Radical

Anthony J. Browne

April 23, 2016

Abstract

Approximations of $n^{t h}$ roots are discussed. A close approximation to their decimal expansion is derived. Their relationship with the AKS test is also discussed.

There are many approximations of $n^{\text {th }}$ roots. One common approach is Newton's method for example. It is a fairly easy process to find a working and very close approximation to square roots, or any root for that matter. I explain here an approach of my own, in which I approximate the decimal expansion itself.

If you list the values of square roots of numbers from 1 to some number, the whole numbers place in this list can be seen to follow the sequence $2 n+1$, where n is the whole numbers place value of \sqrt{x}. Meaning there are 3 ones, 5 twos, 7 threes,...ect. So, if you wanted to know how many square roots of whole numbers begin with the number 3 , the equation would yield $2 * 3+1=7$, which is correct. Further, because each first new whole number is also the square root of the perfect square in the beginning of each interval of numbers, $n=\lfloor\sqrt{x}\rfloor$, which is the perfect square before any number x. So, n^{2} is this perfect square.

It is also intuitive to note that in each interval of values, for example $(4,8)$, the values of the decimal places nearly have a uniform distribution with respect to the interval. It will become more uniform for higher intervals. Using this assumption, its possible to estimate the decimal place values with a fraction. We can represent the location of any number x in an interval using the perfect square before it as, $n-x$. Knowing the location of x and the distance in the interval, this fraction can take the form of location over distance as follows,

$$
\frac{x-n^{2}}{2 n+1}
$$

This is a beginning approximation to the decimal expansion of \sqrt{x}. Consequently, in knowing that the whole number value will be n, a beginning approximation for \sqrt{x} can be formulated as follows,

$$
\sqrt{x} \approx \frac{x-n^{2}}{2 n+1}+n=\frac{x+n+n^{2}}{2 n+1}=\frac{x+n(n+1)}{2 n+1} .
$$

The error of this approximation can be seen in a graph of $\sqrt{x}-\frac{x+n(n+1)}{2 n+1}$. You can find from this that the maximum error in this function occurs at $x=n(n+1)$. If you divide the distance $2 n+1$ in each interval by the maximum error on the interval, you will get a sequence that is rapidly approaching integers, because the decimal expansion of the terms are approaching 0. This sequence truncated is, $\{37,101,197,325, \ldots\}$. This sequence can be represented as $4(2 n+1)^{2}+1$. So, if the maximum error divided by $2 n+1$ rapidly approaches this sequence, then this sequence divided by $2 n+1$ must rapidly approach the maximum error. Thus, the error is closely approximated by,

$$
\frac{2 n+1}{4(2 n+1)^{2}+1}
$$

Now, if we make x equal to $n(n+1)$, the maximum points of error, and then add the approximation of this error, we get a very accurate approximation of $\sqrt{n(n+1)}$. And so,

$$
\sqrt{n(n+1)} \approx \frac{2 n(n+1)}{2 n+1}+\frac{2 n+1}{4(2 n+1)^{2}+1}
$$

This is very accurate. By simple manipulation of the above equation, these other forms can be derived as well.

$$
\begin{aligned}
& \sqrt{n^{2}+1} \approx \frac{2 n\left(n^{2}+1\right)}{2 n^{2}+1}+\frac{2 n^{2}+1}{n\left(4\left(2 n^{2}+1\right)^{2}+1\right)} \\
& \sqrt{n^{2}-1} \approx \frac{2 n\left(n^{2}-1\right)}{2 n^{2}-1}+\frac{2 n^{2}-1}{n\left(4\left(2 n^{2}-1\right)^{2}+1\right)} \\
& \sqrt{n} \sqrt{2 n+1} \approx \frac{1}{\sqrt{2}}\left(\frac{4 n(2 n+1)}{4 n+1}+\frac{4 n+1}{4(4 n+1)^{2}+1}\right) \\
& \sqrt{n} \sqrt{2 n-1} \approx \frac{1}{\sqrt{2}}\left(\frac{4 n(2 n-1)}{4 n-1}+\frac{4 n-1}{4(4 n-1)^{2}+1}\right)
\end{aligned}
$$

These are extremely accurate. As an example, for $n=35$, the calculation of $\sqrt{35^{2}+1}$ using the second approximation formula above is accurate to 19 decimal places. And as discussed, this accuracy increases for higher n. The error reaches a limit of 0 at infinity. From this information one can derive approximations to other types of functions, as an example:

$$
\begin{gathered}
|n| \approx \frac{1}{\sqrt{n^{2}+1}}\left(\frac{2 n\left(n^{2}+1\right)}{2 n^{2}+1}+\frac{2 n^{2}+1}{n\left(4\left(2 n^{2}+1\right)^{2}+1\right)}\right) \\
\operatorname{Sgn}(n) \approx \frac{1}{n \sqrt{n^{2}+1}}\left(\frac{2 n\left(n^{2}+1\right)}{2 n^{2}+1}+\frac{2 n^{2}+1}{n\left(4\left(2 n^{2}+1\right)^{2}+1\right)}\right)
\end{gathered}
$$

There are some properties of roots that seem to be fundamental in the understanding of prime numbers. As an example, $(x+1)^{n}-x^{n}$ gives the number of $n^{\text {th }}$ roots that have x in the integer position. If you expand this for several n, you can find that there are two separate representations for odd and even n.

$$
\begin{aligned}
& (x+1)^{2 n-1}-x^{2 n-1}=(2 n-1) \sum_{j=1}^{n} \frac{\binom{n-2+j}{2 j-2}}{2 j-1}\left(x^{2}+x\right)^{n-j} \\
& (x+1)^{2 n}-x^{2 n}=(2 x+1) \sum_{j=1}^{n}\binom{n-1+j}{2 j-1}\left(x^{2}+x\right)^{n-j}
\end{aligned}
$$

If we evaluate this at $x=1$, we will find

$$
\begin{aligned}
2^{2 n-1}-1 & =(2 n-1) \sum_{j=1}^{n} \frac{\binom{n-2+j}{2 j-2}}{2 j-1} 2^{n-j} \\
2^{2 n}-1 & =3 \sum_{j=1}^{n}\binom{n-1+j}{2 j-1} 2^{n-j}
\end{aligned}
$$

This shows that the Mersenne numbers $2^{n}-1$ may be represented as the number of $n^{t h}$ roots that have 1 in the integer position. The forms of the sums are interesting too. Further investigation will reveal,

$$
\begin{gathered}
L_{2 n-1}=(2 n-1) \sum_{j=1}^{n} \frac{\binom{n-2+j}{2 j-2}}{2 j-1} \\
F_{2 n}=\sum_{j=1}^{n}\binom{n-1+j}{2 j-1}
\end{gathered}
$$

which are bisections of the Lucas and Fibonacci numbers. If one forms a triangle of the coefficients of the expansion of $(x+1)^{n}-x^{n}$, it can be quickly discovered that,

$$
(x+1)^{n}-x^{n}-1 \equiv \bmod n \text { iff } n \text { is prime }
$$

This is the basis of the AKS test. Further investigation reveals that this is not the end all to the story. In fact, this should actually say,

$$
(x+1)^{n}-x^{n}-1 \equiv \bmod p \text { iff } n=p^{k} \quad k \geq 1
$$

The AKS test is capitalizing on $k=1$. But, there are other interesting relationships here as well. If we restrict n to the even numbers $(x+1)^{2 n}-x^{2 n}-1$, than one can find that in this form, the smallest number that will be coprime to each and every coefficient is in fact the greatest prime factor of $2 \mathrm{n}+1, \operatorname{GPF}(2 n+1)$. So,
$\operatorname{GPF}(2 n+1)=\min \left\{k: \forall \in(x+1)^{n}-x^{n}-1, k \nmid(x+1)^{n}-x^{n}-1\right\}$.
If that notation makes any sense. If one replaces x with i, the imaginary number one can find,

$$
\frac{(i+1)^{2 n}-i^{2 n}-1}{2 n-1}=\mathbb{Z} \text { if } 2 n-1=p \wedge p \in 4 m-1
$$

If you explore this, you can find that,

$$
\frac{2^{\frac{n-1}{2}}-(-1)^{\frac{n^{2}-1}{24}}-1}{n} \text { is and integer if } n=p \quad n \geq 5
$$

In conclusion, there is much more to discover within this area. There may be deeper relationships here. At worst, it may be an interesting area to explore within mathematics.

