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Given a set of observed batted balls and their outcomes, we develop a method for learning

the dependence of a batted ball’s intrinsic value on its measured s, v, and h parameters.

1 HITf/x Data

The HITf/x data used for this study was provided by SportVision and includes measure-

ments from every regular-season MLB game during 2014. We consider all balls in play with

a horizontal angle in fair territory (h ∈ [−45◦, 45◦]) that were tracked by the system where

bunts are excluded. This results in a set of 124364 batted balls and the distributions for

s, v, and h are shown in figures 1 and 2. We see that the peak of the speed distribution is

near 93 mph and that the peaks of the vertical and horizontal angle distributions are near

zero. Since HITf/x tracks batted balls over a portion of their trajectory that occurs after

the ball has slowed due to air drag and gravity, the estimated speeds are a few miles per

hour less than the speeds recorded by other systems. Since this effect is systematic, these

offsets will not have a significant impact on the batted ball statistics computed in this work.

2 Learning Algorithm

2.1 Bayesian Foundation

Using Bayes theorem, the probability of a batted ball outcome Rj given a measured vector

x = (s, v, h) is given by

P (Rj |x) =
p(x|Rj)P (Rj)

p(x)
(1)
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Figure 1: Distribution of initial speeds (mph) for batted balls in 2014
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Figure 2: Distribution of vertical and horizontal angles (degrees) for batted balls in 2014
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where p(x|Rj) is the conditional probability density function for x given outcome Rj, P (Rj)

is the prior probability of outcome Rj, and p(x) is the probability density function for x.

Linear combinations of the P (Rj|x) probabilities for different outcomes can be used to model

the expected value of statistics such as batting average, wOBA, and slugging percentage

as a function of the batted ball vector x. For a given batted ball, therefore, these statistics

provide a measure of value that is separate from the batted ball’s particular outcome.

2.2 Kernel Density Estimation

The goal of density estimation for this application is to recover the underlying probability

density functions p(x|Rj) and p(x) in equation (1) from the set of observed batted ball

vectors and their outcomes. Given the typical positioning of defenders on a baseball field

and the various ways that an outcome such as a single can occur, we expect a conditional

density p(x|Rj) to have a complicated multimodal structure. Thus, we use a nonparametric

technique for density estimation.

We first consider the task of estimating p(x). Let xi = (si, vi, hi) for i = 1, 2, . . . , n be the

set of n observed batted ball vectors. Kernel methods [6] which are also known as Parzen-

Rosenblatt [4] [5] window methods are widely used for nonparametric density estimation.

A kernel density estimate for p(x) is given by

p̂(x) =
1

n

n∑

i=1

K(x− xi) (2)

where K(·) is a kernel probability density function that is typically unimodal and centered

at zero. A standard kernel for approximating a d−dimensional density is the zero-mean

Gaussian

K(x) =
1

(2π)d/2|Σ|1/2
exp

[
−
1

2
xTΣ−1x

]
(3)

where Σ is the d×d covariance matrix. For this kernel, p̂(x) at any x is the average of a sum

of Gaussians centered at the sample points xi and the covariance matrix Σ determines the

amount and orientation of the smoothing. Σ is often chosen to be the product of a scalar

and an identity matrix which results in equal smoothing in every direction. However, we see
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from figures 1 and 2 that the distribution for v has detailed structure while the distributions

for s and h are significantly smoother. Thus, to recover an accurate approximation p̂(x)

the covariance matrix should allow different amounts of smoothing in different directions.

We enable this goal while also reducing the number of unknown parameters by adopting a

diagonal model for Σ with variance elements (σ2

s , σ
2

v , σ
2

h). For our three-dimensional data,

this allows K(x) to be written as a product of three one-dimensional Gaussians

K(x) =
1

(2π)3/2σsσvσh

exp

[
−
1

2

(
s2

σ2
s

+
v2

σ2
v

+
h2

σ2

h

)]
(4)

which depends on the three unknown bandwidth parameters σs, σv, and σh.

2.3 Cross-Validation for Bandwidth Selection

The accuracy of the kernel density estimate p̂(x) is highly dependent on the choice of the

bandwidth vector σ = (σs, σv, σh) [1]. The recovered p̂(x) will be spiky for small values

of the parameters and, in the limit, will tend to a sum of Dirac delta functions centered

at the xi data points as the bandwidths approach zero. Large bandwidths, on the other

hand, can induce excessive smoothing which causes the loss of important structure in the

estimate of p(x). A number of bandwidth selection techniques have been proposed and a

recent survey of methods and software is given in [3]. Many of these techniques are based on

maximum likelihood estimates for p(x) which select σ so that p̂(x) maximizes the likelihood

of the observed xi data samples. Applying these techniques to the full set of observed data,

however, yields a maximum at σ = (0, 0, 0) which corresponds to the sum of delta functions

result. To avoid this difficulty, maximum likelihood methods for bandwidth selection have

been developed that are based on leave-one-out cross-validation [6].

The computational demands of leave-one-out cross-validation techniques are excessive

for our HITf/x data set. Therefore, we have adopted a cross-validation method which

requires less computation. From the full set of n observed xi vectors, we generate M

disjoint subsets Sj of fixed size nv to be used for validation. For each validation set Sj , we

construct the estimate p̂(x) using the n− nv vectors that are not in Sj as a function of the

bandwidth vector σ = (σs, σv, σh). The optimal bandwidth vector σ∗

j = (σ∗

sj , σ
∗

vj , σ
∗

hj) for Sj
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is the choice that maximizes the pseudolikelihood [2] [3] according to

σ∗

j = argmax
σ

∏

xi∈Sj

p̂(xi) (5)

where the product is over the nv vectors in the validation set Sj. The overall optimized

bandwidth vector σ∗ is obtained by averaging the M vectors σ∗

j .

For our data set, we used five validation sets S1, S2, S3, S4, and S5 to select the optimized

bandwidth vector σ∗ for the p(x) estimate. Set Si includes nv batted balls that were hit

on day 6i − 5 of a calendar month. Set S2, for example, includes only batted balls hit on

the 7th day of a month. The size nv = 3820 was taken to be the largest value so that each

set Si includes the same number of elements. The decision to use six days of separation for

the validation sets was made with the goal of maximizing the independence of the sets. A

regular-season series of consecutive games between the same pair of teams always lasts less

than six days. In addition, major league teams in 2014 tended to use a rotation of starting

pitchers that repeats every five days so that, if this tendency is followed, each starting

pitcher will occur once per calendar month in each of the five validation sets.

For each validation set Sj , a three-dimensional search was conducted with a step size of

0.1 in σs, σv, and σh to find the optimized σ∗

j in equation (5). For each Sj and σ vector under

consideration, we removed the twenty xi batted ball vectors with the smallest value of p̂(xi)

to prevent outliers from influencing the optimization. The vectors σ∗

j for each Sj are given

in Table 1 and after averaging yielded an optimized σ∗ = (σ∗

s , σ
∗

v , σ
∗

h) of (2.02, 1.50, 2.20).We

see that vertical angle has the smallest smoothing parameter (σ∗

v = 1.50) which is consistent

with the observation from figures 1 and 2 that vertical angle has more detailed structure in

its density than batted ball speed or horizontal angle.

Table 1: Optimal bandwidths σ∗

j for validation sets Sj

S1 S2 S3 S4 S5

(2.0,1.5,2.2) (1.9,1.5,2.3) (2.0,1.6,2.0) (2.0,1.6,2.3) (2.2,1.3,2.2)
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2.4 Constructing the Estimate for P (Rj|x)

An estimate for P (Rj|x) can be derived from estimates of the quantities on the right side of

equation (1). The density estimate p̂(x) for p(x) is obtained using the kernel method defined

by equations (2) and (4) with the optimized bandwidth vector σ∗ learned using the process

described in section 2.3. Each conditional probability density function p(x|Rj) is estimated

in the same way except that the training set is defined by the subset of the xi vectors with

outcome Rj. Since reduced sample sizes for specific outcomes Rj preclude the learning of

individual bandwidth vectors for each p(x|Rj), we use the σ
∗ derived for p(x) for each case.

This approach also has the desirable effect of providing the same smoothing to a batted ball

vector in the numerator and denominator of (1) which prevents a probability P (Rj|x) from

exceeding one. Each prior probability P (Rj) is estimated by the fraction of the n batted

balls in the full training set with outcome Rj. The estimate for P (Rj|x) is then constructed

by combining the estimates for p(x|Rj), P (Rj), and p(x) according to Bayes theorem.

2.5 Batter Handedness

We repeated the process described in the previous sections to obtain separate densities for

left-handed and right-handed batters. The n = 124364 batted balls were first partitioned

into the 54948 for left-handed batters and 69416 for right-handed batters. The method

described in section 2.3 was then used to build five validation sets for each case which resulted

in a validation set size nv of 1680 for left-handed batters and 2190 for right-handed batters.

The optimal bandwidth vectors σ∗

j for each validation set and batter handedness are given

in Table 2. After averaging, we arrive at an optimized σ∗ = (σ∗

s , σ
∗

v , σ
∗

h) of (2.18, 1.72, 2.50)

for left-handed batters and (2.16, 1.56, 2.30) for right-handed batters. We note that, as seen

in section 2.3, σ∗

v is the smallest for each case while σ∗

h is the largest. In addition, the

bandwidth increases for each variable to provide more smoothing as the number of samples

decreases.
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Table 2: Optimal bandwidths σ∗

j for validation sets Sj by batter handedness

S1 S2 S3 S4 S5

L (2.0,1.5,3.1) (2.2,2.1,2.2) (2.3,1.6,2.1) (2.4,1.9,2.3) (2.0,1.5,2.8)
R (1.9,1.8,2.1) (2.1,1.7,2.2) (2.4,1.4,2.2) (2.2,1.5,2.6) (2.2,1.4,2.4)
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Batter I

Giancarlo Stanton .526

Mike Trout .498

Miguel Cabrera .488

J. D. Martinez .482

Matt Kemp .477

Brandon Moss .476

Jose Abreu .469

Mike Morse .468

Corey Dickerson .465

Edwin Encarnacion .461

Nelson Cruz .459

Justin Upton .454

Chris Carter .454

Marlon Byrd .446

Buster Posey .443

David Ortiz .442

Anthony Rizzo .441

Marcell Ozuna .439

Lucas Duda .439

Jose Bautista .438

Freddie Freeman .436

Khris Davis .426

Adrian Gonzalez .426

Andrew McCutchen .426

Ian Desmond .426

Adam LaRoche .425

Yan Gomes .425

David Freese .417

Jayson Werth .416

Albert Pujols .414

Victor Martinez .413

Carlos Santana .413

Starling Marte .412

Todd Frazier .411

Adam Jones .410

Kyle Seager .410

Matt Holliday .410

Michael Brantley .410

Carlos Gomez .409

Matt Adams .408

Starlin Castro .407

Adrian Beltre .406

Hanley Ramirez .406

Billy Butler .405

Ryan Howard .404

Josh Donaldson .404



Kole Calhoun .400

Russell Martin .400

Anthony Rendon .400

Chase Headley .399

Mark Teixeira .399

Yoenis Cespedes .398

Yasiel Puig .397

Christian Yelich .394

Dexter Fowler .394

Nolan Arenado .393

Joe Mauer .392

Torii Hunter .390

Garrett Jones .389

David Wright .389

Nick Castellanos .388

Jhonny Peralta .388

Justin Morneau .387

Lonnie Chisenhall .386

Seth Smith .386

Jon Jay .385

Luis Valbuena .385

Chris Johnson .385

Evan Longoria .384

Robinson Cano .383

Pablo Sandoval .382

Yadier Molina .382

Jacoby Ellsbury .380

Ryan Braun .379

Daniel Murphy .379

Salvador Perez .378

Alex Gordon .377

Aramis Ramirez .376

Jay Bruce .376

Trevor Plouffe .375

Alex Rios .374

Howie Kendrick .374

Jason Castro .373

Martin Prado .372

Curtis Granderson .372

Jonathan Lucroy .371

Josh Harrison .371

Hunter Pence .371

James Loney .371

Brian Dozier .371

Brett Gardner .371

Asdrubal Cabrera .369

Dioner Navarro .368



Travis d'Arnaud .368

Eric Hosmer .367

Dayan Viciedo .367

Wilin Rosario .367

Neil Walker .366

Melky Cabrera .366

Nick Markakis .365

Scooter Gennett .365

Eduardo Escobar .364

Brandon Phillips .364

Carlos Beltran .364

Miguel Montero .363

Matt Carpenter .361

Denard Span .361

B. J. Upton .361

Alejandro De Aza .361

Austin Jackson .359

J. J. Hardy .359

Casey McGehee .359

Jordy Mercer .358

Charlie Blackmon .358

Lorenzo Cain .357

Matthew Joyce .356

Chase Utley .355

Jonathan Schoop .355

Juan Lagares .355

Angel Pagan .354

Domonic Brown .354

Desmond Jennings .354

Gregor Blanco .353

Brian McCann .352

Kolten Wong .352

Xander Bogaerts .351

Brandon Crawford .350

Matt Dominguez .350

Aaron Hill .350

Dustin Ackley .349

Carlos Ruiz .349

Shin-Soo Choo .348

Jose Altuve .348

Jimmy Rollins .348

DJ LeMahieu .347

Ian Kinsler .345

Rajai Davis .345

Ben Zobrist .343

Leonys Martin .343

Jed Lowrie .341



Allen Craig .340

Erick Aybar .339

Dustin Pedroia .339

Jose Reyes .338

Conor Gillaspie .338

Alexei Ramirez .338

Yangervis Solarte .336

Dee Gordon .335

Brock Holt .334

Jason Kipnis .332

Gordon Beckham .332

Jason Heyward .331

Rougned Odor .330

Gerardo Parra .330

Michael Bourn .330

Alcides Escobar .329

Mike Moustakas .328

Coco Crisp .328

Adeiny Hechavarria .328

Adam Eaton .327

Nori Aoki .325

Yunel Escobar .322

Derek Jeter .322

Ender Inciarte .321

Alberto Callaspo .319

Kurt Suzuki .319

Omar Infante .317

David Murphy .314

Andrelton Simmons .311

Elvis Andrus .306

Alexi Amarista .304

Ben Revere .302

Jean Segura .299

Billy Hamilton .299

Zack Cozart .285



Pitcher I

Garrett Richards .304

Anibal Sanchez .309

Danny Duffy .314

Chris Sale .319

Matt Garza .328

Dallas Keuchel .329

Jarred Cosart .329

Clayton Kershaw .332

Alex Cobb .336

Johnny Cueto .337

Chris Archer .339

Doug Fister .340

Felix Hernandez .341

Kyle Gibson .342

Corey Kluber .342

Tanner Roark .345

Jake Arrieta .346

Edinson Volquez .347

Adam Wainwright .347

Gio Gonzalez .348

Lance Lynn .348

Chris Tillman .351

Carlos Carrasco .351

Jacob deGrom .352

Sonny Gray .353

Vance Worley .354

Rick Porcello .355

Julio Teheran .356

Francisco Liriano .356

David Phelps .356

Jon Lester .356

Wily Peralta .356

Jordan Zimmermann .357

Charlie Morton .357

John Danks .357

Josh Collmenter .358

Tyler Skaggs .358

Masahiro Tanaka .359

Andrew Cashner .359

Alex Wood .359

Yovani Gallardo .359

R. A. Dickey .360

Jose Quintana .360

Roberto Hernandez .360

James Shields .360

Scott Kazmir .360



Zack Greinke .361

Hector Santiago .361

David Price .362

Jorge De La Rosa .362

Kevin Correia .362

Kyle Lohse .363

Homer Bailey .363

Trevor Bauer .363

Max Scherzer .363

Brad Hand .364

Drew Hutchison .364

David Buchanan .364

Phil Hughes .364

Jordan Lyles .365

Hiroki Kuroda .365

Chris Young .365

Scott Feldman .365

Tyson Ross .365

Josh Beckett .365

J. A. Happ .367

Jeff Samardzija .367

Shelby Miller .368

Tom Koehler .369

Hector Noesi .369

Yu Darvish .369

Yordano Ventura .370

Rubby De La Rosa .370

Justin Verlander .370

Kevin Gausman .370

Hisashi Iwakuma .371

Zach Wheeler .371

Mike Leake .371

Jason Vargas .372

Roenis Elias .372

Nick Martinez .372

Marco Estrada .372

Collin McHugh .373

Henderson Alvarez .373

Cole Hamels .373

Clay Buchholz .374

Bartolo Colon .375

Tyler Matzek .376

Drew Smyly .377

Jake Peavy .377

C. J. Wilson .377

Matt Shoemaker .377

Jeff Locke .377



Jered Weaver .378

Alfredo Simon .378

Jonathon Niese .378

Jason Hammel .378

Gerrit Cole .379

T. J. House .379

Hyun-jin Ryu .379

Tim Hudson .379

Nick Tepesch .380

Jesse Chavez .380

Jeremy Guthrie .380

Brandon McCarthy .381

Aaron Harang .383

Bud Norris .383

Nathan Eovaldi .383

Dan Haren .384

Jake Odorizzi .384

Jerome Williams .384

Dillon Gee .384

Ervin Santana .386

A. J. Burnett .386

Miguel Gonzalez .386

Madison Bumgarner .387

John Lackey .387

Ryan Vogelsong .387

Justin Masterson .389

Kyle Kendrick .390

Eric Stults .391

Ian Kennedy .391

Wade Miley .392

Vidal Nuno .392

Brad Peacock .393

Travis Wood .394

Tim Lincecum .395

Tommy Milone .400

Wei-Yin Chen .405

Trevor Cahill .405

Danny Salazar .408

Ubaldo Jimenez .408

Mike Minor .410

Stephen Strasburg .411

Chase Anderson .412

Colby Lewis .414

Jacob Turner .420

Ricky Nolasco .420

Edwin Jackson .427

Franklin Morales .435


