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ABSTRACT 

Summing characteristic equations to find forms of theoretical functions in number theory will be 

discussed.  Forms of many number theoretic functions will be derived. Although many may not 

be efficient in a computing sense for large numbers, the aim in this paper will simply be to 

explore what these forms are and show relationships between expressions. 

For a modular congruence        , it is a simple question of whether or not    . A question 

about primes is a question about division. This question can be turned into an indicator function 

and summed to find the number of possible solutions where     up to a chosen point. 
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Proof: 

If    , than 
 

 
   for some constant   making the expression        
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  . Therefore by the definition of the floor function, the expression will yield 

         . If    , then the expression will be of the form    
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this must imply that     and so        . So, by the definition of the floor function, the 

expression would yield      .                                                                                  End Proof 

This indicator function, or any other, can be used to count solutions of even divisions by 

summing them. As an obvious example the divisor function, τ(n) has the form  

       
 

 
   

   

 
  

   . This is clearly counting the number of times j divides n. This is nothing 

new. The question here is what else can be derived using this form and of what use is it. Well, 

let's start with the first question. 

 



Theorem: 

      
   

 
   

     

 
 

 

   

                                   

Proof: 

The indicator function will be 1 if the denominator divides the numerator evenly and 0 

otherwise. Division of course can only occur if the prime factors in the denominator are a subset 

of the factors of the numerator and if the exponents in the prime factorization of the numerator 

are equal or larger than those in the denominator. The exponents here are clearly not an issue 

because the numerator is raised to the power of the denominator so only the factors matter. But, 

   contains every prime     as a factor. So, n cannot divide evenly until j reaches the greatest 

prime factor of n. Every term after that will also divide. Therefore, summing this indicator 

function to n will give           . Subtracting this from n+1 gives the desired result. 

                                                                                                                                          End Proof 

Theorem: 

  
  

 
   

    

 
 

 

   

                                                             

Proof: 

As mentioned in the previous proof, the numerator is raised to the power of the denominator so 

this does not affect even division. So,   can only divide evenly if it's prime factorization is a 

subset of n's. Summing these even divisions using the indicator function gives the desired result. 

                                                                                                                                          End Proof 

That is the theoretical function used by Andrew Granville in his work on the ABC Conjecture. 

Theorem: 

The smallest prime coprime to n,        at the value    is equal to the nextprime function, 

            . 

Proof: 

Any factorial contains a factor of all primes  , therefore the smallest prime that will not divide 

   must be the prime after  . By definition, this is             . 

 



Theorem: 

    
  

  
   

    

  
                                    

 

   

 

Proof: 

If you expand the equation you will have, 

    
  

  
   

    

  
     

  

  
   

    

  
       

  

  
   

    

  
  .                                                                                

The first term in parenthesis can be simplified as,              Thus, the expansion 

becomes     
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Consider 
  

 
, the denominator will only divide the numerator evenly when the exponents of the 

factorization are larger or equal in the numerator and it contains a factor of 2. Since the 

exponents are clearly larger in the numerator, this will occur when n is a multiple of 2. Now 

consider both 
  

 
  and  

  

  
  and notice that there is an added factor of 3 in the denominator of both 

fractions. So, it will divide evenly when n is a multiple of     or simply 6. Now consider both 

  

   
  and 

  

   
 and note that there is now an added factor of 5 in the denominators of both fractions, 

so even division will occur when n is a multiple of       or simply 30. Continuing this, it is 

clear that even division occurs at primorial numbers and a new factor is introduced when j is a 

prime. The distance until the next introduced factor is just the distance between primes, which is 

just the difference between consecutive primes. Thus, the expansion of the equation may be 

written as, 

           
 

   
   

   

   
                

 

   
   

   

   
  . Which may be simplified as 
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Therefore, 
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The right side of the equation at the value of    is, 

            
 
     

  

   
   

    

   
  . 



This contains a characteristic equation that will be 1 when n! is divisible by a primorial evenly 

and 0 otherwise. Therefore, the equation is only summing the differences between primes and 

adding 2, which is in fact the prime number sequence. But, the number of terms does not 

increase until n reaches a prime number, at which point the next primorial may divide, giving the 

next prime number at exactly the previous one and staying at that value until the next prime 

number is reached by n. By definition, this is the nextprime function. This means that the left 

side of the equation must also be the nextprime function when evaluated at n! and the original 

equation is in fact the smallest prime coprime to n.                                                         End Proof 

Theorem: 

A proper upper bound for the nextprime function in the form     
   

  
   

     

  
  

    is 2n. 

Proof: 

The formula is only adding 1's and equates to the next prime, yet the next prime is larger than n 

for all n in the formula. Therefore, you must sum past n. This implies the need for an upper 

bound. Since the formula is to equal the next prime, we need an upper bound for this. It has been 

shown by Bertrand's Postulate that         . If we define              to be     , then 

because n will always be   the previous prime    and         , this shows 2n is a proper 

upper bound. Therefore, 
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Theorem: 

  
  

 
   

    

 
  

 

      

 

   

 

Proof: 

Consider 
  

 
, just as before, the exponents play no role in division so n must be a power of 2 to 

divide evenly. Put another way, the largest square-free divisor of n must be 2. Now consider 
  

 
. 

In this case, the largest square-free divisor of n must be 3 to divide evenly. Continuing this, it is 

clear that the indicator function is counting the number of multiples of         . But this is 

just 
 

      
.                                                                                                                     End Proof 

There are countless other functions that can be derived. I will list some here without proof. 

 



  
  

 
   

    

 
           

 

   

 

      
     

      
   

       

      
              

 

   

 

  
     

 
   

        
 

   

   
     

 
     

        
 

   

 

      

   

    

  
      

 
   

      

 
 

 

   

               

   

 

 
 

  
  

    
    

   
   

            
 

 
   

   

 
  

 

   

      

   
  

 
   

    

 
    

 

 
   

   

 
                                                      

 

      
 

 

   

 

The list goes on and on. Now this answers the first question in the beginning of the paper, what 

can we derive with indicator functions? The answer is just about anything. The second question 

was, of what use is it? Well this is harder to answer. None of these equations have any efficient 

computing power. For example, I can derive the smallest billion digit prime number here it is. 

    
                 

  
   

                   

  
                              

               

   

 

Good luck calculating it! But there is potential to derive new and unknown relationships using 

different forms of indicator functions. For example: 

Theorem: 

   
      

 
  

  
 
  

 
   

        
           

  

Proof: 

For n>0,       
        

     
 is clearly 0 if n is an integer and          otherwise. 



Therefore,        is 1 if n is an integer and          if n is not an integer. So by the 

property of the floor function,    
        

      
                    

          
                              end proof 

It is well known that             for an integer n. So,    
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By Wilson's theorem, for a natural number n >1,                                 

So by the proof of the previous theorem,      
      

        

 
 

  
        

 
  

   
               
           

           . 

This is clearly the characteristic equation of the primes. 

Theorem: 

      
      

           

      
 

  
           

      
  

    
         

      
    

   
 

  
    

   
  

                                                                             

where      is the number of unordered partitions of 2n into two primes. 

Proof: 

For an even number>2, I will use 16 in this example, the numbers from 1 to 2n may be written in order 

and then one may write the numbers backwards, offset by 1, directly above as follows, 

16 15 14 13 12 11 10 9 8 7  6   5   4   3   2   1 

      1   2   3   4   5   6  7 8 9 10 11 12 13 14 15 16 

It is clear to see that each column will be equal to 2n, 16 in this example. Where the top and bottom both 

have primes, this is a solution for 2n of the Goldbach Conjecture. To avoid counting a solution twice and 

noting that 1 is not in the solution set, it is clear to see that it is only necessary to count solutions between 

2n-2 and n inclusive. The primes may be counted backwards using the characteristic equation of the 

primes at the value 2n-1-j and ranging j from 1 to n-1, the primes may be counted forward by using the 

characteristic equation of the primes at the value j+1 and ranging j from 1 to n-1. This will include any 

possible solution. A characteristic equation can only be 1 or 0, so multiplying these two characteristic 

equations together ensures that both must be one for the product to be 1, otherwise it will be 0. In this 

case, multiplying these two characteristic equations together and summing will count only primes which 

sum to 2n and thus, 

The form of the number of partitions of 2n into two primes, which I will denote as     , 

      
      

           

      
 

  
           

      
  

    
         

      
    

   
 

  
    

   
  

                                  End Proof 

 Theorem: 



                     

Where      is the number of unordered partitions of 2n into two primes,      is the number of 

unordered partitions of 2n into two composites and       is the number of unordered partitions of 

2n into a prime and a composite. 

Proof: 

The total number of unordered partitions ranges from 1+(n-1) to n+n, for example for 6 the 

partitions would be 1+5,2+4,3+3. Except for 1+(n-1), each partition must fall into one of the 

three categories mentioned in the theorem and because we are ranging from 1 to n, there are 

clearly n unordered partitions total. Therefore summing the three categories,                  

and adding 1 to account for 1+(n-1) will clearly be equal to n.                                                      

End Proof 

Theorem: 

     =                                 

Proof: 

As I have shown,       
      

           

      
 

  
           

      
  

    
         

      
    

   
 

  
    

   
  

        

Expanding the sum, 

           
      

    
   

 

  
    
   

  
     

      
           

      
 

  
           

      
  

     
      

    
   

 

  
    
   

  
    

      
           

      
 

  
           

      
  

 

   

   

   

   

   

   

   

   

 

The first of these sums is clearly n-1. In the second,    
      

    

   
 

  
    

   
  

    
    the 1 that was added to the 

floor function has been omitted, so the sum has been subtracted from n-1. The sum with 1 added 

to the floor function would have been     , so this is simply the number of composites less than 

or equal to n minus 1 which is         . With this and noting that the sum is now negative 

in its form,    
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The second sum in the theorem,    
      

           

      
 

  
           

      
  

    
    using the same approach as before would 

have been                if 1 was still added to the floor function, because the 

characteristic equation would have been counting primes in this interval. So this sum is the 

negative of                     . 



Therefore,    
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The third sum in the theorem,    
      

    

   
 

  
    

   
  

    
      

           

      
 

  
           

      
  

    
    is still counting partitions 

of 2n, but now it is clearly counting composites. So this sum is equal to the number of unordered 

partitions of 2n into two composites,     . This sum is positive because the characteristic 

equations are multiplied together. 

Adding the sums together therefore gives, 

     =                                                                        End Proof 

Theorem: 

                                   n>1 

Proof: 

From the previous proofs,      =                                and 

                    . Using this information, we can replace n in the first equation above 

with its equality in the second equation above. So, 

     =                                                     n>1. 

Simplifying gives the desired result as shown.  

                                     n>1                                                  End Proof 

While these may not be the key to proving this conjecture, they are in fact new and interesting 

relationships. Using this same indicator function and logic on the twin prime counting function, 

Theorem: 

      
      

        

 
 

  
        

 
  

  
         

      
        

   
 

  
        

   
 
                                                                               

where       is the twin prime counting function. 

Proof: 

For any number n, I will use 16 in this example, the numbers from 1 to n may be written in order and then 

one may write the numbers again, offset by 2, directly above as follows, 

   

 



1 2  3  4  5  6  7  8  9 10 11  12   13   14   15   16 

       1  2  3  4  5  6  7  8   9   10   11   12   13   14  15 16 

It is clear to see that each column will differ by 2. Where the top and bottom both have primes, these are 

twin primes. The primes may be counted using the characteristic equation of the primes at the value j and 

ranging j from 2 to n, the primes may be counted using the characteristic equation of the primes at the 

value j+2 and ranging j from 2 to n. This will include any possible solution. A characteristic equation can 

only be 1 or 0, so multiplying these two characteristic equations together ensures that both must be one 

for the product to be 1, otherwise it will be 0. In this case, multiplying these two characteristic equations 

together and summing will count only primes    which differ by 2 and thus, 

The form of the twin prime counting function is, 

      
      

        

 
 

  
        

 
  

  
         

      
        

   
 

  
        

   
  

                                   End Proof 

 Theorem: 

                    

Where       is the number of twin primes  ,      is the number of twin composites   and 

     is the number of prime and composite pairs that differ by 2   . 

Proof: 

With the exception of 1 and 3, the pairs of numbers that differ by 2 must fall into one of the three 

categories mentioned in the theorem. Because we are ranging from 1 to n, there are clearly n 

total. Therefore summing the three categories,                 and adding 1 to account for 1 

and 3 will clearly be equal to n.                                                      End Proof 

Theorem: 

     =                       

Proof: 

As I have shown,       
      

        

 
 

  
        

 
  

  
         

      
        

   
 

  
        

   
  

         

Expanding the sum, 

            
      

        
 

 

  
        

 
  

     
      

        
   

 

  
        

   
  

     
      

        
 

 

  
        

 
  

    
      

        
   

 

  
        

   
  

 

 

   

 

   

 

   

 

   

 



The first of these sums is clearly n-1. In the second,    
      

        

 
 

  
        

 
  

  
    the 1 that was added to 

the floor function has been omitted, so the sum has been subtracted from n. The sum with 1 

added to the floor function would have been     , so this is simply the number of composites 

less than or equal to n minus 1 because the sum begins at j=2, which is         . With this 

and noting that the sum is now negative in its form,    
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The second sum in the theorem,    
      

        

   
 

  
        

   
  

  
    using the same approach as before would 

have been        if 1 was still added to the floor function, because the sum would have been 

counting the characteristic equation of the primes at n+2. So this sum is the negative number of 

composites     , which is              . 

Therefore,    
      

        

   
 

  
        

   
  

  
              . 

The third sum in the theorem,    
      

        

 
 

  
        

 
  

    
      

        

   
 

  
        

   
  

  
    is still counting twins, but 

now it is clearly counting composites. So this sum is equal to the number of twin composites  

  ,     . This sum is positive because the characteristic equations are multiplied together. 

Adding the sums together therefore gives, 

     =                                                                                           End Proof 

Theorem: 

                          

Proof: 

From the previous proofs,      =                       and 

                   . Using this information, we can replace n in the first equation 

above with its equality in the second equation above. So, 

                                             . 

Simplifying gives the desired result as shown.  

                                                                            End Proof 



Once again, this may not be the piece needed to prove the twin prime conjecture, but every piece 

helps. There is certainly potential in this area for new discovery. I have found, which I will 

present without proof, in particular, ʎ(n) and  (n) can be shown to have this relationship, 

  
      

 
 

    
    

    
  

 
      

 
      

where          
     and the expression involving the floor function is clearly the 

characteristic equation of the square-free numbers. 

In fact,   
     

       
  

                              

In conclusion, while sums of characteristic equations seem useless on basis of their computing 

efficiency, their manipulation may hold new ideas and promise for unrealized relationships 

between expressions. More work and study should be done in this field. 


