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Abstract

In this paper we introduce an exact escape velocity that also holds under very strong gravitational
fields, even below the Schwarzschild radius. The standard escape velocity known from modern physics
is only valid under weak gravitational fields. This paper strongly indicates that an extensive series of
interpretations around the Schwarzschild radius are wrong and were developed as a result of using an
approximate escape velocity that not is accurate when we approach strong gravitational fields. Einstein’s
general relativity escape velocity as well as the gravitational time dilation and gravitational redshift that
are derived from the Schwarzschild metric need to be modified; in reality, they are simply approximations
that only give good predictions in low gravitational fields. This paper could potentially have major
implications for gravitational physics as well as a long series of interpretations in cosmology.
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1 Short Background on the Derivation on the Standard
Escape Velocity

Derivation of the standard classical escape velocity is accomplished by solving the following equation with
respect to v
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which is the well known escape velocity, with important applications in rocket science and cosmology.
Exactly the same escape velocity formula can be derived directly from Einstein’s general relativity using
the Schwarzschild metric. However, as pointed out by Augousti and Radosz (2006), for example, the
formula derived from the Schwarzschild metric under general relativity theory only holds for a weak
gravitational field. That is when we are considerably far away from the Schwarzschild radius of the mass
in question. Both the standard way of deriving the classical escape velocity and the same escape velocity
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formula derived from general relativity theory using the Schwarzschild metric are only approximations
that are very inaccurate in strong gravitational fields. At and below the Schwarzschild radius, the standard
escape velocity formula has no logic and has led to a series of likely incorrect speculative conclusions that
have had a significant a↵ect on our view of gravitational physics and cosmology.

2 An Exact Escape Velocity That Also Holds Under Strong
Gravitational Fields

In this section I will derive the exact escape velocity based on the exact kinetic energy formula. The
kinetic energy formula typically used to demonstrate the derivation of the escape velocity is E

k

⇡ 1
2Mc2,

see above. It is (or should be) understood that this is only an approximation formula for the exact kinetic
energy formula that is given by:
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where M is the rest mass. By performing a Taylor series expansion of Einstein’s “moving mass”
formula we get:
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The Taylor series consists of an infinite array of terms, but when v << c then only the first two terms
in the Taylor series are needed for a good approximation:
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By subtracting the rest mass energy Mc2 from the formula above, we get the classical kinetic energy
formula E

k

⇡ 1
2Mv2. But again this approximate kinetic energy formula only holds when the velocity

is much smaller than c. It is not an exact kinetic energy formula and it is very inaccurate for velocities
approaching the speed of light. If we are using this approximate kinetic energy formula in deriving the
escape velocity then the escape velocity will also be approximation that only is valid for v << c.

Here we will derive the escape formula from the exact kinetic energy formula; the escape velocity
should then be exact. We are basically combining Newton’s gravitational potential with Einstein‘s special
relativity theory to solve for the escape velocity:
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we note the escape velocity here for v̄
e

rather than v or v
e

to distinguish the notation for the exact
escape velocity from the standard (approximate) escape velocity v

e

. We get
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This is the exact escape velocity formula. We can go further and obtain a quantized version of formula
4 based on the principle of Haug (2016a,b). We will set the Newton gravitational constant to
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where h̄ is the reduced Planck’s constant and c is the well tested round-trip speed of light. We could
call this Planck’s form of the gravitational constant. The parameter @ is unknown constant that can
be set equal to the Planck length if this is know, or alternatively it can be calibrated to the measured
gravitational constant and then we have found the Planck length indirectly. From this the Planck length
is given by
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and the Planck mass is given by
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Using the gravitational constant in the Planck form, as well as the rewritten Planck units, we are
easily able to rewrite the exact escape velocity in a quantized form as well
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where N is the total number of Planck masses, m
p

, in the mass, M , we are trying to escape from.
Formula 4 and 8 will give the exact same output values, they di↵er in that the formula 4 requires the
gravitational constant as input and the mass in kg, while the formula 8 requires the number of Planck
masses the mass makes up, the Planck length, and the reduced Planck constant. From the exact escape
velocity formula we can see there is no radius where the escape velocity is larger than c. In other words,
the formula predicts that light can always escape an object no matter how massive it is or how strong
the gravitational field is. In other words, the notion of a black hole is a mathematical illusion from an
approximate escape velocity formula that is not valid in the presence of strong gravitational fields.

An interesting case is what the exact escape velocity is at the Schwarzschild radius r
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First, at a radius considerably below the Schwarzschild radius, the escape velocity is approaching c.
This is in sharp contrast to the standard approximate escape velocity of modern physics that predicts that
the escape velocity at the Schwarzschild radius is c and that the escape velocity inside the Schwarzschild
radius is > c. In this scenario, the standard escape velocity predicts that not even a photon can escape
if it passes inside the Schwarzschild radius. Such interpretations are likely the result of the misuse of
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approximations and artifact coordinates in the Schwarzschild metric. Table 1 shows the exact escape
velocity and the approximate standard escape velocity. At the surface of earth we must go out to the
6 decimals to see di↵erences between the exact and the approximate escape velocities. This is probably
the reason that the standard escape velocity has been used so successfully and that no one has focused
on the fact that it is only an approximation. Nevertheless, reliance on the standard escape velocity, an
approximation that is not valid in strong gravitational fields, may very well have produced a series of
deep misinterpretations in cosmology.

Table 1: The table shows the exact escape velocity from an Earth-sized mass at di↵erent radiuses compared

to the standard escape velocity. Assumed mass: M = 5.972⇥ 10

24
kg.

Multiples of Radius Exact escape velocity Standard escape velocity
the Schwarzschild radius : meter : meters per second : meters per second :
Surface earth: 718, 306, 435rs 6,371,000 11,185.768431 11,185.768436

100rs 0.886947366 29,867,359.67 29,979,245.80

10rs 0.088694737 91,409,921.62 94,802,699.26

5rs 0.044347368 124,892,875.60 134,071,263.05

rs : 0.008869474 c
p
5
3 ⇡ 223,452,105 299,792,458.00=c

0.5rs 0.004434737 259,627,884.49 > c Impossible to escape=Black hole

0.1rs 0.000886947 295,599,349.98 > c Impossible to escape=Black hole

0.001rs 8.86947E-06 299,791,860.81 > c Impossible to escape=Black hole

0.0001rs 8.86947E-07 299,792,452.01 > c Impossible to escape=Black hole

0.00001rs 8.86947E-08 299,792,457.94 > c Impossible to escape=Black hole

0rs 0 299,792,458.00=c Equation breaks= BH singularity

I will claim that the Schwarzschild radius is nothing special in the physical world. The Schwarzschild
radius and its misinterpretations arise from the use of an approximate escape velocity and likely are also
from coordinate artifacts in the Schwarzschild solution of the Einstein field equation when r = r

s

, see
Eddington (1922). It is well known that some of the Schwarzschild metric components blow up at r = r

s

and r = 0. The misinterpretation of the Schwarzschild radius should become even clearer when we move
on to gravitational time dilation and gravitational redshift.

3 Gravitational Time Dilation

Einstein’s gravitational time dilation is given by
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the standard escape velocity and r is the radius out from the center of the mass,

and t
f

is the time gone by for a clock so far from the gravitational center that it is basically una↵ected by
the gravitational field. To calculate the Einstein gravitational time dilation we need to know the escape
velocity. Einstein’s standard gravitational time dilation formula uses the approximate escape velocity
formula that is only valid under weak gravitational fields. The approximate escape velocity formula gives
extremely accurate values when we are at the surface of Earth or at radiuses similar to that of the GPS
satellites, for example.

However, when we approach strong gravitational fields in the range of the Schwarzschild radius,
then the standard Einstein approximate gravitational time dilation formula is likely to give incorrect
values. At the Schwarzschild radius, the formula above gives highly inaccurate predictions and below the
Schwarzschild radius the formula simply breaks down. It is also worth mentioning that Haug (2016b) has
recently quantized the standard Einstein gravitational time dilation, see Appendix B. The quantization
is not important for the conclusions in this paper, but we mention it here, as we will quantize the exact
gravitational time dilation that holds at extremely strong gravitational fields.

Exact gravitational time dilation

The exact gravitational time dilation is obtained simply by replacing the approximate escape velocity
used in modern physics with the exact escape velocity derived above
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This can be rewritten as simply
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Alternatively we could write this in a more informative and elegant quantized form
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This can be rewritten as simply
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The quantized and nonquantized forms give exactly the same output values, except that the quantized
form comes in quantized steps. An interesting case is when we set the radius to the Schwarzschild radius,
r
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or we could derive it as
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In other words, time does not stand still at the Schwarzschild radius. For the exact time dilation, the
Schwarzschild radius is not unique and nothing special happens at this radius. The standard interpretation
that time stands still at the Schwarzschild radius is very likely to be an incorrect interpretation rooted
in the use of the approximate escape velocity.

In Table 2 one can study the di↵erences in predictions between Einstein’s gravitational time dilation
rooted in the Schwarzschild metric and the modified exact solution presented here. The gravitational
time dilation works all the way down to radius zero, which is far below the Schwarzschild radius.
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Table 2: The table shows the exact time dilation for a Earth-sized mass at di↵erent radiuses compared to

the standard gravitational time dilation. Assumed mass: M = 5.972⇥ 10

24
kg..

Multiples of Radius Time dilation from Einstein time dilation
the Schwarzschild radius : meters : exact escape velocity : factor :

Mountain top radius 718, 419, 181rs 6,372,000 0.999999999304027 0.999999999304027

Earth surface 718, 306, 435rs 6,371,000 0.999999999303918 0.999999999303918

100rs 0.886947 0.995024875621891 0.994987437106620

10rs 0.088695 0.952380952380952 0.948683298050514

5rs 0.044347 0.909090909090909 0.894427190999916

rs 0.008869 1
1+ 1

2
⇡0.666667 0 (time stands still)

0.5rs 0.004435

1
2 = 0.5 equation collapse=Black hole

0.1rs 0.000887 0.166666666666667 equation collapse=Black hole

0.001rs 8.8695E-06 0.001996007983993 equation collapse=Black hole

0.0001rs 8.8695E-07 0.000199960007936 equation collapse=Black hole

0.00001rs 8.8695E-08 0.000019999595592 equation collapse=Black hole

0rs 0 0.000000000000000 equation collapse=Black hole

4 Gravitational Redshift

The Einstein gravitational redshift derived from the Schwarzschild metric is given by
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where R
e

is the distance between the center of the mass of the gravitating body and the point at
which the photon is emitted and v

e

is the well known standard escape velocity.1 The escape velocity used
in the Einstein gravitational redshift formula is an approximate escape velocity that dose not work well
when we approaches the Schwarzschild radius. In other words Einsteins gravitational redshift almost for
sure gives very wrong redshift predictions for photons emitted from strong gravitational field.

The gravitational redshift based on the exact escape velocity formula that holds under strong gravi-
tational fields must be
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We can rewrite this as
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This we can rewrite as simply
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Or alternatively in the quantized form

1See Haug (2016b) for quantization of this formula, even if that not is important in the context here.
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This we can rewrite as simply
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And interesting special case is the gravitational redshift at the Schwarzschild radius. The Planck-
quantized Schwarzschild radius is given by Haug (2016a) and is
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This gives the redshift for photons emitted at the Schwarzschild radius
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That is for photons emitted at the Schwarzschild radius the gravitational redshift factor Z is 0.5. We
can also rewrite the gravitational redshift as a function of how many Schwarzschild radiuses the photons
are emitted from rather than the radius itself. Let’s use the symbol y for how many Schwarzschild radiuses
we are emitting the photons from; this gives the following neat formula
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Formulas 20, 22, and 25 will all give exactly the same output, but require di↵erent inputs. In formula
20 one must input the mass, the gravitational constant, the speed of light, and the radius the photons
are emitted from. In formula 22 one must input the number of Planck masses in the mass and the Planck
length. In formula 25 one must input only the multiples of Schwarzschild radiuses the photons are emitted
from.

In Table 3 we have calculated predicted gravitational redshifts for a mass containing 10 solar masses
with the standard Einstein gravitational redshift formula and our modified gravitational redshift formula
that also holds down and even below the Schwarzschild radius. It is clear from the table that massive dense
objects can have a very high gravitational redshift. The standard model is not able to give predictions
for photons emitted from an area below the Schwarzschild radius. As we have discussed, the predictions
from the standard theory in this regard break down at the Schwarzschild radius and are thus interpreted
as black holes.

Possibly Cosmological Implications

Hawkins (2010) has done an impressive empirical job in observing and studying redshift in quasars.
Surprisingly he did not find excess time dilation in the high Z quasars as expected by predictions from
standard cosmology. However, instead of claiming the data were right and the current cosmology theories
were incomplete he introduced new ideas such as the existence of growing black holes that would o↵set
the lacking excess gravitational time dilation exactly. We suggest that the correct explanation of the
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Table 3: The table shows the exact redshift for a 10 Solar-sized mass at di↵erent radiuses compared to the

standard gravitational redshift. Assumed mass of object, 10 solar masses : M = 9.134⇥ 10

38
kg.

Multiples of Radius photons Haug Einstein/Schwarzschild
Schwarzschild radius : emitted from (meters) : exact redshift z(r) : redshift z(r) :

216rs Radius Sun : 6,371,000 0.00231716062796 0.00232524570812

100rs 2,952,526.072 0.005 0.00503781525921

10rs 295,252.607 0.05 0.05409255338946

5rs 147,626.304 0.1 0.11803398874989

rs 29,525.261 0.5 Equation break down
0.5rs 14,762.63 1 Equation break down

0.2rs 5,905.052 2.5 Equation break down

0.1rs 2,952.526 5 Equation break down

0.01rs 295.253 50 Equation break down

0.001rs 29.525 500 Equation break down

0.0001rs 2.953 5000 Equation break down

0.00001rs 0.295 50000 Equation break down

0rs 0 Equation break down Equation break down

high Z quasar studies may be based in the fact that the standard gravitational theory does not have a
gravitational redshift theory that works well close to and below the Schwarzschild radius. As a result,
many of the high Z redshift interpretations in cosmology are possibly wrong. Very dense and massive
objects like quasars will, in our modified theory, be predicted to have much higher gravitational redshifts
than those predicted by standard cosmology. Based on our theory, it is also not surprising if one should
find high Z objects in front of lower Z objects, as those claimed to be observed by Arp (1998).

Further, in light of this theory many other predictions in cosmology, including the theory of the Big
Bang interpretation of the universe could also be misguided.

5 Conclusion

We have derived an exact escape velocity based on Newton and special relativity theory that holds also
for very strong gravitational fields. The standard escape velocity used in modern physics is only an
approximate escape velocity that not is valid in strong gravitational fields. This paper suggests that the
interpretations of the Schwarzschild radius in modern physics are incorrect. There are likely no black
holes, the escape velocity at the Schwarzschild radius is not c, and time does not stand still at the
Schwarzschild radius. There is “nothing” special about the Schwarzschild radius except perhaps a set of
mathematical artifacts that are the result of mathematical approximations, indeed approximations that
are not valid in strong gravitational fields. In addition to the central discussion, we have also quantified
the escape velocity, the gravitational time dilation and the gravitational redshift. Some people may claim
that the solutions given in this paper must be incomplete since they do not use GR to be derived. We look
forward to a debate on these topics. The new escape velocity, gravitational time dilation and gravitational
redshift introduced this paper can hopefully be a small piece in helping to bring physics and cosmology
back on the right track.

Appendix A

Derivation of the standard escape velocity from Planck scale as first shown by Haug (2016b)
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where N1 is the number of Planck masses in the smaller mass m (for example a rocket) and N2 is the
number of Planck masses in the other mass. This we have to set to 0 and solve with respect to v to find
the escape velocity:
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This is a quantized escape velocity. Bear in mind that the kinetic energy of 1
2mv2 is only a good

approximation for v << c. Still, for all planets in our solar system and even for the massive Sun
itself, the escape velocity from the surface of these “objects” will be so small that v << c. Only when
we approach the escape velocity at the Schwarzschild radius are the approximations in this appendix
inaccurate. Since N1 cancels out, we can simply call N2 for N and write the escape velocity as

v = c

r
N

2@
r

(28)

where N is the number of Planck masses in the mass we are trying to escape from.

Appendix B: Gravitational Time Dilation at Planck Scale

We can rewrite the standard Einstein gravitational time dilation in the form of quantized escape velocity
(derived above).
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Let’s see if we can calculate the time dilation at, for example, the surface of the Earth from Planck
scale gravitational time dilation. The Earth’s mass is 5.972 ⇥ 1024 kg. And again, the Earth’s mass in

terms of the Planck mass must be 5.972⇥1024

2.17651⇥10�8 ⇡ 2.74388 ⇥ 1032. Further, the radius of the Earth is
r ⇡ 6 371 000 meters. We can now just plug this into the quantized gravitational time dilation
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r
1� 2⇥ 2.74388⇥ 1032 ⇥ 1.61622837⇥ 10�35

6 371 000
⇡ t

f

⇥ 0.999999999303915

That is for every second that goes by in outer space (a clock far away from the massive object),
0.99999999930391500 seconds goes by on the surface of the Earth. That is, for every year in in outer
space (very far from the Earth), there are about 22 milliseconds left to reach an Earth year. This is
naturally the same as we would get with Einstein’s formula.
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Schwarzschild, K. (1916a): “Über das Gravitationsfeld einer Kugel aus Inkompressibler Flussigkeit
nach der Einsteinschen Theorie,” Sitzungsberichte der Deutschen Akademie der Wissenschaften zu

Berlin, Klasse fur Mathematik, Physik, und Technik, p. 424.
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