Khmelnik S.I.

The Electromagnetic Wave in Alternating Current Wire

Annotation

A solution of Maxwell equations for alternating current wire is presented. The structure of currents and energy flows is reviewed.

Contents

1. Introduction
2. Solution of Maxwell's Equations
3. Intensities and currents in the wire
4. Energy Flows
5. Current and energy flow in the wire
6. Discussion

Appendix 1
References

1. Introduction

In [1] presents a noncontradictory solution of Maxwell equations for vacuum. Here we offer a similar solution of Maxwell equations for an alternating current wire.

The Maxwell equations in general in GHS system have the following form [2]:

$$
\begin{align*}
& \operatorname{rot}(E)+\frac{\mu}{c} \frac{\partial H}{\partial t}=0 \tag{1}\\
& \operatorname{rot}(H)-\frac{\varepsilon}{c} \frac{\partial E}{\partial t}-\frac{4 \pi}{c} J=0, \tag{2}\\
& \operatorname{div}(E)=0 \tag{3}\\
& \operatorname{div}(H)=0 \tag{4}\\
& J=\frac{1}{\rho} E \tag{5}
\end{align*}
$$

where
$J, H, E-$ conduction current, magnetic and electric intensity accordingly ,
ε, μ, ρ - dielectric permittivity, permeability, specific resistance of the wire's material
Further these equations are used for analyzing the structure of Alternating Current in a wire. For sinusoidal current in a wire with specific inductance L and specific resistance ρ intensity and current are related in the following way:

$$
J=\frac{1}{\rho+i \omega L} E=\frac{\rho-i \omega L}{\rho^{2}+(\omega L)^{2}} E .
$$

Hence for $\rho \ll \omega L$ we find:

$$
I \approx \frac{-i}{\omega L} E .
$$

Therefore for analyzing the structure of sinusoidal current in the wire for a sufficiently high frequency the condition (5) can be neglected.

There are also known experiments of currents transmission over dielectric wire [10]. In this case the conduction current (charge current) is absent. And the condition (5) also can be neglected. But in the previous case also the current is not conduction current (otherwise it should have been proportional to the intensity)

In both cases it is necessary to solve the equation system (1-4), where the known value is the current J_{z} flowing among the wire, i.e. the projection of vector J on axis $o z$.

2. Solution of Maxwell's equations

Let us consider the solution of Maxwell equations system (1.1-1.4) for the wire. In cylindrical coordinates system r, φ, z these equations look as follows [3]:

$$
\begin{align*}
& \frac{E_{r}}{r}+\frac{\partial E_{r}}{\partial r}+\frac{1}{r} \cdot \frac{\partial E_{\varphi}}{\partial \varphi}+\frac{\partial E_{z}}{\partial z}=0, \tag{1}\\
& \frac{1}{r} \cdot \frac{\partial E_{z}}{\partial \varphi}-\frac{\partial E_{\varphi}}{\partial z}=v \frac{d H_{r}}{d t} \tag{2}\\
& \frac{\partial E_{r}}{\partial z}-\frac{\partial E_{z}}{\partial r}=v \frac{d H_{\varphi}}{d t} \tag{3}\\
& \frac{E_{\varphi}}{r}+\frac{\partial E_{\varphi}}{\partial r}-\frac{1}{r} \cdot \frac{\partial E_{r}}{\partial \varphi}=v \frac{d H_{z}}{d t} \tag{4}
\end{align*}
$$

$$
\begin{align*}
& \frac{H_{r}}{r}+\frac{\partial H_{r}}{\partial r}+\frac{1}{r} \cdot \frac{\partial H_{\varphi}}{\partial \varphi}+\frac{\partial H_{z}}{\partial z}=0 \tag{5}\\
& \frac{1}{r} \cdot \frac{\partial H_{z}}{\partial \varphi}-\frac{\partial H_{\varphi}}{\partial z}=q \frac{d E_{r}}{d t} \tag{6}\\
& \frac{\partial H_{r}}{\partial z}-\frac{\partial H_{z}}{\partial r}=q \frac{d E_{\varphi}}{d t} \tag{7}\\
& \frac{H_{\varphi}}{r}+\frac{\partial H_{\varphi}}{\partial r}-\frac{1}{r} \cdot \frac{\partial H_{r}}{\partial \varphi}=q \frac{d E_{z}}{d t}+\frac{4 \pi}{c} J_{z} . \tag{8}
\end{align*}
$$

where

$$
\begin{align*}
& v=-\frac{\mu}{c} \tag{9}\\
& q=\frac{\varepsilon}{c} \tag{10}
\end{align*}
$$

Further we shall consider only monochromatic solution. For the sake of brevity further we shall use the following notations:

$$
\begin{align*}
& c o=\cos (\alpha \varphi+\chi z+\omega t), \tag{11}\\
& s i=\sin (\alpha \varphi+\chi z+\omega t), \tag{12}
\end{align*}
$$

where $\alpha, \chi, \omega-$ are certain constants. Let us present the unknown functions in the following form:

$$
\begin{gather*}
H_{r}=h_{r}(r) c o, \tag{13}\\
H_{\varphi} \cdot=h_{\varphi}(r) s i \tag{14}\\
H_{z} \cdot=h_{z}(r) s i, \tag{15}\\
E_{r} \cdot=e_{r}(r) s i \tag{16}\\
E_{\varphi} \cdot=e_{\varphi}(r) c o, \tag{17}\\
E_{z}=e_{z}(r) c o, \tag{18}\\
J_{r} \cdot=j_{r}(r) c o, \tag{19}\\
J_{\varphi} \cdot=j_{\varphi}(r) s i \tag{20}\\
J_{z} \cdot=j_{z}(r) s i \tag{21}
\end{gather*}
$$

where $j(r), h(r), e(r), m(r)$ - certain function of the coordinate r.
By direct substitution we can verify that the functions (13-21) transform the equations system (1-8) with three arguments r, φ, z into equations system with one argument r and unknown functions $h(r), e(r), j(r)$.

Further it will be assumed that there exists only the current (21), directed along the axis Z. This current is created by an external source. It is shown that the presence of this current is the cause for the existence of electromagnetic wave in the wire.

In Appendix 1 it is shown that for system (1.1-1.4) at the conditions (13-21) there exists a solution of the following form:

$$
\begin{align*}
& e_{\varphi}(r)=A r^{\alpha-1}, \tag{22}\\
& e_{r}(r)=e_{\varphi}(r), \tag{23}\\
& e_{z}(r)=\frac{2 \chi r}{\alpha} e_{\varphi}(r), \tag{24}\\
& h_{r}(r)=-\sqrt{\frac{\varepsilon}{\mu}} e_{\varphi}(r), \tag{25}\\
& h_{\varphi}(r)=-h_{r}(r), \tag{26}\\
& h_{z}(r)=0, \tag{27}\\
& j_{z}(r) \approx \frac{c}{4 \pi}\left(\left(\frac{r}{\alpha}-\frac{\alpha}{r}\right)\right) h_{r}(r), \tag{28}
\end{align*}
$$

where A, c, α, ω - constants.
Let us compare this solution to the solution obtained in [1] for vacuum - see Table 1. Evidently (despite the identity of equations) these solutions differ greatly. These differences are caused by the presence of external electromotive force with $e_{z}(r) \neq 0$. It causes a longitudinal displacement current which changes drastically the structure of electromagnetic wave.

Table 1.

	Vacuum	Wire
j_{z}	$\mathbf{0}$	$\frac{c}{4 \pi}\left(\left(\frac{r}{\alpha}-\frac{\alpha}{r}\right)\right) h_{r}(r)$
e_{r}	$A r^{\alpha-1}$	$A r^{\alpha-1}$
e_{φ}	$\mathbf{0}$	$\frac{2 \chi r}{\alpha} e_{\varphi}(r)$
e_{z}	$-e_{\varphi}(r)$	$-e_{\varphi}(r) \sqrt{\varepsilon / \mu}$
h_{r}	$-h_{r}(r)$	$-h_{r}(r)$
h_{φ}	$\mathbf{0}$	$\mathbf{0}$
h_{z}		

3. Intensities and currents in the wire

Further we shall consider only the functions $j_{z}(r)$, $e_{r}(r), e_{\varphi}(r), e_{z}(r), h_{r}(r), h_{\varphi}(r), h_{z}(r)$. All the values are given in GHS system.

Fig. 1 shows, for example, the graphs of these functions for $A=10^{\wedge} 10, \alpha=12.8, \mu=1, \varepsilon=1, \omega=300$. The value of $j_{z}(r)$ is shows in units $\left(A / M^{\wedge} 2\right)$ - unlike all the other values shown in GHS system. The increase of function $j_{z}(r)$ at the radius increase explains the skin-effect.

The energy density of electromagnetic wave is determines as the sum of modules of vectors E, H from (2.13, 2.14, 2.16, 2.17, 2.23, 2.24) and is equal to

$$
W=E^{2}+H^{2}=\left(e_{r}(r) s i\right)^{2}+\left(e_{\varphi}(r) s i\right)^{2}+\left(h_{r}(r) c o\right)^{2}+\left(h_{\varphi}(r) c o\right)^{2}
$$

or

$$
\begin{equation*}
W=\left(e_{r}(r)\right)^{2}+\left(e_{\varphi}(r)\right)^{2} \tag{1}
\end{equation*}
$$

- see also Fig. 1. Thus, the density of electromagnetic wave energy is constant in all points of a circle of this radius.

To demonstrate that the components of the wave are shifted in phase, in Fig. 2 shows the functions

$$
c o=\cos (\alpha \varphi+\chi z+\omega t), \quad s i=\sin (\alpha \varphi+\chi z+\omega t)
$$

or equivalent to them at $z=c t$ function

$$
\begin{equation*}
c o=\cos \left(\alpha \varphi+\frac{2 \omega}{c} z\right), \quad s i=\sin \left(\alpha \varphi+\frac{2 \omega}{c} z\right) . \tag{2}
\end{equation*}
$$

At $\varphi=0,2 \omega / c=0.1$ these functions take the form $c o=\cos (z)$, $s i=\sin (z)$ and shown in Fig. 2.

Let us find the average value of current amplitude density in a wire of radius R:

$$
\begin{equation*}
\overline{J_{z}}=\frac{1}{\pi R^{2}} \iint_{r, \varphi}\left[J_{z}\right] d r \cdot d \varphi \tag{5}
\end{equation*}
$$

Taking into account (2.21), we find:

$$
\overline{J_{z}}=\frac{1}{\pi R^{2}} \iint_{r, \varphi}\left[j_{z}(r) s i\right] d r \cdot d \varphi=\frac{1}{\pi R^{2}} \int_{0}^{R} j_{z}(r)\left(\int_{0}^{2 \pi}(s i \cdot d \varphi)\right) d r .
$$

Taking into account (2), we find:

$$
\overline{J_{z}}=\frac{1}{\alpha \pi R^{2}} \int_{0}^{R} j_{z}(r)\left(\cos \left(2 \alpha \pi+\frac{2 \omega}{c} z\right)-\cos \left(\frac{2 \omega}{c} z\right)\right) d r
$$

or

$$
\begin{equation*}
\overline{J_{z}}=\frac{1}{\alpha \pi R^{2}}(\cos (2 \alpha \pi)-1) \cdot J_{z r} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{z r}=\int_{0}^{R} j_{z}(r) d r \tag{7}
\end{equation*}
$$

Taking into account (2.22, 2.25, 2.28), we find:

$$
\begin{align*}
& j_{z}(r)=\frac{A c}{4 \pi} \sqrt{\frac{\varepsilon}{\mu}}\left(\left(\alpha \cdot r^{\alpha-2}-\frac{r^{\alpha}}{\alpha}\right)\right) \tag{8}\\
& J_{z r}=\frac{A c}{4 \pi} \sqrt{\frac{\varepsilon}{\mu}} \int_{0}^{R}\left(\alpha \cdot r^{\alpha-2}-\frac{r^{\alpha}}{\alpha}\right) d r \tag{9}
\end{align*}
$$

or

$$
\begin{equation*}
J_{z r}=\frac{A c}{4 \pi} \sqrt{\frac{\varepsilon}{\mu}}\left(\frac{\alpha}{\alpha-1} R^{\alpha-1}-\frac{1}{\alpha(\alpha+1)} R^{\alpha+1}\right) \tag{10}
\end{equation*}
$$

Fig. 3 shows the function $\overline{J_{z}}(\alpha)(6,10)$ for $A=1$. On this Figure the dotted and solid lines are related accordingly to $R=2$ and $R=1$. From $(6,8)$ and Fig. 3 it follows that for a certain distribution of the value $j_{z}(r)$ the average value of the amplitude of current density $\overline{J_{z}}$ depends significantly of α.

The displacement current is determined as

$$
\begin{equation*}
J=\frac{\varepsilon}{c} \frac{\partial E}{\partial t} \tag{9}
\end{equation*}
$$

or, taking into account (2.13-2.21):

$$
\begin{align*}
& J_{r}=\frac{\varepsilon \omega}{c} e_{r}(r) c o, \tag{10}\\
& J_{\varphi}=\frac{\varepsilon \omega}{c} e_{\varphi}(r) s i, \tag{11}\\
& J_{z}=\left(\frac{\varepsilon \omega}{c} e_{z}(r)+j_{z}\right) s i . \tag{12}
\end{align*}
$$

Detracting of disputes about the displacement current origin we can talk about the lines of this current. Thus, for instance, the current J_{z}. flows along the straight lines parallel to the wire axis. We shall look now on the line of summary current.

It can be assumed that the speed of displacement current propagation does not depend on the current direction. In particular, for a fixed radius the path traversed by the current along a circle, and the path traversed by it along a vertical, would be equal. Consequently, for a fixed radius we can assume that

$$
\begin{equation*}
z=\gamma \cdot \varphi \tag{13}
\end{equation*}
$$

where γ is a constant. Based on this assumption we can convert the functions (4b) into

$$
\begin{equation*}
c o=\cos (\alpha \varphi+2 \chi \gamma \varphi), \quad s i=\sin (\alpha \varphi+2 \chi \gamma \varphi) \tag{14}
\end{equation*}
$$

and build an appropriate trajectory for the current. Fig. 4 shows two spiral lines of summary current described by the functions of the form

$$
c o=\cos ((\alpha+2) \varphi), \quad s i=\sin ((\alpha+2) \varphi)
$$

On Fig. 4 the thick line is built for $\alpha=1.8$ and a thin line for $\alpha=2.5$.

Fig.4. (SSMB)

From (2.19-2.21, 14) follows that the currents will keep their values for given r, φ (independently of z) if only the following value is constant

$$
\begin{equation*}
\beta=(\alpha+2 \chi \gamma) \tag{15}
\end{equation*}
$$

Further, based on $(14,15)$ we shall be using the formula

$$
\begin{equation*}
c o=\cos (\beta \varphi), \quad s i=\sin (\beta \varphi) . \tag{16}
\end{equation*}
$$

4. Energy Flows

The density of electromagnetic flow is Pointing vector

$$
\begin{equation*}
S=\eta E \times H \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta=c / 4 \pi \tag{2}
\end{equation*}
$$

In cylindrical coordinates r, φ, z the density flow of electromagnetic energy has three components $S_{r}, S_{\varphi}, S_{z}$, directed along вдоль the axis accordingly. They are determined by the formula

$$
S=\left[\begin{array}{l}
S_{r} \tag{4}\\
S_{\varphi} \\
S_{z}
\end{array}\right]=\eta(E \times H)=\eta\left[\begin{array}{l}
E_{\varphi} H_{z}-E_{z} H_{\varphi} \\
E_{z} H_{r}-E_{r} H_{z} \\
E_{r} H_{\varphi}-E_{\varphi} H_{r}
\end{array}\right] .
$$

From (2.13-2.18) follows that the flow passing through a given section of the wave in a given moment, is:

$$
\bar{S}=\left[\begin{array}{l}
\overline{S_{r}} \tag{5}\\
\overline{S_{\varphi}} \\
\overline{S_{z}}
\end{array}\right]=\eta \iint_{r, \varphi}\left[\begin{array}{l}
s_{r} \cdot s i^{2} \\
s_{\varphi} \cdot s i \cdot c o \\
s_{z} \cdot s i \cdot c o
\end{array}\right] d r \cdot d \varphi
$$

where

$$
\begin{align*}
& s_{r}=\left(e_{\varphi} h_{z}-e_{z} h_{\varphi}\right) \\
& s_{\varphi}=\left(e_{z} h_{r}-e_{r} h_{z}\right) . \tag{6}\\
& s_{z}=\left(e_{r} h_{\varphi}-e_{\varphi} h_{r}\right)
\end{align*}
$$

Этим величинам равна плотность того потока энергии, который при данном радиусе распространяется по радиусу, по окружности и вдоль оси Oz соответственно. На рис. 5 показаны графики этих функций в зависимости от радиуса при $A=10^{\wedge} 10, \alpha=12.8, \mu=1, \varepsilon=1, \omega=300$.

Fig.5. (SSMB)
Поток энергии вдоль оси OZ и равен

$$
\begin{equation*}
\bar{S}=\overline{S_{z}}=\eta \iint_{r, \varphi}\left[s_{z} \cdot s i \cdot c o\right] d r \cdot d \varphi \tag{7}
\end{equation*}
$$

Найдем s_{z}. Из ($6,2.22,2.23,2.26$) получаем:

$$
\begin{equation*}
s_{z}=-2 e_{\varphi} h_{r}=2 \sqrt{\frac{\varepsilon}{\mu}} e_{\varphi}^{2} \tag{9}
\end{equation*}
$$

или

$$
\begin{equation*}
s_{z}=Q r^{2 \alpha-2} \tag{10}
\end{equation*}
$$

где

$$
\begin{equation*}
Q=2 A^{2} \sqrt{\frac{\varepsilon}{\mu}} \tag{11}
\end{equation*}
$$

В приложении 2 статьи [1] показано, что из (7) следует, что

$$
\begin{equation*}
\bar{S}=\frac{c}{16 \alpha \pi}(1-\cos (4 \alpha \pi)) \int_{r}\left(s_{z}(r) d r\right) . \tag{12}
\end{equation*}
$$

Let R be the radius of the circular front of the wave. Then from (12) we obtain, as in [1],

$$
\begin{equation*}
S_{\mathrm{int}}=\int_{r=0}^{R}\left(s_{z}(r) d r\right)=\frac{Q}{2 \alpha-1} R^{2 \alpha-1} \tag{13}
\end{equation*}
$$

$$
\begin{align*}
& S_{a f f a}=\frac{1}{\alpha}(1-\cos (4 \alpha \pi)), \tag{14}\\
& \bar{S}=\frac{c}{16 \pi} S_{a l f a} S_{\mathrm{int}} . \tag{15}
\end{align*}
$$

This energy flow does not depend on the coordinates, and so it keeps its value along all the length of wire.

Fig. 7 shows the function $\bar{S}(\alpha)$ (15) for $Q=1$. On Fig. 7 the dotted and the solid lines refer respectively to $R=2$ and $R=1.8$.

Since the energy flow and the energy are related by the expression $S=W \cdot c$, then from (15) we can find the energy of a wavelength unit:

$$
\begin{equation*}
\bar{W}=\frac{A}{16 \pi} S_{a l f a} S_{\mathrm{int}} . \tag{17}
\end{equation*}
$$

It follows from (7, 3.16), the energy flux density on the circumference of the radius defined function of the form

$$
\begin{equation*}
\bar{S}_{r z}=s_{z} \sin (2 \beta \varphi) \tag{18}
\end{equation*}
$$

Fig. 8 shows this function (18) for $A=1, \chi=1, \alpha=1.4, \beta=1.6$ and for two values of radius: $r=1$ and $r=2$.

Fig. 9 shows the function S (18) on the whole plane of wire section for $A=1, \chi=1, \alpha=1.4, \beta=1.6, R=19$. The upper window shows the part of function S graph for which $S>0$ - called S plus, and the lower window shows the part S graph for which $S<0$ - called Sminus, and this part for clarity is shown with the opposite sign. This figure shows that

$$
S=S \text { plus }+S \text { minus }>0
$$

i.e. the summary vector of flow density is directed toward the increase of z - toward the load. However there are two components of this vector: the S plus component, directed toward the load, and S minus component, directed toward the source of current. These components of the flow transfer the active and reactive energies accordingly.

It follows that

- flux density is unevenly distributed over the flow cross section there is a picture of the distribution of flow density by the cross section of the wave
- this picture is rotated while moving on the axis oz;
- the flow of energy (15), passing through the cross-sectional area, not depend on t, z; the main thing is that the value does not change with time, and this complies with the Law of energy conservation.
- the energy flow has two opposite directed components, which transfer the active and reactive energies; thus, there is no need in the presentation of an imaginary Pointing vector.

5. Current and energy flow in the wire

One can say that the flow of mass particles (mass current) "bears" a flow of kinetic energy that is released in a collision with an obstacle. Just so the electric current "bears" a flow of electromagnetic energy released in the load. This assertion is discussed and substantiated in [4-9]. The difference between these two cases is in the fact that value of mass current fully determines the value of kinetic energy. But in the second case value of electrical current DOES NOT determine the value of electromagnetic energy released in the load. Therefore the transferred quantity of electromagnetic energy - the energy flow, - is being determined by the current structure. Let us show this fact.

As follows from (3.10), the average value of amplitude density of current $\overline{J_{z}}$ in a wire of radius R depends on two parameters: α and A. For a given density one can find the dependence between these parameters, as it follows from (3.10):

$$
\begin{equation*}
A=4 \pi J_{z r} / c \sqrt{\frac{\varepsilon}{\mu}}\left(\frac{\alpha}{\alpha-1} R^{\alpha-1}-\frac{1}{\alpha(\alpha+1)} R^{\alpha+1}\right) \tag{1}
\end{equation*}
$$

As follow from (4.15), the energy flow density along the wire also depends on two parameters: α and A. Fig. 10 shows the dependencies (1) and (4.15) for given $\overline{J_{z}}=1 A, R=2$. Here the straight line depicts the
constant current density, solid line - the flow density, dotted line parameter A in scale $\left(A^{*} 10^{\wedge} 10\right)$. One can see that for the same current density the flow density can take absolutely different values.

6. Discussion

It was shown that an electromagnetic wave is propagating in an alternating current wire, and the mathematic description of this wave is given by the solution of Maxwell equations.

This solution largely coincides with the solution found before for an electromagnetic wave propagating in vacuum [1].

It appears that the current propagates in the wire along a spiral trajectory, and the density of the spiral depends on the flow density of electromagnetic energy transferred along the wire to the load, i.e. on the transferred power. And the main flow of energy is propagated along and inside the wire.

Appendix 1

Let us consider the solution of equations (2.1-2.10) in the form of (2.13-2.23). Further the derivatives of r will be designated by strokes. We write the equations $(2.1-2.10)$ in view of $(2.11,2.12)$ in the form

$$
\begin{align*}
& \frac{e_{r}(r)}{r}+e_{r}^{\prime}(r)-\frac{e_{\varphi}(r)}{r} \alpha-\chi \cdot e_{z}(r)=0, \tag{1}\\
& -\frac{1}{r} \cdot e_{z}(r) \alpha+e_{\varphi}(r) \chi+\frac{\mu \omega}{c} h_{r}=0, \tag{2}\\
& e_{r}(r) \chi-e_{z}^{\prime}(r)-\frac{\mu \omega}{c} h_{\varphi}=0, \tag{3}\\
& \frac{e_{\varphi}(r)}{r}+e_{\varphi}^{\prime}(r)-\frac{e_{r}(r)}{r} \cdot \alpha-\frac{\mu \omega}{c} h_{z}=0, \tag{4}\\
& \frac{h_{r}(r)}{r}+h_{r}^{\prime}(r)+\frac{h_{\varphi}(r)}{r} \alpha+\chi \cdot h_{z}(r)=0 \text {, } \tag{5}\\
& \frac{1}{r} \cdot h_{z}(r) \alpha-h_{\varphi}(r) \chi-\frac{\Sigma \omega}{c} e_{r}=0, \tag{6}\\
& -h_{r}(r) \chi-h_{z}^{\prime}(r)+\frac{\partial \omega}{c} e_{\varphi}=0, \tag{7}\\
& \frac{h_{\varphi}(r)}{r}+h_{\varphi}^{\prime}(r)+\frac{h_{r}(r)}{r} \cdot \alpha+\frac{\varepsilon \omega}{c} e_{z}(r)=\frac{4 \pi}{c} j_{z}(r), \tag{8}
\end{align*}
$$

We multiply (8) on ($-\chi$) and take into account (9). Then we get:
We multiply (5) on $\left(-\frac{\mu \omega}{c \chi}\right)$. Then we get:

$$
\begin{equation*}
-\frac{\mu \omega}{c \chi} \frac{h_{r}(r)}{r}-\frac{\mu \omega}{c \chi} h_{r}^{\prime}(r)-\frac{\mu \omega}{c \chi} \frac{h_{\varphi}(r)}{r} \alpha-\frac{\mu \omega}{c} h_{z}(r)=0 \tag{9}
\end{equation*}
$$

Comparing (4) and (9), we see that they are the same, if

$$
\begin{align*}
& \frac{\mu \cdot \omega}{c \chi} h_{\varphi}(r)=e_{r}(r) \tag{10}\\
& -\frac{\mu \cdot \omega}{c \chi} h_{r}(r)=e_{\varphi}(r) \tag{11}
\end{align*}
$$

We rewrite $(2,3,6,7)$ in the form:

$$
\begin{align*}
& e_{z}(r)=\frac{\chi r}{\alpha} e_{\varphi}(r)+\frac{r}{\alpha} \frac{\mu \omega}{c} h_{r}(r) \tag{12}\\
& e_{z}^{\prime}(r)=e_{r}(r) \chi-\frac{\mu \omega}{c} h_{\varphi}(r) \tag{13}\\
& h_{z}(r)=\frac{\chi r}{\alpha} h_{\varphi}(r)+\frac{r}{\alpha} \frac{\varepsilon \cdot \omega}{c} e_{r}(r) \tag{14}\\
& h_{z}^{\prime}(r)=-h_{r}(r) \chi+\frac{\varepsilon \cdot \omega}{c} e_{\varphi}(r) \tag{15}
\end{align*}
$$

Substituting $(10,11)$ in these equations, we get:

$$
\begin{align*}
& e_{z}(r)=2 \frac{r}{\alpha} \frac{\mu \omega}{c} h_{r}(r) \tag{16}\\
& e_{z}^{\prime}(r)=-2 \frac{\mu \omega}{c} h_{\varphi}(r) \tag{17}\\
& h_{z}(r)=\left(\frac{\chi r}{\alpha}-\frac{r}{\alpha} \frac{\varepsilon \cdot \omega}{c} \frac{\mu \cdot \omega}{c \chi}\right) h_{\varphi}(r)=\frac{r}{\alpha c^{2} \chi}\left(c^{2} \chi^{2}-\varepsilon \mu \omega^{2}\right) h_{\varphi}(r), \tag{18}\\
& h_{z}^{\prime}(r)=\left(-\chi+\frac{\varepsilon \cdot \omega}{c} \frac{\mu \cdot \omega}{c \chi}\right) h_{r}(r)=\frac{-1}{c^{2} \chi}\left(c^{2} \chi^{2}-\varepsilon \mu \omega^{2}\right) h_{r}(r) \tag{19}
\end{align*}
$$

From (16, 17), we find:

$$
\frac{2 \mu \omega}{\alpha c}\left(r h_{r}(r)\right)^{\prime}=-\frac{2 \mu \omega}{c} h_{\varphi}(r)
$$

or

$$
\begin{equation*}
h_{\varphi}(r)=\frac{-1}{\alpha}\left(h_{r}(r)+r \cdot h_{r}^{\prime}(r)\right) \tag{20}
\end{equation*}
$$

From (20, 10, 11), we find:

$$
\begin{equation*}
e_{r}(r)=\frac{1}{\alpha}\left(e_{\varphi}(r)+r \cdot e_{\varphi_{r}}^{\prime}(r)\right) \tag{21}
\end{equation*}
$$

From (16, 11), we find:

$$
\begin{equation*}
e_{z}(r)=2 \frac{r}{\alpha} \frac{\mu \omega}{c} h_{r}(r)=2 \chi \frac{r}{\alpha} e_{\varphi}(r) \tag{22}
\end{equation*}
$$

From (1, 22), we find:

$$
\begin{equation*}
e_{\varphi}(r)=\left(e_{r}(r)+r \cdot e_{r}^{\prime}(r)\right) /\left(\alpha+2 \chi^{2} \frac{r^{2}}{\alpha}\right) \tag{23}
\end{equation*}
$$

From (23, 21), we find:

$$
\begin{equation*}
e_{\varphi}^{\prime \prime}(r)=\left(2 \chi^{2}+\frac{\alpha^{2}-1}{r^{2}}\right) e_{\varphi}(r)-\frac{3}{r} e_{\varphi_{r}}^{\prime}(r) \tag{24}
\end{equation*}
$$

From this equation we can find $e_{\varphi}(r)$, and for known $e_{\varphi}(r)$ we can define al the remaining functions. From (21, 10, 11, 16, 18, 8) we shall find respectively:

$$
\begin{align*}
& e_{r}(r)=\frac{1}{\alpha}\left(e_{\varphi}(r)+r \cdot e_{\varphi}^{\prime}(r)\right) \tag{25}\\
& h_{\varphi}(r)=\frac{c \chi}{\mu \cdot \omega} e_{r}(r) \tag{26}\\
& h_{r}(r)=-\frac{c \chi}{\mu \cdot \omega} e_{\varphi}(r) \tag{27}\\
& e_{z}(r)=\frac{2 \chi r}{\alpha} e_{\varphi}(r) \tag{28}
\end{align*}
$$

$$
\begin{align*}
& h_{z}(r)=\frac{r}{\alpha c^{2} \chi}\left(c^{2} \chi^{2}-\varepsilon \mu \omega^{2}\right) h_{\varphi}(r), \tag{29}\\
& j_{z}(r) \approx \frac{c}{4 \pi}\left(\left(\frac{r}{\alpha}\left(1+\frac{2 \varepsilon \mu \omega^{2}}{c^{2}}\right)-\frac{\alpha}{r}\right)\right) h_{r}(r) . \tag{30}
\end{align*}
$$

From physical considerations we must assume that

$$
\begin{equation*}
h_{z}(r)=0 . \tag{31}
\end{equation*}
$$

Then from (29) we find

$$
\left(c^{2} \chi^{2}-\varepsilon \mu \omega^{2}\right)=0
$$

or

$$
\begin{equation*}
\chi= \pm \frac{\omega}{c} \sqrt{\varepsilon \mu} \tag{32}
\end{equation*}
$$

For $\omega \ll c$ we find that

$$
\begin{equation*}
|\chi| \ll 1 \tag{33}
\end{equation*}
$$

Then in the equation (24) the value χ may be neglected and we shall get the following equation

$$
\begin{equation*}
e_{\varphi}^{\prime \prime}(r)=\left(\frac{\alpha^{2}-1}{r^{2}}\right) e_{\varphi}(r)-\frac{3}{r} e_{\varphi_{r}}^{\prime}(r) \tag{34}
\end{equation*}
$$

The solution of this equation is as follows:

$$
\begin{equation*}
e_{\varphi}(r)=A r^{\alpha-1} \tag{35}
\end{equation*}
$$

which can be checked by substitution of (35) into (34). Besides, for $\omega \ll c$

$$
\begin{equation*}
\left(1+\frac{2 \varepsilon \mu \omega^{2}}{c^{2}}\right) \approx 1 \tag{36}
\end{equation*}
$$

Substituting (32, 33, 35, 36) in (25-30), we finally shall get

$$
\begin{align*}
& h_{z}(r)=0, \tag{37}\\
& e_{\varphi}(r)=A r^{\alpha-1}, \tag{38}\\
& e_{r}(r)=e_{\varphi}(r), \tag{39}\\
& e_{z}(r)=\frac{2 \omega \sqrt{\varepsilon \mu}}{\alpha c} r \cdot e_{\varphi}(r), \tag{40}\\
& h_{r}(r)=-\sqrt{\frac{\varepsilon}{\mu}} e_{\varphi}(r), \tag{41}\\
& h_{\varphi}(r)=-h_{r}(r), \tag{42}\\
& j_{z}(r) \approx \frac{c}{4 \pi}\left(\left(\frac{r}{\alpha}-\frac{\alpha}{r}\right)\right) h_{r}(r) . \tag{43}
\end{align*}
$$

References

Comment: Vixra - viXra Funding, http://vixra.org/funding, DNA - The papers of independent authors, ISSN 2225-6717, http://dna.izdatelstwo.com/

1. Khmelnik S.I. The Second Solution of Maxwell's Equations, ViXra, 2016-01-26, http://vixra.org/abs/1602.0084.
2. Rosanov N.N. Special Chapters of Mathematical Physics. Part 3. Electromagnetic Waves in Vacuum. ITMO. Sanct-Petersburg, 2005, in Russian.
3. Andre Ango. Mathematics for Electrical and Radio Engineers, publishing house "Nauka", Moscow, 1964, 772 p., in Russian.
4. Khmelnik S.I. Mathematical Model of Electric Tornado, ViXra, 2015-04-11, http://vixra.org/abs/1504.0088; DNA, № 33, 2015, see here, in Russian.
5. Khmelnik S.I. The Second Structure of Constant Current, ViXra, 2015-11-24, http://vixra.org/pdf/1511.0231v2.pdf
6. Khmelnik S.I. Electromagnetic Energy Flux in a Conductor with a Alternating Current, ViXra, 2015-03-10, http://vixra.org/abs/1503.0068, in Russian.
7. Khmelnik S.I. Electromagnetic Energy Flux in a Conductor with a Constant Current, DNA, № 32, 2015; ViXra, 2015-03-07, http://vixra.org/abs/1503.0048, in Russian.
8. Khmelnik S.I. Structure of Constant Current, ViXra, 2015-03-29, http://vixra.org/abs/1504.0170
9. Khmelnik S.I. The Flow Structure of the Electromagnetic Energy in the Wire with Constant Current, DNA, № 33, 2015; ViXra, 2015-04-08, http://vixra.org/abs/1504.0061, in Russian.
10. Strebkov D.S. The Transfer of Electrical Energy without Wires, http://www.electrolibrary.info/tesla/peredachaenergii.htm, in Russian.
