Euler's proof of Fermat's Last Theorem for $\mathrm{n}=3$ is incorrect

Nguyen Van Quang
Hue - Vietnam, 05-2016

Abstract

We have spotted an error of Euler's proof, so that the used infinite descent is impossible in his proof.

1 Euler's proof for $\mathrm{n}=3$

First, we rewrite a proof for $\mathrm{n}=3$, which was proven by Euler in 1770 as follows:
As Fermat did for the case $\mathrm{n}=4$, Euler used the technique of infinite descent. The proof assumes a solution $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ to the equation $x^{3}+y^{3}+z^{3}=0$, where the three non-zero integers $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are pairwise coprime and not all positive. One of three must be even, whereas the other two are odd. Without loss of generality, z may be assumed to be even.
Since x and y are both odd, they cannot be equal, if $\mathrm{x}=\mathrm{y}$, then $2 x^{3}=z^{3}$, which implies that x is even, a contradiction.
Since x and y are both odd, their sum and difference are both even numbers.

$$
\begin{aligned}
& 2 u=x+y \\
& 2 v=x-y
\end{aligned}
$$

Where the non-zero integers u and v are coprime and have different parity (one is even, the other odd). Since $x=u+v$ and $y=u-v$, it follows that

$$
-z^{3}=(u+v)^{3}+(u-v)^{3}=2 u\left(u^{2}+3 v^{2}\right)
$$

Since u and v have opposite parity, $u^{2}+3 v^{2}$ is always an odd number. Therefore, since z even, u is even and v is odd. Since u and v are coprime, the greatest common divisor of $2 u$ and $u^{2}+3 v^{2}$ is either 1 (case A) or 3 (case B).

Proof for Case A

In this case, the two factors of $-z^{3}$ are coprime. This implies that 3 does not divide u and the two factors are cubes of two smaller numbers, r and s .

$$
\begin{gathered}
2 u=r^{3} \\
u^{2}+3 v^{2}=s^{3}
\end{gathered}
$$

Since $u^{2}+3 v^{2}$ is odd, so is s . Then Euler claimed that it is possible to write:

$$
s=e^{2}+3 f^{2}
$$

which e and f integers, so that

$$
u=e\left(e^{2}-9 f^{2}\right)
$$

$$
v=3 f\left(e^{2}-f^{2}\right)
$$

Since u is even and v is odd, then e is even and f is odd. Since

$$
r^{3}=2 u=2 e(e-3 f)(e+3 f)
$$

The factors $2 e,(e-3 f),(e+3 f)$ are coprime, since 3 can not divide e: if e were divisible by 3 , then 3 would divide u, violating the designation of u and v as coprime. Since the three factors on the right- hand side are coprime, they must individually equal cubes of smaller integers

$$
\begin{gathered}
-2 e=k^{3} \\
e-3 f=l^{3} \\
e+3 f=m^{3}
\end{gathered}
$$

Which yields a smaller solution $k^{3}+l^{3}+m^{3}=0$. Therefore, by the argument of infinite descent, the original solution ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) was impossible.

Proof for Case B

In this case, the greatest common divisor of 2 u and $u^{2}+3 v^{2}$ is 3 . That implies that 3 divides u, and one may express $u=3 w$ in terms of a smaller integer w. Since u is divisible by 4 , so is w , hence, w is also even. since u and v are coprime, so are v and w . Therefore, neither 3 nor 4 divide v.
Substituting u by w in the equation for z^{3} yields

$$
-z^{3}=6 w\left(9 w^{2}+3 v^{2}\right)=18 w\left(3 w^{2}+v^{2}\right)
$$

Because v and w are coprime, and because 3 does not divide v , then 18 w and $3 w^{2}+v^{2}$ are also coprime. Therefore, since their product is a cube, they are each the cube of smaller integers, r and s

$$
\begin{gathered}
18 w=r^{3} \\
3 w^{2}+v^{2}=s^{3}
\end{gathered}
$$

By the step as in case A, it is possible to write :

$$
s=e^{2}+3 f^{2}
$$

which e and f integer, so that

$$
\begin{aligned}
v & =e\left(e^{2}-9 f^{2}\right) \\
w & =3 f\left(e^{2}-f^{2}\right)
\end{aligned}
$$

Thus, e is odd and f is even, because v is odd. The expression for 18 w then becomes

$$
r^{3}=18 w=54 f\left(e^{2}-f^{2}\right)=54 f(e+f)(e-f)
$$

Since 3^{3} divides r^{3} we have that 3 divides r, so $(r / 3)^{3}$ is an integer that equals $2 \mathrm{f}(\mathrm{e}+\mathrm{f})(\mathrm{e}-\mathrm{f})$. Since e and f are coprime, so are the three factors $2 e, e+f$, and $e-f$, therefore, they are each the cube of smaller integers k, l, and m .

$$
\begin{gathered}
-2 e=k^{3} \\
e+f=l^{3} \\
e-f=m^{3}
\end{gathered}
$$

which yields a smaller solution $k^{3}+l^{3}+m^{3}=0$. Therefore, by the argument of infinite descent, the original solution ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) was impossible.

2 Disproof

Lemma. if the equation $x^{3}+y^{3}+z^{3}=0$ is satisfied in integers, then one of the numbers x, y, and z must be divisible by 3
proof.From the equation $x^{3}+y^{3}+z^{3}=0$, we obtain:

$$
(x+y+z)^{3}=3(z+x)(z+y)(x+y)
$$

Then, $\mathrm{x}+\mathrm{y}+\mathrm{z}$ is divisible by $3,(x+y+z)^{3}$ is divisible by 3^{3}
So $(\mathrm{z}+\mathrm{x})(\mathrm{z}+\mathrm{y})(\mathrm{x}+\mathrm{y})$ must be divisible by 3 :
If $\mathrm{z}+\mathrm{x}$ is divisible by 3 , then y is divisible by 3
If $\mathrm{z}+\mathrm{y}$ is divisible by 3 , then x is divisible by 3
If $\mathrm{x}+\mathrm{y}$ is divisible by 3 , then z is divisible by 3
Hence, one of x, y, and z must be divisible by 3 .

Mistake in Euler's proof

For the case A
Since step,

$$
\begin{aligned}
& u=2\left(e^{2}-9 f^{2}\right) \\
& v=3 f\left(e^{2}-f^{2}\right)
\end{aligned}
$$

Euler already considered only u, and passed over v, and it was a gap of proof as follows :
Since $v=3 f\left(e^{2}-f^{2}\right)$, then v is divisible by 3 .
Since

$$
2 v=x-y
$$

Then, $\mathrm{x}-\mathrm{y}$ is divisible by 3 , hence, bolt of them are divisible by 3 , or both not divisible by 3. Since x and y are coprime, then x and y have not common divisor, so both x and y are not divisible by 3 . By lemma above, z must be divisible by 3 , which implies that 2 u and $u^{2}+3 v^{2}$ have common divisor 3, a contradiction. Case A is impossible.
For the case B
In the case B, u is divisible by $3, \mathrm{v}$ is not divisible by 3 , since

$$
\begin{gathered}
v=e\left(e^{2}+9 f^{2}\right) \\
-2 e=k^{3}
\end{gathered}
$$

Then e is not divisible by 3 , so k is not divisible by 3 , it returns to the case A (k as z in the case A) that was showed impossible.

References

1. Proof of Fermat's Last Theorem for specific exponents- Wikipedia.
2. Quang N V, A proof of the four color theorem by induction. Vixra:1601.0247(CO)

Email:
nguyenvquang67@gmail.com
quangnhu67@yahoo.com.vn

