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Abstract – We find an exact solution for the system of Navier-Stokes equations, 

following the description of the Lagrangian movement of an element of fluid, for 

spatial dimension n = 3.  As we had seen in other previous articles, there are 

infinite solutions for pressure and velocity, given only the condition of initial 

velocity. 
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§ 

 

 Essentially the Navier-Stokes equations relate to the velocity   and pressure 

  suffered for a volume element    at position   ,  ,    and time  . In the 

formulation or description Eulerian the position   ,  ,    is fixed in time, running 

different volume elements of fluid in this same position, while the time varies. In 

the Lagrangian formulation the position   ,  ,    refers to the instantaneous 

position of a specific volume element             at time  , and this position 

varies with the movement of this same element   . 

 Basically, the deduction of the Navier-Stokes equations is a classical 

mechanics problem, a problem of Newtonian mechanics, which use the 2nd law of 

Newton     , force is equal to mass multiplied by acceleration. We all know 

that the force described in Newton's law may have different expressions, varying 

only in time or also with the position, or with the distance to the source, varying 

with the body's velocity, etc. Each specific problem must to define how the forces 

involved in the system are applied and what they mean. I suggest consulting the 

classic Landau & Lifshitz[1] or Prandtl book[2] for a more detailed description of the 

deduction of these equations. Note that the deduction by Landau & Lifshitz [1] 

contain more parameters than the shown in the references [2] and [3]. 

 In spatial dimension    , the Navier-Stokes equations can be put in the 

form of a system of three nonlinear partial differential equations, as follows: 
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where    ,  ,  ,         ,  ,  ,   ,     ,  ,  ,   ,     ,  ,  ,    ,        ,     , 

is the velocity of the fluid, of components   ,   ,   ,   is the pressure,      

  ,    , and    ,  ,  ,         ,  ,  ,   ,     ,  ,  ,   ,     ,  ,  ,    ,      

  ,     , is the density of external force applied in the fluid in point   ,  ,    

and at the instant of time  , for example, gravity force per mass unity, with 

 ,  ,  ,    ,    .  The coefficient     is the viscosity coefficient, and in the 

special case that     we have the Euler equations.     
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  is the nabla 

operator and          
  

    
  

    
  

      is the Laplacian operator. 

 The non-linear terms   
   

  
   

   

  
   

   

  
,      , are a natural 

consequence of the Eulerian formulation of motion, and corresponds to part of the 

total derivative of velocity with respect to time of a volume element    in the fluid, 

i.e., its acceleration. If        ,  ,  ,   ,     ,  ,  ,   ,     ,  ,  ,     and these  ,  ,   

also vary in time,       ,       ,       , then, by the chain rule, 
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 Defining  
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and therefore 
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,      , 

which contain the non-linear terms that appear in (1). 

 Numerically, searching a computational result, i.e., in practical terms, there 

can be no difference between the Eulerian and Lagrangian formulations for the 

evaluate of 
  

  
 (or 

  

  
, it is the same physical and mathematical entity). Only 

conceptually and formally there is difference in the two approaches. I agree, 

however, that you first consider   ,  ,    variable in time (Lagrangian formulation) 

and then consider   ,  ,    fixed (Eulerian formulation), seems to be subject to 

criticism. As in the Newton equations of motion we can consider that there are 
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forces traveling with a body, and also there are forces that may be fixed in the each 

space position, in a same configuration or system model, in our present 

formulation the pressure, and its corresponding gradient, they travel with the 

volume element            , i.e., obeys to the Lagrangian description of motion, 

as well as the external force  , in order to avoid contradictions. The velocity   also 

will obey to the Lagrangian description, and it is representing the velocity of a 

generic volume element    over time, initially at position    ,   ,     and with 

initial velocity            .,       . 

 Following this definition, the system (1) above is transformed into 

(5)  

 
 
 

 
 

  

  
 

   

  
            

 

 
                  

  

  
 

   

  
             

 

 
                  

  

  
 

   

  
            

 

 
                  

  

thus (1) and (5) are equivalent systems, according (4) validity. The nabla and 

Laplacian operators are considered calculated in Lagrangian formulation, i.e., in 

the variable time. We first choose           ,    (say, for example, or 

belonging to Schwartz space, etc.), calculate the operators in variables  ,  ,  ,   in 

the Eulerian formulation, which is a standard procedure, and then we convert 

these results to Lagrangian formulation using       ,       ,       , the 

our special method. Likewise for the calculation of  
  

  
, following (4).  

 The system (5) always has a solution if the external force   is a gradient 

function[4], for example, dependent only on the time variable, and the components 

velocity are      ,    class. 

 Given             ,     obeying the initial conditions and a gradient 

vector function  , the system solution (5) is 

(6)         
 

     ,  

             
 

 
              

  

  
, 

where   is any continuous path linking a point    ,   ,     to   ,  ,    and      is a 

generic time function, physically and mathematically reasonable, for example with 

      . 

 In special case when   is a constant vector or a dependent function only on 

the time variable, we come to 

(7)                                             , 
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where          is the pressure in the point    ,   ,     at time  . Note that the 

variables  ,  ,   in (7) are in Lagrangian description, i.e. are the coordinates of a 

volume element    in movement, the position of a chosen particle of fluid, and we 

can eliminate the dependence of the position substituting in (6) 

(8)        ,   ,          ,     ,           

and integrating over time. The result is 

(9)                          
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 This calculation can be more facilitated making   
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    , so (9) is equal to 
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i.e., 

(11)          
 

 
              

 

 
  , 

             
 

 
             , 

 ,     ,  ,   ,  ,     ,      ,   ,    ,   
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     ,   ,    , in Lagrangian description, as well as 

(12)     ,  ,  ,        ,  ,    
 

 
               

 
, 

         
 

 
         , 

in Eulerian description,     ,  ,       ,  ,  ,   ,         ,  ,       ,  ,  ,   , 

both formulations supposing   a gradient vector function (     ,     ,   

potential function of  ) when in Eulerian description (because we do not expect 

there is a contradiction between the Lagrangian and Eulerian descriptions). 

       and            are the square modules of the respective vectors   

and   . 

 When     and     (or most in general    ) it is simply 

(13)       
 

 
         , 
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which then can be considered an exact solution for Euler equations in a general 

format, in Lagrangian and Eulerian descriptions, and according Bernoulli’s law 

without external force (for example, gravity). 

 Again we have seen that the system of Navier-Stokes equations has no 

unique solution, only given initial conditions. We can choose different velocities 

that have the same initial velocity and also result, in general, in different pressures. 

 How to return to the Eulerian formulation if only was obtained a complete 

solution in the Lagrangian formulation? Previously we already have the solution 

for velocity in Eulerian formulation, except the pressure value. We can choose 

appropriate    ,  ,  ,    and     ,     ,      to the velocities and positions of the 

system, next we calculate (4) as a time function as well as the differential 

operations         and            and then we carry these results in (7) or (11) 

for the pressure calculation. This choose is not completely free because will be 

necessary to calculate a system of ordinary differential equations to obtain the 

correct set of     ,     ,     , such that 

(14)  
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Nevertheless, this yet can save lots calculation time. 

 It will be necessary find solutions of (14) such that it is always possible to 

make any point   ,  ,    of the velocity domain can be achieved for each time  , 

introducing for this initial positions    ,   ,     conveniently calculated according 

to (14). Thus we will have velocities and pressures that, in principle, can be 

calculated for any position and time, independently of one another, not only for a 

single position for each time. For different values of   ,  ,    and   we will, in the 

general case, obtain the velocity and pressure of different volume elements   , 

starting from different initial positions    ,   ,    . 

 We can escape the need to solve (14), but admitting its validity and the 

corresponding existence of solution, previously choosing differentiable functions 

      ,       ,        and then calculating directly the solution for velocity in 

the Lagrangian formulation, 

(15)  

 
 
 

 
       

  

  

      
  

  

      
  

  

  



6 
 

hereafter calculating 
   

   
,
    

   
  and the differential operations    ,     and 

       through of the transformations 

(16)  
   

   
 

      

      
 

 

  

   

  
 

and  

(17)  
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and finally calculating the pressure in (7) or (11), with 
   

  
 

   

  
, supposing 

finites the limits in (16) and (17) when     .  Remembering, this method 

calculates the pressure related to the position      ,     ,       in Lagrangian 

description. Also note that perhaps the denominators appearing in (16) and (17) 

explaining the occurrence of blowup time reported in the literature[3], when the 

limits are not finites. 

 Concluding, answering the question, in the result of pressure in Lagrangian 

formulation, conveniently transforming the initial position    ,    ,     as function 

of a generic position   ,  ,     and time  , we will have a correct value of the 

pressure in Eulerian formulation. The same is valid for the velocity in Lagrangian 

formulation, if the correspondent Eulerian formulation was not previously 

obtained.  

 Another way to solve (1) seems to me to be the best of all, for its extreme 

ease of calculation, without we need to resort to Lagrangian formulation and its 

conceptual difficulties. If    ,  ,  ,        ,  ,    is the initial velocity of the 

system, valid solution in    , then    ,  ,  ,          ,    ,      is a 

solution for velocity in    , a non-unique solution. Similarly,    ,  ,  ,         

 ,    ,      is the correspondent solution for pressure in     , being     ,  ,    

the initial condition for pressure. The velocities       ,  ,   ,      ,    ,    and 

    ,  ,      are also solutions, and respectively also the pressures       ,  ,   ,

    ,    ,    and     ,  ,     . Other solutions may be searched, for example in 

the kind    ,  ,  ,              ,        ,         ,        , and therefore 

   ,  ,  ,              ,        ,         . 

§ 

 A very useful and interesting special solution for equation (1) and derived 

from (12) is 
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(18)     ,                   , 

where  ,   are time dependent real functions,       ,       ,      and the 

initial velocity is          ,   , which respective solution for pressure is 

(19)     ,          
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         ,    is the initial pressure. 

  The solution (12) must be valid for all     and for all solution   ,    of (1), 

so in     must be satisfied (in Eulerian formulation) 

(20)          
 

 

where 

(21)            
 

 
            , 

      ,   ,       ,   , thus the initial velocity must verify the equation 

(22)         
 

 
              . 

 The equation (22) applied in (19) gives 

(23)     ,          
 

 
                      

                 
 

, 

or in most elegant format 

(24)     ,          
 

 
                     

 
, 

again according Bernouilli’s law in a generalized form         

 In special case when don’t have external force and the fluid is 

incompressible the equation (22) becomes   

(25)        ,  

the Laplace’s equation, which nontrivial solutions are the harmonic functions[5]. 
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 Apply these methods to the famous 6th Millenium Problem[3] on existence 

and smoothness of the Navier-Stokes equations is not so difficult at the same time 

also it is not absolutely trivial. It takes some time. I hope to do it soon. On the other 

hand, apply these methods to the case       or       (Euler equation) is almost 

immediate.  

 It is no longer true that the Navier-Stokes and Euler equations yet do not   

have general solutions known. 

 

                                                         To Leonard Euler, in memorian, 

            the greatest mathematician of all time. 

309th anniversary of his birth, 

April-15-1707-2016.    

Last update: June-12-2016. 

Euler, forgive me for my mistakes… 

This subject is very difficult! 
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