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Abstract 
A solution of the Maxwell equations for the electromagnetic wave in a 
spherical capacitor which is included in an alternating current circuit or in 
an constant current circuit is proposed. A hypothesis of the Earth 

magnetism nature is presented on the basis of this solution. 
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1. Introduction 
The electromagnetic wave in a capacitor in an alternating current or 

constant current circuit is investigated in [1, 2]. In this paper, a spherical 
capacitor in a sinusoidal current circuit or an constant current circuit is 
considered. The capacitor electrodes are two spheres having the same 

center and radii 12 RR  . A hypothesis of the Earth magnetism nature is 

proposed on the basis of this solution. A model of the ball lightning was 
substantiated previously in a similar manner [3]. 
 

2. Solution of the Maxwell Equations in the 
Spherical Coordinate System  
Let us first consider a spherical capacitor in a sinusoidal current 

circuit.  Fig. 1 shows the spherical coordinate system (  ,, ). 

Expressions for the rotor and the divergence of vector Е in these 
coordinates are given in Table 1 [4]. The following nomenclature is used 
below in this paper  

E  - electrical intensities, 

H  - magnetic intensities, 
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  - absolute magnetic permeability, 

  - absolute dielectric constant. 

 
Fig. 1. 

Table 1. 

1 2 3 
1  Erot  

    












sintg

EEE
 

2  Erot  

  










 EEE

sin
 

3  Erot  















EEE
 

4  Ediv  

    


















sintg

EEEEE
 

 
With no charge on and no current between the spherical capacitor 

electrodes, the Maxwell equations in the spherical coordinate system take 
the form presented in Table 2.  

 
Table 2. 

1 2 
1. 

0rot 





t

E

c
H






 

2. 
0rot 






t

E

c
H 




 

3. 
0rot 






t

E

c
H






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4. 
0rot 






t

H

c
E






 

5. 
0rot 






t

H

c
E 




 

6. 
0rot 






t

H

c
E






 

7.   0div E  

8.   0div H  

 

Below the solution will be sought for in form of functions HE, , 

which presented in Table. 3, where the functions of the form  E  to 

be calculated. It is important to note that 
• these functions are independent of the argument  ; 

• if     sinE , then 

 
 


cos2

tg







EE
.     (11) 

 
Table 3. 

1 2 
 

 eE      )sin(cos tE   

     )sin(sin tEeE    

     )sin(sin tEeE    

 
 hH      )cos(cos tH   

     )cos(sin tEhH    

     )cos(sin tHhH    

 

We substitute the functions HE,  from the Table 3 in Table 1 

and take into account (11). Then we obtain Table 4. 
 
Table 4. 

1 2 3 
1  Erot  

)cos(
2




E
 )sin( t  
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2  Erot  
)sin(



















EE
 )sin( t  

3  Erot  
)sin(


















EE
 )sin( t  

4  Ediv  
)cos(

2


































EEE
 )sin( t  

Expressions for the rotor and divergence function H  differ from 

those shown in the Table. 4 only in that instead of factors )sin( t  are 

factors )cos( t .  

Substituting the expression for the curl and divergence in 
Maxwell's equations (see Table 2), differentiating with respect to time and 
reducing common factors, we obtain a new form of Maxwell's equations 
- see Table. 5. 
 
Table 5. 

1 2 
1 



E2



H

c
 =0 

2 

















 EE



H

c
 =0 

3 

















 EE



H

c
 =0 

4 































 EEE 2
=0 

5 
0

2
 

 


E

c

H
 

6 
0












 

 


E

c

HH
 

7 
0












 

 


E

c

HH
 

8 































 HHH 2
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3. The solution of Maxwell's equations for the 
vacuum 
First, we consider the equations for a vacuum where in the GHS 

system 

1  .       (12) 

Then Maxwell's equations are completely symmetrical with respect to the 
intensities E and H. Find the sum pairs of (1-4) and (5-8). Then we get: 

0
2

 

 


W

c

W
,     (13) 

0











 

 


W

c

WW
,    (14) 

0











 

 


W

c

WW
,    (15) 































 WWW 2
=0,    (16) 

where 

HEW  , 
2

W
HE  .    (17) 

The same equations (14-16) are obtained by 

)cos()sin(  HEW  , 
2

W
HE  .  (17а) 

The system of 4 equations (13-16) defines 3 unknown functions - 
the system is overdetermined. We show that there is a solution that 
satisfies all equations 

Direct substitution can be seen that the equations (14, 15) has the 
following solution: 

 







 R

c
AW 




 sin

1
,    (18) 

 







 R

c
AW 




 cos

1
,    (19) 

where RA,  - constants. Find the sum of equation (13, 16). Then we get: 

0
22

















 WW
W

c

WW
  (20) 
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or, taking into account (18, 19), 

 

 
0

cos

sin
2















































R
c

R
cA

W
c

WW















. (21) 

Direct substitution can be seen that equation (21) has the following 
solution: 

    
























 R

c
R

c

A
W 







 sincos

2
  (22) 

or 

 







 R

c

A
W 






4
sin

22
   (22) 

Thus, the solution of Maxwell's equations for the spherical vacuum 
capacitor has the form of equations (18, 19, 22, 17a) or 

     







 R

c

A
EH 




 

4
sin

2
sincos  (23) 

     







 R

c

A
EH 




  sin

2
sincos ,  (24) 

     







 R

c

A
EH 




  cos

2
sincos . (25) 

To find all these functions, it suffices to know the values of 

constants RA, . This solution means that an electromagnetic wave 

does exist in the spherical capacitor in a sinusoidal current circuit. 
 

4. Electric and magnetic intensities 
Let us consider a point T with coordinates ,  on a sphere of 

radius   .Vectors E  and E , going from this point are in plane P, 

tangent to this sphere at point  ,T  - see Fig. 3. These vectors are 

perpendicular to each other. Hence, at each point  ,  the sum vector  

 HHH


        (27) 

is in plane Р and has an angle of     to a meridian line (where   - 

constant). As it follows from (24, 25) and the Table. 3, the module of this 
vector and the angle   defined by the following formulas: 
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)cos()sin(
2






A
H 


     (28) 

     
















 R

c

A
R

c

A

H

H















sin

2
sin

2
cos   

or 

 R
c

 



2

.      (29) 

We also note for further that the module of vector H


, as follows 

from (23) and Table. 3, defined by the following formula: 

  )cos()cos(
4

sin
2





 








 R

c

A
H


  (30) 

Similarly, the same relationships exist for the vectors E


 and E


 

(only necessary )cos(  are replaced by )sin( ). The angle between 

these vectors in the plane P is straight. 




,
T



E

E

H

H

H


E








 
Fig. 3. 
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In Fig. 3a shows the vectors H


 and E


 lying in the plane P, and 

vectors H


 and E


 lying on a radius. 

 ,T
H



E


2/

H


2/

2/

E


 
Fig. 3а. 

 



  ,T

E


H


const

0

const

0

a

a

b

b

  
Fig. 4. 
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Fig. 4 shows the projection of the "Northern hemisphere" with the 

"Equator" where 0 , and the "principal meridian", where 0 . 

There are highlighted in this figure point  ,T , a circle with 

const  and a meridian with const  both passing through this 

point. Vectors E


 and H


 originating at this point correspond to 

vectors of the same name shown in Fig. 3. Other vectors parallel to 
vectors in Fig. 3 are also presented. All these vectors lie on loxodromes 
(i.e. lines crossing all the meridians at the same angle). Specifically, all the 

vectors E


 are found on Е-loxodromes with an angle of   2/  

and all the vectors H


 on Н-loxodromes with an angle of    . The 

modules of vectors E


 and H


 vary in proportion to )sin( . These 

vectors are zero at   ;0 . 

All the loxdromes pass through two poles of this sphere. To aid 
the visualization, an H-loxodrome is presented in Fig. 5. Fig. 4 shows the 

diameters aa and bb сconnecting the poles of H-loxodromes and E-

loxodromes. These diameters will be called the magnetic axis and the 
electrical axis, respectively. The points of intersection of these axes with 
the external sphere will be called the magnetic pole and the electrical 
pole, respectively. It should be noted that these axes and, in general, 

vectors E


 and H


 are perpendicular.  

 

0H




H




 
Fig. 5. 
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Therefore, in a spherical capacitor we can consider only one vector 

of the electrical field intensities E


 and only one vector of the magnetic 

field intensities H


. As these vectors lie on the sphere, they will be 

called spherical vectors.  
Let us now consider the vectors of the radial field intensities 

components E


 and H


. They are independent of  cos  - see Table 3. 

Hence, there are only radial field intensities components at point where 
the spherical components are zero. The point highlighted in Fig. 5 is the 

magnetic pole with 0  and 0H


.  

 

5. An Electromagnetic Wave in a Charged 
Spherical Capacitor  
A solution of the Maxwell equations for a parallel-plate capacitor 

being charged [2] stems from a solution of these equations for a parallel-
plate capacitor in a sinusoidal current circuit [1]. In this paper the method 
described in [1] will be used in solving the Maxwell equations for a 
spherical capacitor being charged.  

Let us consider the field intensities in the form of functions 
presented in Table 6. These functions differ from functions of Table 3 
only by the type of time dependence: in Table 3, E and H functions 

depend on time as )cos(),sin( tt  , respectively, while in Table 6, E 

and H functions depend on time as    1)exp(,)exp(1  tt  , 

respectively.  
Although the indicated substitution, the solution of Maxwell's 

equations remain unchanged. 
 

Table 6. 

1 2 
 

 eE      )exp(1cos tE    

     )exp(1sin tEeE    

     )exp(1sin tEeE    

 
 hH      1)exp(cos tH   

     1)exp(sin  tEhH   

     1)exp(sin  tHhH   
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Bias Current 

  )exp( tveE
dt

d
J zz       (31) 

Fig. 6 presents intensities components and their time derivatives as 

well as the bias current as a function of time for 300 : zH  is shown 

with a solid line, zE  with a dashed line, and zJ  with dotted line. It is 

evident that with t  the amplitudes of all intensities components 
tend to a constant together, while the current amplitude approaches zero. 
This corresponds to the capacitor charging via a fixed resistor.  

When the capacitor becomes fully charged, the current stops to 
flow. However, the stationary flow of the electromagnetic energy is 
maintained according to [2]. 

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
-1

-0.5

0

0.5

1

e
z
(t

),
 h

z
(t

),
 j
z
(t

)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
-400

-200

0

200

400

e
z
1
(t

),
 h

z
1
(t

)

Fig.1. (SSMB6.1)
 

Fig. 6 
 
Thus, the solution of the Maxwell equations for a capacitor being 

charged and the solution for a capacitor in a sinusoidal current circuit 
differ only in that the former includes exponential time functions while 
the latter contains sinusoidal time functions.  

The electromagnetic wave structure remains the same - see Section 
3. It is evident from Section 3 that there is an electromagnetic wave in a 

spherical capacitor with only spherical vectors E


, H


 and radial 

vectors E


, H


. Fig. 7 shows the mathematical mm, the magnetic aa, 
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and the electrical bb axes of the capacitor. These axes are perpendicular 

to each other.  
Thus, we can say that the spherical capacitor is a device equivalent 

to the magnet and simultaneously electrets which are perpendicular to 
each other. 

    

aa

b

b

m

m
 

Fig. 7. 
 

6. The Magnetic and the Electrical Field of 
the Earth 
It is known that the Earth electrical field can be considered as a 

field "between spherical capacitor electrodes" [5]. These electrodes are 
the Earth surface having a negative charge and the ionosphere having a 
positive charge. The charge of these electrodes is maintained by 
continuous atmospheric thunderstorm activities.  

It is also known that there is the Earth magnetic field. However, in 
this case no generally accepted explanation of the source of this field is 
available. "The problem of the origin and retaining of the field has not 
been solved as yet." [7]. 

It flows from the above mentioned that the Earth electrical field 
is responsible for the Earth magnetic field.  

 
Let us consider this problem in more details.  

The vector field H


 in a diametral plane passing through the 

magnetic axis is shown in Fig. 8. Here, .1;7.0  H


 The vector 
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field H


 in a diametral plane passing through the magnetic axis is shown 

in Fig. 9. Here, .1;4.0  H


 The vector field  HHH


  in a 

diametral plane passing through the magnetic axis is shown in Fig. 10. 

Here, .1;2.0;3.0   HH

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FIG. 10. (Sfera.88)
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