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» Suppose we have a simple dynamical system, eg a Morse
function on a torus.

» But suppose that it is not so simple. Suppose the shape of
the system depends on the location in the system that we
are currently at.

» So if the current state of the system is at the top of the
torus, and we were to draw a trajectory from this point, we
would expect suddenly the shape of the torus to change.
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Why is this a useful way of modelling a real dynamical system?

» Because in reality the way a system changes depends on
the direction a system is pushed from one state to another.
The system is not static, but depends on the trajectories
that are traced through it.




Dynamical systems with metarules

Why is this a useful way of modelling a real dynamical system?

» Because in reality the way a system changes depends on
the direction a system is pushed from one state to another.
The system is not static, but depends on the trajectories
that are traced through it.

» In practice, this means that if we were to consider a system
holistically, and consider a unique choice of initial tangent
vector from each point - a vector field - in parameter space
(ignoring situations where such is forbidden, since | am
assuming Lorentzian geometry), then we would like to
measure how a system would evolve / change in structure
in a natural way, given that initial choice, or "push" in
parameter space.
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» More primitively, consider the idea of a markov process.
One has a set of states, with transition probabilities
between them. One can characterise this with a transition
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Natural evolution and meta-Markov models

» More primitively, consider the idea of a markov process.
One has a set of states, with transition probabilities
between them. One can characterise this with a transition
matrix.

» But suppose now that we wish to consider a set of
transition matrices, and transition probabilities between
these, which depend on the last state and the current
state. In other words, a "meta-Markov" process. Then this
is closer to the general idea | am trying to aim at.

» We are now ready to ask the central question.
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Central Question

Given a meta-dynamical system as loosely defined above, how
can one describe the geometry of the associated object?

» If we can describe the geometry, we can compute
geodesics (avoidance of tipping points).

» If we can describe the geometry, it suggests ways that the
system can be understood.

» If we can describe the geometry, it suggests ways that the
system can be controlled.
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The first jet bundle

» The tangent bundle to M is given by tuples (p, v), where v
is an element of T, M.

» The tangent space to the tangent space gives T(»)M, given
by tuples (p, v, w).

» lterating this process a countably infinite number of times,
we obtain the first jet bundle 7 M, given by tuples (p, V),
where V is an infinite matrix.

» In practice, however, V is of rank dim(M).




Elements of the jet bundle associated to trajectories

Suppose now we have two points, p and q in our parameter
space M.

» Consider the set of index preserving diffeomorphisms
Aut(M) on M. This will have a basis given by {f; : x; — x;}.
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ijth element of Aut(M) at ~(t).




Elements of the jet bundle associated to trajectories

Suppose now we have two points, p and q in our parameter
space M.

» Consider the set of index preserving diffeomorphisms
Aut(M) on M. This will have a basis given by {f; : x; — x;}.
» Consider a trajectory « joining p and q in M.

» Then relative to any point v(t) we have a vector pointing in
the direction of the perturbation of the point relative to the
ijth element of Aut(M) at ~(t).

» This gives us a matrix of tangents (relative to these
perturbations of +), or an element of the first jet bundle,
associated to each point of the path ~.
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Meta-markov processes again

| claim that to specify the structure associated to the first jet
bundle, we need a 6-tensor k.
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Meta-markov processes again

| claim that to specify the structure associated to the first jet
bundle, we need a 6-tensor k.

» Consider again meta rules for a markov process. Note that
GL(n) as a matrix group has tangent group GL(n).

» Then if Tj is a unit transition probability, and Uy, Vmn are
unit tangent probabilities sitting in the tangent group GL(n),
we have that xjxm, determines the result of acting on T
with Uy "on the left" and Vi, "on the right". It is the
"meta-rule transition to transition probability".

» The analogy for left and right action is that a left action
occurs subsequent to the state - it is where the trajectory is
moving fo, and a right action occurs prior - it is where the
trajectory is moving from.
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The structural coefficients

» As in Riemannian geometry, we have structural coefficients
given by

rp

ijklmn — <8PE117 Ekla 8qun>/-c

where {Ej;} forms a basis for the (first) jet bundle of the
space.




The structural coefficients

» As in Riemannian geometry, we have structural coefficients
given by
rf/)k/mn (OpEijs Exi; OgEmn)x
where {Ej;} forms a basis for the (first) jet bundle of the
space.
» These can be computed as

Pq  _  _ab
r/jklmn H;kc(zge%@&{g ) 8paq"iabclmn})

where summation is over the group product Cg ® C7 acting
on the indices of 0p0qk abcimn-




Geodesics

» ~ is geodesic with respect to k if
V(X)X = 0

where Xj; : [0,1] — JM is the one parameter jet field
associated to .




Geodesics

» ~ is geodesic with respect to k if
V(X)X = 0

where Xj; : [0,1] — JM is the one parameter jet field
associated to .

» V(x,x) Is the affine connection with respect to «, uniquely
determined by

(X, Y. 2Z) = (05X, ¥, 2Z) + (X, ;Y

<
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The cybernetic information functional

We wish to know what choice of « is most natural, ie how a
"physical" system will place constraints on allowable behaviour
for k.

Define Cyb(M) := {(IJM)3 — JM} as the space of left and
right actions on the first jet bundle of M.

» We have an information functional given by
1= Ju Jeyomm T(O50klogf)®dmaV

where f = f(m, V) = 6(k(m ) — V), with m € M a point in
parameter space and V € Cybpy(M) is a point in the space
of meta-rules at m.




The cybernetic information functional

We wish to know what choice of « is most natural, ie how a
"physical" system will place constraints on allowable behaviour
for k.

Define Cyb(M) := {(IJM)3 — JM} as the space of left and
right actions on the first jet bundle of M.

» We have an information functional given by
1= Ju Jeyomm T(O50klogf)®dmaV

where f = f(m, V) = 6(k(m ) — V), with m € M a point in
parameter space and V € Cybpy(M) is a point in the space
of meta-rules at m.

» Jji is the derivative on function space. Jy is the derivative
on normal space.
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The key result

» | conjecture that, after some considerable work, it can be
demonstrated that this simplifies to

Sy Inv(x)dm

where Inv(x) in a geometric invariant defined by

Inv(k) := KijamnT jabedef" kighpabeT mndefghp




The key result

» | conjecture that, after some considerable work, it can be
demonstrated that this simplifies to

Sy Inv(x)dm
where Inv(x) in a geometric invariant defined by

Inv(k) := KijamnT jabedef" kighpabeT mndefghp

» This allows us to understand the geometric behaviour of a
meta-dynamical system as Inv(x) = 0, as a physical
system will minimise the information associated to its
relevant information functional.
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Final comments

» In this talk | have indicated how one might go about
modelling dynamical systems using meta-rule type
considerations.
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Final comments

» In this talk | have indicated how one might go about
modelling dynamical systems using meta-rule type
considerations.

» This talk has been intended only as the starting point for a
conversation on said matters.

» Naturally a great deal of work remains to be done.
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