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In trial, we present quantum key distribution based on Deutsch’s algorithm using an entangled
state. Alice and Bob have promised to use a function f which is of one of two kinds; either the
value of f is constant or balanced. To Eve, it is secret. Alice’s and Bob’s goal is to determine
with certainty whether they have chosen a constant or a balanced function. If the function is
constant the output qubits are entangled, otherwise separable. Alice and Bob perform the Bell
measurement. Alice and Bob get one key if they determine the function f by getting a suitable
measurement outcome. Next, we discuss the relation between quantum communication and the
Bernstein-Vazirani algorithm. In classical theory, one communication leads us to share one bit of
information. However, in quantum theory, the same communication, surprisingly, leads us to share
many bits containing much information, even a function itself. First, Alice and Bob have promised
to select a function f(x1, x2, ..., xN ) = a1x1 ⊕ a2x2 ⊕ a3x3 ⊕ · · · ⊕ aNxN . Alice does not know
a1, a2, ..., aN . Bob knows a1, a2, ..., aN . Alice’s goal is to determine with certainty what function
Bob has chosen. In classical theory, Alice has to ask Bob N times. In quantum theory, Alice
has to ask Bob one time. Alice prepares suitable N + 1 partite uncorrelated state, performs the
Hadamard transformation to the state, and sends the output state to Bob. And Bob performs the
Bernstein-Vazirani algorithm and inputs the information of the function into the finall state. Alice
asks him what state is. Alice measures the finall state and she knows the function. If the function
is determined, Alice and Bob share N bits of information, by one communication with each other.
The speed to share N bits improves by a factor of N by comparing the classical case. This shows
quantum communication overcomes classical communication by a factor of N .

PACS numbers: 03.67.-a(Quantum information theory), 03.67.Lx(Quantum computer), 03.67.Dd(Quantum
cryptography)
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I. INTRODUCTION

The quantum theory (cf. [1—6]) gives approximate and at times remarkably accurate numerical predictions. Much
experimental data approximately fits to the quantum predictions for the past some 100 years. We do not doubt the
correctness of the quantum theory. The quantum theory also says new science with respect to information theory.
The science is called the quantum information theory [6]. Therefore, the quantum theory gives us very useful another
theory in order to create new information science and to explain the handling of raw experimental data in our physical
world.

As for the foundations of the quantum theory, Leggett-type non-local variables theory [7] is experimentally inves-
tigated [8—10]. The experiments report that the quantum theory does not accept Leggett-type non-local variables
interpretation. As for the applications of the quantum theory, implementation of a quantum algorithm to solve
Deutsch’s problem [11] on a nuclear magnetic resonance quantum computer is reported firstly [12]. Implementation
of the Deutsch-Jozsa algorithm on an ion-trap quantum computer is also reported [13]. There are several attempts
to use single-photon two-qubit states for quantum computing. Oliveira et al. implement Deutsch’s algorithm with
polarization and transverse spatial modes of the electromagnetic field as qubits [14]. Single-photon Bell states are
prepared and measured [15]. Also the decoherence-free implementation of Deutsch’s algorithm is reported by using
such single-photon and by using two logical qubits [16]. More recently, a one-way based experimental implementation
of Deutsch’s algorithm is reported [17].

Quantum communication is the art of transferring a quantum state from one place to another. Traditionally, the
sender is named Alice and the receiver Bob. The basic motivation is that quantum states code quantum information
- called qubits in the case of 2-dimensional Hilbert spaces and that quantum information allows one to perform tasks
that could only be achieved far less efficiently, if at all, using classical information. The best known example is
Quantum Key Distribution (QKD).

The most well known and developed application of quantum cryptography is quantum key distribution, which is
the process of using quantum communication to establish a shared key between two parties without a third party
(Eve) learning anything about that key, even if Eve can eavesdrop on all communication between Alice and Bob. This
is achieved by Alice encoding the bits of the key as quantum data and sending them to Bob; if Eve tries to learn
these bits, the messages will be disturbed and Alice and Bob will notice. The key is then typically used for encrypted
communication using classical techniques. For instance, the exchanged key could be used as the seed of the same
random number generator both by Alice and Bob.

The security of QKD can be proven mathematically without imposing any restrictions on the abilities of an eaves-
dropper, something not possible with classical key distribution. This is usually described as “unconditional security”,
although there are some minimal assumptions required including that the laws of quantum mechanics apply and
that Alice and Bob are able to authenticate each other, i.e. Eve should not be able to impersonate Alice or Bob as
otherwise a man-in-the-middle attack would be possible.

The earliest quantum algorithm, the Deutsch-Jozsa algorithm, is representative to show that quantum computation
is faster than classical counterpart with a magnitude that grows exponentially with the number of qubits. Recently, it
is discussed that the Deutsch-Jozsa algorithm can be used for quantum key distribution [18]. In 1993, the Bernstein-
Vazirani algorithm was reported [19]. It can be considered as an extended Deutsch-Jozsa algorithm. Implementation of
a quantum algorithm to solve the Bernstein-Vazirani parity problem without entanglement on an ensemble quantum
computer is reported [20]. We investigate the relation between quantum key distribution and quantum computer
more.

In this paper, we present quantum key distribution based on Deutsch’s algorithm by using an entangled state.
Alice and Bob have promised to use a function f which is of one of two kinds; either the value of f is constant or
balanced. To Eve, it is secret. Alice’s and Bob’s goal is to determine with certainty whether they have chosen a
constant or a balanced function without information of the function to Eve. If the function is constant the output
qubits are entangled, otherwise separable. Alice and Bob perform the Bell measurement. Alice and Bob share one
secret bit if they determine the function f by getting a suitable measurement outcome. Next, we discuss quantum
communication utilising the Bernstein-Vazirani algorithm. First, Alice and Bob have promised to select a function
f(x1, x2, ..., xN ) = a1x1 ⊕ a2x2 ⊕ a3x3 ⊕ · · · ⊕ aNxN . Alice does not know a1, a2, ..., aN . Bob knows a1, a2, ..., aN .
Alice’s goal is to determine with certainty what function Bob has chosen. In classical theory, Alice has to ask Bob N
times. In quantum theory, Alice has to ask Bob one time. Alice prepares suitable N + 1 partite uncorrelated state,
performs the Hadamard transformation to the state, and sends to the output state to Bob. And Bob performs the
Bernstein-Vazirani algorithm and inputs the information of the function into the finall state. Alice asks him what
state is. Alice measures the finall state and she knows the function. If the function is determined, Alice and Bob
share N bits of information, by one communication with each other. The speed to share N bits improves by a factor
of N by comparing the classical case. This shows quantum communication overcomes classical communication by a
factor of N .
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II. DEUTSCH’S ALGORITHM

In this section, we review Deutsch’s algorithm along with Ref. [6].
Quantum parallelism is a fundamental feature of many quantum algorithms. It allows quantum computers to

evaluate the values of a function f for many different values of x simultaneously. Suppose

f : {0, 1} → {0, 1} (1)

is a function with a one-bit domain and range. A convenient way of computing this function on a quantum computer
is to consider a two-qubit quantum computer which starts in the state

|x, y�. (2)

With an appropriate sequence of logic gates it is possible to transform this state into

|x, y ⊕ f(x)�, (3)

where ⊕ indicates addition modulo 2. We give the transformation defined by the map

|x, y� → |x, y ⊕ f(x)� (4)

a name, Uf .
Deutsch’s algorithm combines quantum parallelism with a property of quantum mechanics known as interference.

Let us use the Hadamard gate to prepare the first qubit

|0� (5)

as the superposition

(|0�+ |1�)/
√

2, (6)

but let us prepare the second qubit as the superposition

(|0� − |1�)/
√

2, (7)

using the Hadamard gate applied to the state

|1�. (8)

The Hadamard gate is as

H =
1√
2
(|0�
1|+ |1�
0|+ |0�
0| − |1�
1|). (9)

Let us follow the states along to see what happens in this circuit. The input state

|ψ0� = |01� (10)

is sent through two Hadamard gates to give

|ψ1� =
� |0�+ |1�√

2

� � |0� − |1�√
2

�
. (11)

A little thought shows that if we apply Uf to the state

|x�(|0� − |1�)/
√

2 (12)

then we obtain the state

(−1)f(x)|x�(|0� − |1�)/
√

2. (13)

Applying Uf to |ψ1� therefore leaves us with one of the two possibilities:

|ψ2� =






±
� |0�+ |1�√

2

� � |0� − |1�√
2

�
if f(0) = f(1)

±
� |0� − |1�√

2

� � |0� − |1�√
2

�
if f(0) �= f(1).

(14)
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The final Hadamard gate on the qubits thus gives us

|ψ3� =






±|0�|1� if f(0) = f(1)

±|1�|1� if f(0) �= f(1).
(15)

so by measuring the first qubit we may determine f(0) ⊕ f(1). This is very interesting indeed: the quantum circuit
gives us the ability to determine a global property of f(x), namely f(0) ⊕ f(1), using only one evaluation of f(x)!
This is faster than is possible with a classical apparatus, which would require at least two evaluations.

III. FAILING DEUTSCH’S ALGORITHM

In this section, we review Deutsch’s algorithm by using another input state. In this case, we cannot perform
Deutsch’s algorithm as shown below.

The input state

|ψ0� = |10� (16)

is sent through two Hadamard gates to give

|ψ1� =
� |0� − |1�√

2

� � |0�+ |1�√
2

�
. (17)

We apply Uf to the following state

|0� − |1�√
2

|x�. (18)

If x = 1

|0�|1� − |1�|1�√
2

(19)

we have

|0�|f(0)� − |1�|f(1)�√
2

(20)

and if x = 0

|0�|0� − |1�|0�√
2

(21)

we have

|0�|f(0)� − |1�|f(1)�√
2

. (22)

Thus,

|0�(|f(0)�+ |f(0)�)− |1�(|f(1)�+ |f(1)�)√
2

(23)

Applying Uf to |ψ1� therefore leaves us with one of the two possibilities:

|ψ2� =






±
� |0� − |1�√

2

� � |0�+ |1�√
2

�
if f(0) = f(1)

±
� |0� − |1�√

2

� � |0�+ |1�√
2

�
if f(0) �= f(1).

(24)

The final Hadamard gate on the qubits thus gives us

|ψ3� =






±|1�|0� if f(0) = f(1)

±|1�|0� if f(0) �= f(1).
(25)

In this case we fail to perform Deutsch’s algorithm.



5

IV. DEUTSCH’S ALGORITHM USING THE BELL STATE

In this section, we review Deutsch’s algorithm by using the Bell state.
The input state

|ψ0� =
|10�+ |01�√

2
(26)

is sent through two Hadamard gates to give

|ψ1� =
1√
2

�� |0� − |1�√
2

� � |0�+ |1�√
2

�
+

� |0�+ |1�√
2

� � |0� − |1�√
2

��
.

(27)

Applying Uf to |ψ1� therefore leaves us with one of the two possibilities:

|ψ2� =






± 1√
2

�� |0� − |1�√
2

� � |0�+ |1�√
2

�
±
� |0�+ |1�√

2

� � |0� − |1�√
2

��
if f(0) = f(1)

± 1√
2

�� |0� − |1�√
2

� � |0�+ |1�√
2

�
±
� |0� − |1�√

2

� � |0� − |1�√
2

��
if f(0) �= f(1).

(28)

The final Hadamard gate on the qubits thus gives us

|ψ3� =






±|1�|0� ± |0�|1�√
2

if f(0) = f(1) entanglement

±|1�|0� ± |1�|1�√
2

if f(0) �= f(1) separable.

(29)

so by measuring the qubits (by means of the Bell measurement) we may determine f(0)⊕f(1). The Bell measurement
is explained as follows: Alice and Bob prepare the Bell bases

|Ψ+� =
|1�|0�+ |0�|1�√

2

|Ψ−� =
|1�|0� − |0�|1�√

2

|Φ+� =
|1�|1�+ |0�|0�√

2

|Φ−� =
|1�|1� − |0�|0�√

2
(30)

If the state |ψ3� is an entangled state, we have

|
ψ3|Ψ+�|2 = 1 or |
ψ3|Ψ−�|2 = 1 or |
ψ3|Φ+�|2 = 1 or |
ψ3|Φ−�|2 = 1. (31)

Therefore the measurement outcome should be 1 if the function is constant. If the state |ψ3� is a separable state, we
have

|
ψ3|Ψ+�|2 = 1/2 or |
ψ3|Ψ−�|2 = 1/2 or |
ψ3|Φ+�|2 = 1/2 or |
ψ3|Φ−�|2 = 1/2. (32)

Therefore the measurement outcome should be 1/2 if the function is balanced.

V. QUANTUM KEY DISTRIBUTION BASED ON DEUTSCH’S ALGORITHM

We discuss the fact that Deutsch’s algorithm can be used for quantum key distribution by using an entangled state.

• First Alice prepares the entangled qubits, applies the Hadamard transformation to the state, and sends the
output state described in the Bell state to Bob.
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• Next, Bob randomly picks a function “f” that is either balanced or constant and Bob applies Uf . He then sends
the one qubit to Alice.

• Finally, Alice and Bob perform the Bell measurement. She learns whether f was balanced or constant. If the
final qubits are entangled, then the function is constant. If the final qubits are not entangled, then the function
is balanced - Alice and Bob now share a bit of information (the “type” of f(x)).

• The result of the Bell measurement is 1 if the function is constant.

• Alice and Bob compare all the results of the Bell measurements when the function is constant; all of them should
be 1.

• Eve is detected in the following case; the result of the Bell measurement is not 1 and the function is constant.

VI. THE BERNSTEIN-VAZIRANI ALGORITHM

In this section, we review the Bernstein-Vazirani algorithm.
Suppose

f : {0, 1}N → {0, 1} (33)

is a function with a N -bit domain and a 1-bit range. We assume the following case

f(x)= a · x =

N	

i=1

aixi(mod2)

= a1x1 ⊕ a2x2 ⊕ a3x3 ⊕ · · · ⊕ aNxN ,
a ∈ {0, 1}N (34)

Let us follow the quantum states through the Bernstein-Vazirani algorithm. The input state is

|ψ0� = |0�⊗N |1�. (35)

After the Hadamard transformation on the state we have

|ψ1� =
	

x∈{0,1}N

|x�√
2N

� |0� − |1�√
2

�
. (36)

Next, the function f is evaluated (by Bob) using

Uf : |x, y� → |x, y ⊕ f(x)�, (37)

giving

|ψ2� = ±
	

x

(−1)f(x)|x�√
2N

� |0� − |1�√
2

�
. (38)

Here

y ⊕ f(x) (39)

is the bitwise XOR (exclusive OR) of y and f(x). To determine the result of the Hadamard transformation it helps
to first calculate the effect of the Hadamard transformation on a state

|x�. (40)

By checking the cases x = 0 and x = 1 separately we see that for a single qubit

H|x� =
	

z

(−1)xz|z�/
√

2. (41)

Thus

H⊗N |x1, . . . , xN �

=



z1,... ,zN

(−1)x1z1+···+xNzN |z1, . . . , zN �√
2N

. (42)
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This can be summarized more succinctly in the very useful equation

H⊗N |x� =



z(−1)x·z|z�√
2N

, (43)

where

x · z (44)

is the bitwise inner product of x and z, modulo 2. Using this equation and (38) we can now evaluate |ψ3�,

|ψ3� = ±
	

z

	

x

(−1)x·z+f(x)|z�
2N

� |0� − |1�√
2

�
. (45)

Thus,

|ψ3� = ±
	

z

	

x

(−1)x·z+a·x|z�
2N

� |0� − |1�√
2

�
. (46)

We notice
	

x

(−1)x·z+a·x = 2Nδa,z. (47)

Thus,

|ψ3� = ±
	

z

	

x

(−1)x·z+a·x|z�
2N

� |0� − |1�√
2

�

= ±
	

z

2Nδa,z |z�
2N

� |0� − |1�√
2

�

= ±|a�
� |0� − |1�√

2

�

= ±|a1a2a3 · · · aN�
� |0� − |1�√

2

�
. (48)

Alice now observes

|a1a2a3 · · · aN � (49)

Summarizing, if Alice measures |a1a2a3 · · · aN � the function is

f(x1, x2, ..., xN)

= a1x1 ⊕ a2x2 ⊕ a3x3 ⊕ · · · ⊕ aNxN . (50)

VII. QUANTUM COMMUNICATION UTILISING THE BERNSTEIN-VAZIRANI ALGORITHM

We describe quantum communication utilising the Bernstein-Vazirani algorithm.

• First Alice prepares the qubits in (36) and sends the N + 1 qubits to Bob.

• Next, Bob picks a function “f” and Bob applies Uf Eq. (37) evolving the N + 1 qubits to Eq. (38). He then
sends the N qubit to Alice.

• Finally, Alice applies the Hadamard transformation to each of the qubits and measures. She learns f(x) =

a · x =

N

i=1 aixi(mod2) = a1x1 ⊕ a2x2 ⊕ a3x3 ⊕ · · · ⊕ aNxN - Alice and Bob now share N bits of information
(the “type” of f(x)).
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VIII. CONCLUSIONS

In conclusion, we have presented quantum key distribution based on Deutsch’s algorithm by using an entangled
state. Alice and Bob have promised to use a function f which is of one of two kinds; either the value of f is constant
or balanced. To Eve, it has been secret. Alice’s and Bob’s goal has been to determine with certainty whether they
have chosen a constant or a balanced function without information of the function to Eve. If the function has been
constant the output qubits are entangled, otherwise separable. Alice and Bob have performed the Bell measurement.
Alice and Bob have shared one secret bit if they determine the function f by getting a suitable measurement outcome.
Next, we have discussed quantum communication utilising the Bernstein-Vazirani algorithm. First, Alice and Bob
have promised to select a function f(x1, x2, ..., xN ) = a1x1 ⊕ a2x2 ⊕ a3x3 ⊕ · · · ⊕ aNxN . Alice does not have known
a1, a2, ..., aN . Bob has known a1, a2, ..., aN . Alice’s goal has been to determine with certainty what function Bob
has chosen. In classical theory, Alice has to have asked Bob N questions. In quantum theory, Alice has to have
asked Bob one question. Alice has prepared suitable N + 1 partite uncorrelated state, has performed the Hadamard
transformation to the state, and has sent the output state to Bob. And Bob has performed the Bernstein-Vazirani
algorithm and has input the information of the function into the finall state. Alice has asked him what state is. Alice
has measured the finall state and she has known the function. If the function has been determined, Alice and Bob share
N bits of information, by one communication with each other. The speed to share N bits has improved by a factor
of N by comparing the classical case. This has shown quantum communication overcomes classical communication
by a factor of N .

On safety, a questionable point has been left in various ways, but this has been a future problem.
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