englert-Higgs 

(BEH) mechanism along with the Higgs boson.  For example, consider a Lagrangian 

with a self-interaction potential energy terms [14, 15, 16] 

 
2*2*2* )(

4

1

2

1

2

1
ΦΦ−ΦΦ+Φ∂Φ∂= λµµ

µL . (60) 
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where μ and λ are real constants.  By defining η ≡ ϕ1 – μ/λ, a gage transformed and 

spontaneously symmetry-broken version of the above is the Lagrangian for the Higgs 

field, which may be written [14] 
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FF
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. (61) 

where the first square bracket represents the Higgs scalar boson field with mass, 

 ( )
c

MS

h
µ2= ,  (62) 

and the second square bracket a gauge boson field with mass,   

 2
2

c

q
M A 








=

λ

µ
π .  (63) 

Its Euler-Lagrange equations are 
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. (64) 

The square bracket term of the above EL1 is a Klein-Gordon equation defining the 

Higgs boson.  The square bracket term of the above EL2 is a Proca equation describing a 

massive gauge boson.   

Eq. (44) and Eq. (61) are similar in their structure, combining a massive scalar boson 

field and a massive gauge boson field.  Remarkably, Eq. (44) includes these fields as a 

result of the local U(1) gauge transformation of the alternate Klein-Gordon equation, Eq. 

(25), naturally without introducing an arbitrary symmetry breaking process.  The mass of 

the scalar boson given by Eq. (27) will be identical with that of Eq. (62) if  

 µ
γα

2
2

=  (65) 

and the mass of the gauge boson given by Eq. (37) will be identical with that of Eq. (63) 

if 

 
λ

µ
π

γ
2

2
=

V
. (66) 

The Higgs scalar boson has been found experimentally [17-28].  It is interesting to see 

if the massive scalar boson in Eq. (44), which may be called an alternate Higgs boson, 

may also be found experimentally.  It is possible that the alternate Higgs boson in Eq. (44) 

is identical to the Higgs boson in Eq. (61), even though we arrive at them in quite 

different ways and now we see the possibility of multiple alternate Higgs bosons. 

7.   Maxwell Fields 

We can define a four vector potential [14], 

 ( ) ( )3210 ,,,, AAAAAVA ≡≡
r

ν , (67) 

where V is a scalar potential, A
r

 is a three-vector potential, and   
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 ),( JcJ ρµ = , (68) 

where ρ is the charge density, J  is the current density. 

The Lagrangian for the Maxwell equation may be written as 

 µ
µ

µν
µν

π
AJ

c
FF

1

16

1
−−=L , (69) 

and we can then write the Maxwell equation, 

 0
1

4

1
=−∂ νµν

µ
π

J
c

F . (70) 

This is the electromagnetic field equation with a source current, J
ν
.   

Maxwell field Lagrangians are embedded in the alternate Dirac Lagrangian, Eq. (23), 

alternate Klein-Gordon Lagrangian, Eq. (44), and alternate Proca Lagrangian, Eq. (51), 

respectively.  EL3 of Eq. (24) is the Maxwell equation under fermion fields.   EL4 of Eq. 

(45) is the Maxwell equation under scalar boson fields.   EL1 of Eq.(52) is the Maxwell 

equation under vector boson fields. Comparing these with Eq. (70), one gets 

 ννν
ν

βγ Aiqqq
c

J
A=Φ∂Φ=ΨΨ= ΦΨ )(*

 (71) 

where qΨ, qΦ, and qA are the charges in their respective fields. 

8. Conclusion 

We have critically reviewed the marriage of a quantum wave equation and the special 

relativity.  In our standard physics, the relativistic quantum wave equations are obtained 

by applying the quantum prescriptions to the total energy, E, and to the relativistic 

boosted momentum, P.  E is the sum of the relativistic boosted kinetic energy and the 

internal (rest) energy.  An elementary particle, however, in general has some internal 

motion, for example at least that causing spins which contributes to the unique rest mass 

energy, and an external motion, for example a translational or rotational motion that 

manifests the external kinetic energy.  Since they involve two different mechanisms, it 

may be difficult to describe both by a single set of wave equations; but this is precisely 

what we do.  This paper presents an alternate approach to resolve this fundamental 

problem. 

External kinetic energy-operated quantum wave equations are used to formulate 

alternate quantum fields.  This leads to an alternate Klein-Gordon field for a massive 

scalar boson, an alternate Dirac field for a spin half fermion, an alternate Proca field for  

a massive vector boson, and an alternate Higgs field for a massive scalar boson and 

massive gauge vector boson.  The main results are summarized in the Appendix.   

For example, the Klein-Gordon equation is a total energy-operated quantum wave 

equation while the alternate Klein Gordon equation derived by the present approach is a 

kinetic energy-operated quantum wave equation.  From the alternate Klein-Gordon field, 

also derived are an alternate Dirac, alternate Proca, and alternate Higgs field.     

The alternate Dirac field thus derived closely matches that of the Dirac field, the only 

but crucial difference being each of the alternates includes both the massive and massless 

interaction between spinors.  The equations of motion then yield plane wave solutions 

that include a constant solution, which can be set to be zero representing a vacuum state.  

The original Dirac equation lacks this solution and Dirac then tried hard to resolve this by 



 

Brian B.K. Min   Transforming Between Massive and Massless States for Bosons 

 

 13 

hypothesizing the existence of the so-called Dirac ‘sea’.  The vacuum solution of the 

alternate formulation removes this difficulty.  We now see the difficulty arose because 

the Klein-Gordon equation upon which Dirac equation is based uses the total energy as 

the basis of quantum prescription.  This fact lends a strong support to the present 

formulation over the original formulation. 

The alternate Klein-Gordon field shows scalar bosons transforming at a particular 

scalar potential level between a massive state and a massless, charge state.  The mass 

comes from the charge, the charge comes from the mass, and i.e., mass and charge are 

interchangeable under certain conditions.   

The alternate Klein-Gordon Lagrangian directly leads to both the alternate Proca field 

and the alternate Higgs field by a local U(1) gauge transformation.  The result shows 

vector bosons transforming between a massive state and a massless, charge state by a 

spontaneous breakdown of symmetry at a minimum potential trough similar to, but more 

generally than that of a Mexican hat or wine bottle potential in the Brout, Englert, and 

Higgs (BEH) mechanism. 

The Higgs and alternate Higgs fields are similar in their structure, combining a massive 

scalar boson and a massive gauge boson.  Remarkably, the alternate Higgs field includes 

these bosons as a result of the local U(1) gauge transformation of the alternate Klein-

Gordon Lagrangian without introducing an arbitrary symmetry breaking process.   

It is probable that the scalar bosons in both fields are identical, even though we arrive 

at them in quite different ways.  The Higgs scalar boson has been found experimentally.  

It will be interesting to see if the alternate scalar boson may also be found experimentally, 

if not identical to the Higgs boson.  Finally, it should be noted that the present theory 

leaves open a possible presence of entirely different or many “alternate Higgs bosons”.  
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APPENDIX.  Lagrangian Density for Quantum Fields - Standard Formulation vs. Alternate  
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