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Abstract.

The challenge of this paper is to relate artificial intuitiased intelligencerepresented by sedupervised
systemsto solutions of NFcomplete problemsBy self-supervised systenge understand systems that are
capable to move from disorder to order without external effort, i.e. in violation of the second law of
thermodynamicslt has been demonstrated, [Hat such systems existtine mathematicalworld: they are
presented by ODE coupled with their Liouville equation, but they belong neither to Newtonian nor to
guantum physics since theye capable t@iolate the second law of thermodynamics. That sugdkats
machines could natimulate intuition-based intelligencé they are composed only of physical parts, but
without digital components. Nevertheless it was fosandhquantumclassicalhybrids, [1], that simulates
some of selfsupervisedsystems. The min achievement of this work is a demeatbn that self
supervisedsystems can solve Nébmplete problems in polynomial time by replacing an enumeration of
exponentially large number of possible choices with a short cut providednby-idewtonian and no
guantum nature of sefupervised systems.

1.Introduction.
A humanintelligence, and in particular, its most mysterious Kndtuition - has always been an enigma
for physicists, and an obstacle for artificial intelligence. It was well underst@duman behavior, and
in particular, the decision making process, is governed by feedbacks from the external world, and this part
of the problem was successfully simulated in the most sophisticated way by control systems. However, in
addition to that,when the external world does not provide sufficient information, a human turns for
OadviseO to his experience, andithassociateavith intuition. In other wordsjntuition is a phenomenon
of the mind that describes the ability to acquire knowledgeowttinference or the use of reason.

In this paperjntuition-based intelligence is implemented &yeedback from the seifihage (a concept
adapted from psychology), amee will illustrateits physical modein connection vth the decisiormaking
process.

A decision making process can be modeled by a time evolution of a wgctwhose components

T, (i =1,2...N) present a probability distribution ové\ different choices. The evolution of this

vector can be vitten in the form of a Markov chain:
n n
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where pl,j is the transition matrix representing a decision making policypijlf:const, the process (1)

approaches some final distributioh’ regardless of the initial statt’. In particular, in the case of
doubly stochastitransition matrix, i.e., when

ilpij =1 and ipij =1 ()
i= i=

all the finalchoices become equally probable
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i.e., the system approaches its thermodynamics limit which is characterized by the maximum entropy.

When the external world is changing, such a rigid behavionsatisfactory, and the matripl,j has to be

changed accordingly, i.epij = pij (t) Obviously this change can be implemented only if the external

information is available, and there are certain sets of rules for correonsesp However, in real world
situations, the number of rules grows exponentially with the dimensionalities of external factors, and
therefore, any mamade device fails to implement such rules in full.

The main departure from this strategy can be oleseim human approach ttecisionmaking
process. Indeed, faced with an uncertainty, a human wuseguition-basedapproach relyingupon his
previous experience and knowledge in the form of certain invariants or pattebehafior thatare
suitable forthe whole class of similar situations. Suatiility follows from the fact that a human possesses
a selfimage, and interacts with it. This concept which is widely exploited in psychology has been known
as far back as to ancient philosophers, but sifanathematical formalizatiohas never been linked to the
decision making model (1).

First we will start with an abstract mathematical question: can the system (1) change its evolution,
and consequently, its limit distribution, without any externar@®&0D? The formal answer is definitely
positive. Indeed, if the transition matrix depends upon the current probability distribution

pij = p”(l k) (4)
then the evolution (1) becomes nonlinear, and it may have many different scenaricdirdepeon the

initial state/ . In particular case J4it could OovercomeO the second law of thermodynamics decreasing
its final entropy by using only the OinternalO resoutndsedlet us assume that the objective of the
system igo approach the deterministic state
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Thenas shown in [1], if the feedback is chosen as
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the evolution of the probabilityr, can be presented as:
1 —_— n
10 = py A M)y, (7)

in which p,,and p,, are substituted from Egs.)(6

It is easily verifiable that
|

=1 7! =0 (8)
i.e., the objective is achieved dizethe OiternalO feedback (6)
The implementation of the stochastic proogbich probabilities are describdy the Markov chains (L
with the feedback6) has beerdescribed in[1]. This stochastic process can be simulated by quantum
recurrent nets (QRN). (See Fig. 1)

This QRN is described by the following set of difference equations with constant time delay
g+ =" Uya; O} i=1.2.n ©)

The curly brakets are intended to emphasize tgtis to be taken as a measurement operation with the
effect similar to those of a sigmoid function lagsical neural networks.
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Fig. 1. A onedimensional quantum recurrent network.

An initial state,|! (0) >, is fed into the network, transformed under the action of a unitary opedator,
subjected to a measurement indicated by the measurement operator M{ }, and the result of the
measurement is used to control the new state fed back into the netwoegknaxt iteration. One is free to
record, duplicate or even monitor the sequence of measurement outcomes, as they are all merely bits and
hence constitute classical information. Moreover, one is free to choose the function used during the reset
phase,nicluding the possibility of adding no offset state whatsoever. Such flexibility makes the QRN
architecture remarkably versatile. To simulate a Markov process, it is sufficient to return just the last output
state to the next input at each iteration.

From physical viewpoint, the exampiiescribed abovean be associated with particle thatscaps
from the Brownian motiomising its owrQinternal effortO in violation of the second law of thermodynamics
while the entropy decreases from infinity taoaedn other wordsasa result of interaction with hiswn
image and without any Oexternal® enforcement, the decision maker can depart from the thermodynamics
limit (3) of his performance Oagainst the second law.0 Obviously, the enfdraertenform 6 the
feedback ) is aninternal one since the image )is the uniquely defined product of the dynamical
evolution (9, i.e.,such a Ofree willO effort is in a disagreement with the second law of thermodynamics.
The philosophical consequences of thisilelsave been discussed in][1

The objective of thisvork is to sdect an appropriate model from tledassof ODE coupledwith their
Liouville equation to demonstrate its capabilitystwve the problem of search in unsorted databizesteis
an NRcomplde problem.

2. Self-supervised systems.

In order toilluminate specific features of intion-based intelligence, we wilstart with control
dynamicsthat described by a system of ODE:

dv
—=Fv,U 10
p [v.U] (10)

Here
v =V,,V,,EV , is the vector of state variablde be controlled,

u=u,u,,...uU_isthecontrolvectorthat represestexternalactuators.
Let us canpare the control system Eg. {Mith the following system

%:F[p(vn v

wherethe probabilityQ is introduced via the Liouville equati@orresponding to Eq. ()1

2—? +V¥(pF)=0 (12)

It describes the continuity of the probability density flow originated by the error distribution
L, =1 (t=0) (13)
in the iritial condition of ODE (12



Comparisonof Egs.(10) and (11) shaathat they have similar structure, and the roletlé external
actuatory in the control system (10) is playég the termp (v) in the systen{11). Howeve the origirs

of these actuators are fundamentally differghe actuatorU represerst an external forcewhile the
actuator (v) is an internal one. Indeed it é&fined byEq. (12) that, in turn, uniquely follows from Eq.

(11). That is why the system (11),(12an be called seltontrolled, @ selfsupervised.

From the physical viewpointhe feetdack from the Liouville equatiois a fundamental step in our
approach: in Newtonian dynamics, the probability never explicitlyrentiee equation of motion. In
addition to that, the Lioulle equation generated by Eq. J1i% nonlinear with respect to the probability
density 0

LV {pFlp(V)]} -0 a9

and therefore, the system (11)JX&parts from Mwtonian dynamics. However although it has the same
topology as quantum mechanics (since now the equation of motion is coupled with the equation of
continuity of probability densityas it does in the Madelung version of ®BehrSdinger equatignit does

not belorg to it either. Indeed Eqg. (1lis more general thathe HamiltonJacobyequation:it is not
necessarily conservative, alidis not necessarily the quantum potential although further we will impose
some restriction upon it that linl#sto the concpt of information. The relation of the system (11), {12
Newtonian and quantuhysics is illustrated in Fig.2

Newtonian Mechanicsp———

Hamilton-Jacobi Eq. |
N
Quantt_lm Quantum Physics Information
Potential physics of Life ‘Force
4 N
Thermodynamics
Liouville Eq.

Figure 2. Classic Physics, Quantum Physics and Physics of Life

Remark Here and below we make distinction between the randariable v(t) and itsvaluesV in
probability space.

3. Selected self-supervised dynamical system.
In this section we will concentrate arspecial type aheself-supervised systeifgs.(11),(12)
We will start with derivation of an auxiliary result that illumieatdeparture from Newtonian dynamics.
For mathematical clarity, we will consider here a-dimeensional motion of a unit mass under action of a
forcef depending upon theelocity vand timet and present it in a dimensionless form
V=1f(vt) (15)
referring all the variables to their representative valgt,, etc
If initial conditions are not deterministic, and their probability density is given in the form
#
% = %(V), where %! 0, and Mogv =1 (16)
$#
while / is asingle valuedfunction, then the evolution of this density is expressed by the corresponding
Liouville equation
1
4+ (") = 17
TRITARL (17)
The solution of this equation subject to initial conditi@msl normalization constraints (l8etermines
probability density as a function ¥fandt:

I =1(V,t) (18)



In orde to deal with the constraint (16) let us integrate Eq) ¢Vér the whole space assuming tHalt 0
at|V[' ! and|f|<! .Then

%}pdV:O,}pdV=const, (19)

Hence, the constraint (1& satisfied fort > 0 if it is satisfied fort =0.
Let us now specify the forcé as a feedback from the Liouville equation

S =" (v (20)

and analyze the motiaafter substituting the force (20) into Eq.J16

v="[1(v1)], (21)

Although the theory of ODE does not impose any restrictions upon the force as a function of space
coordinates, the Newtonian physics doeguations of motion are never coupled with the corresponding

Liouville equation. Moreover, it can be shown that such a coupling leads tNewtonian properties of
the underlying model. Indeed, substituting the fortédrom Eqg. (20) ito Eq. (13, one arrives at the

nonlinearequation of evolution of the probability density

i +!!—V{ w0 =0 (22)

't
Let us now demonstrate the desliabig effect of the feedback (20For that purpose, it should be noticed
that the derivative! ”/!vmust change its sign at least once, within the intétvatv<! , in order to

satisfythe normalization constraint (L6

But since

v . de . dp

Sign— = Sign—= Sign—= (23)
v do Y

there will be regions of where the motion is utable, and this instability generates randomness with the
probability distribution guded by the Liouville equation (22It shouldbe noticed that the condition (23

may lead to exponential or polynomial growthwofin the last case the motion is calledutrally stable,
however, as will be shown below, it causes the emergence of randomness as well if prior to the polynomial
growth, theLipchitz condition is violated).

3.1. Emergene of selfienerated stochasticityn order to illustrate mathematical aspeof the concepts of
Liouville feedback in systems under consideration as well as associated with it instability and esgjomn

let us take the feedback (2B the form

» 0
=-0"—Inp, (24)
oV
to obtain the following equation of motion
V:!"2£In$, (25)
Hv

This equation should be complemented by the corresponding Liouville equation (in this particular case, the
Liouville equation takes the form of the Fokkelanck equation)

" 2"
! 2 !
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Herev stands for a particle velocity, arﬂ2 is the constant diffusion coefficient.
The solution of Eq. (26subject to the sharp initial condition

p= L expl v ) (27)
A . T A2,
20/ it 4o°t
describes diffusion of the probability densignd that is whyhe feedback (24will be called a diffusion

feedback.
Substititing this solution into Eq. (3%tV=v one arrives at the differential equation with respeet ()

(26)



v

2t
and therefore,
v=CVt (29)

whereC is an arbitary constant. Since=0 at t=0 for any value ofC, the solution (2Pis consistent with

the sharp initibcondition for the solution (27of the coresponding Liouvile equation (26The solution
(29) describes the simplest irreversible motion: it is abtarized by the Obeginning of timeO where all the
trajectories intersect (that results from the violation of Lipcsitz conditi¢nOatFig3), while the backward
motion obtained by replacement tofvith (-t) leads to imaginary values of velocities. Ona caticethat

the probability density (97possesses the same properties.

It is easily verifiable that the solution (2%as the same structure as the solution of the Madelung
equation[1], although the dynamical system (25), 28 not quantum! Theexplanation of such a
Ocoincidend® is very simple: the system )2%26) has the same dynamical topology as that of the
Madelung equation where the equation of conservation of the probability is coupled with the equation of
conservation of the momentufsee Fig.2) As will be shown below, the system (25), 2@ither quantum
nor Newtonian, and we will call such systems quaninspired, or selsupervised.

Figure 3. Stochastic process and probability density.

Further analysis of the solution (RBemorstrates thait is unstablesince
p 1
@ =—>0 (30)
dv 2
and therefore, an initial error always grows generatamglomnessinitially, at t=0, this growth is of
infinite rate since the Lipchitz condition at this point is violated

dv

=
dv
This type of instability has been introduced and analyz¢®l]iiThe unstable equilibrium point(= 0) has
been called a terminal repellend the instability triggered by the violatiofh the Lipchitz conditiorba
non-Lipchitz instability. The basic property of the ndrpchitz instability is the following: if the initial
condition is infinitely close to the repeller, the transient solution will escape the repeller ddngded
time while for a regular repeller the time wouldw@oundedindeed, a escape from the simplest regular

repeller can be described by the expomzentzoe’. Obviouslyv! Qif v,! 0, unless the time period i

unbounded. On the contrary, the period of esdaga the terminal repellef29) is bounded (and even
infinitesimal) if the initial conditions infinitely small, (see Eq. (31

at t! 0 (31)

Considering first Eq(29) at fixedC as a sample of thenderlying stochstic process (26 and then
varying C, one arrives at the whole ensemble chaiairtg that process, (see Fig. ®ne can verify that,
as follows from Eq. (27, [3], the expectatiomnd thevariance of this process are, respectively

v=0 v=2% (32)



The same redts follow from the ensemble 2%t#! " C" ! . Indeed, the first equity in (32
results from symntey of the ensemble with respectws0; the second one follows from the fact that
T2 (33)

It is interesting to noticthat the stochastic process Y29 an altenative to the following Langemi
equation[3]

v="(0),7 =0, "=/ (34)
that corresponds to treameFokkerPlanck equiion (26). Here I'(¢)is the Langevin (randonfprce with

zero mean and constant variarice

Thus, the emergence of sekénerated stochasticity is the first basic #Newtonian property of the
dynamics with the Liouville feedback.

3.2 Second law of thermodynamicd$n order to demwostrate another neNewtonian property of the
systems considered above, let us start with the dimensionless form of the Langevin equation for a one
dimensional Brownian motion of a particle subjected to a random f@ice,

v=tkv+" (1), <! (t)>=0, <! () (t)>=2"#(1tS$t),rj=1/s (35
Here V is the dimensionless velocity of the particle (referred to a representative vvp):iﬂy is the

coefficient d a linear damping force! (t) is the Langevin (random) force per unit mdssy 0 is the

noise strength. The representative veloc‘ité( can be chosen, for instance, as the initial velocity of the

motion under consideration.
The corresponding continuity equation for the probability dengltyis the following FokkeiPlanck

equation

V) L
—=k +#!v2’..;$ dv =1 (36

I't v
Obviously without external controhé particle cannot escape the Brownian motion.

Let us now introduce a new force (referred to unit mass and divid\i!gl)bys a Liouville feedback

f=1 exp\/B"—In#, [f]=1/s 37)
Vv
#
Here D is the dimensionless variance of the stochastic prc[ae(sté = $ VZdv ,
"#

Then the new equation of motion takes the form

\>=—kv+l“(t)+oexp\/58ilnp, (39)
1%

and the corresponding FokkBlanck equation becomasnlinear

RE | " | 2n %

'—=k'(V )+#(1$exp\/6)' =, &dv=1 (39)
't 1V AV, o

Obviously the dfusion coefficient in Eq. (30is negative Multiplying Eq. (39 by 12, then integrating it
with respect td/ over the whole space, one arrives at ODE ferthrianceD

D=2[! (1" expvD)" kD] (40)
Thus, as a result efegativediffusion, the variancedd monotonously vanishes regardless of the initial
value D (0). It is interesing to note that the tim€& of approaching the poim =0 is finite



19 dD 1% dD &
T==# $ —H  — =— (41)
200! 1" expyD)" kD 2! o expJD"1 6

This terminal effect is due to violation of the Lipchitz conditionDat= 0, [6].

Let us reviewthe structure othe force (37: it is composed only out of the probability density and its
variance, i.e. out of the componentstioé conservation equation (39); at the same time, E.it&89f is
generatedby the equation of motion (38). Consequently, the force) (87not an external force.
Nevertheless, it allows the particle to escape from the Brownian motion using its own Ointernal effortO. It
would be rasonable to call the force (8@ninformation forcesince it links to information rather than to
energy.

One nay ask why the negative diffusion was chosen to be nonlinear. Let us tinelinear version of Eq.

(40)

e 12 P
W: v & av=1 (42)
: : #%
and discuss the negative diffusion in more details. As follows frentinkar equivalent of Eq. (30
B=12",ie D=D,! 2't<0 at t>D,/(2") 43)

Thus, eventually the variance becomes negatind, that disqualifies Eq. (#3om being meaningful. As
shown in[4], the initial value problem for this equation ispibsed: its solution is not differentiable at any
point. Theefore, anegative diffusion must be nonlineiar order to protect the variance from becoming
negative, Fig.5Theproof of theill -possednesfdinear negative diffusion calpe fourd in [4].

/\D D

Linear negative diffusion. Nonlinear negative diffusion.

Figure 4. Negative diffusion.

In the next suisection we willdemonstrate again that formally the dynamics introduced above does not
belong to the Newtonian world; nevertheless its-seffervising capability may associate such a dynamics
with a potential model for intelligent behavior. For that purpose we willtugven simpler version of this
dynamics by removing the external Langevin force and simplifying the information force.

In 1945 Schridinger wrote in his book OWhat is lifeOLife is to create order in the disordered
environment against the second lafstteermodynamicshe selfsupervised dynamical system introduced
above is fully consistent with this statement. Indeed, considienglified version of Egs. (35) and (36

v=1JD—In#, s
\'
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Removal of the Langeviand dampindorces makes the particigolated Nevertheless the particle has a
capability of moving from disorder to order. For demonstration of this property we will assume that the

—00

Langevin force was suddenly reweal at{ = Oso that the initial varianC(’D0 > (0. Then

D=12" \/B (46)
whence D=(yDb,!" t)? (47)

As follows from Eq. (47, as a result ahternal, selfgeneratedorce

F=1JD—In# a5
\'

the Brownian motion gradually disappears and then vanishes abruptly:

D! o, o, . at  t! \/HO

DI 0, — (49)
dD #
(3.36)
Thus the probability density shrinks to a ddliaction at Consequently, the entropy
H (t) =1 #' IN"dV decreases down to zero, and that violates the second law of thermodynamics.
Y
D

D

D,
0 w:iotf" t

Figure 5. Vanishing Brownian motion.

3.3. Selfsupervised systenfor solving NP problem Let us introduce the followindnhomogeneous
version ofEq. (44)

' k=m o
v=1I 1[aZ#I——e!m& ! sin2/kv],0' v' 1,t>0, (o)
TRy o0k |

Then the corresponding Liouville equatitakes the form ofrainhomogeneous parabokgjuation subject
to an aperiodidorce



1C

0 29 ) k=m
#E/J" a2 f:e @ cos%v (51)

k=1
It should benoticed that the sums in Egs. {58nd (5) are finite, and they do not represent even

truncated Fourier expansions, while all the harmonic seamne equally powerfuDbviously this system is
still self-supervising, buhot isolated any more.

We will solve this equation subject to the following initial and boundary conditions

" "

v (0,t) =0, !'—V(I 1) =0 (52)

"(v,0) =#(v=0.5),

and the normalization constraint

|
| #".)d" =1 (53)

0

Before writing down the solution, we will verifyaisfaction of the constraint (h3For that purpose, let us
integrate Eq. (2) with respect vo

k=m/!

(t&d’ ' &(Vz € * Qo cos> /s (54)

k=19

As follows from the boundaryanditions in (52,

1" 1" |||2 I

— = =0, and therefore] Vd# =0, obviously, | co#"d " =0as well.

VAR : :

Hence,ql &# = 0. But, accordig to the initial condition in (52| &d” = | #(” =0.5)d"” =1att=0.
0 (o] (o]
Therefore, the nonalization constraint will be satisfied for dll 0
Exploiting the superposition principle for the linear equation (2), we will represent the solution as a sum of
free and forced components. These components are, respectfully

2.F s(F)2a% 9% 9%
&=="¢ | COS— !cos—+— (55)
I | |
m (a2t 2/k Ik
$=&l'e " d4cos=—V if " o(=)%a%  (56)
k=1 o I |
#r=te® cosl;kv if " :('Il—k)zaz (57)

Herewe will be interested only in the case [GRatrepresents a resonance between two aperiodic terms,
namely: exponentially decaying force and exponentially decayingrfag®n. Indeed, the solution (bias
a wellpronounced maximum at

/
tr=1/" if "= (%)Za2 (58)

while the solutiong55) and (5% are monotonously decay.

Let us now reaffirm the scenario of transition from deterministic to randata described by Egs.
(25),(26). For that purpose, rewrite Eq. (bl a different, but an equivalent form (based upon reflections
from the boundaries)

10
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, (V! $+2nl)? , (V+8! 2nl)?
# e 4%t 4o  4at } (59)

2a\/76

It can be verified that for vanishingly small times

1 V2
# ! exp( ) and #*! 0 at t! 0 (60)

2a/% 4a’t

and therefore, the transition scenario remains the same.

It should be notied that prior to running Eq. (hGhe analyticakolution of Eq. (51in the form of tle sum
of Egs. (55), (58 and (59 is to be substituted for.

Before moving ton-dimensional case, we will discuss the basic properties of the solution t¢25}s.
(26). Although there are many similarities to quantsystemswe will concentrate againn superposition
since it will ke essential for the describapproach.

In quantum mechanics, any observable quantity corresponds to an eigenstate of a Hermitian linear operator.
The linear combination of two or more eigenstates results in quantum superposition of two or more values
of the quantity. If the quanyitis measured, the projection postulate states that the state will be randomly
collapsed onto one of the values in the superposition (with a probability proportional to the square of the
amplitude of that eigenstate in the linear combination). Let us aentipebehavior of the model o$elf
superviseagystemdrom that vewpoint. As follows from Eq(29), all the particular solutions intersect at

the same point=0 att=0, and that leads to neuniqueness of the solution due to violation of lticshitz

condition Therefore, the same initial conditior0 att=0 yields infinite number of differersolutions

forming a family(29); each solution of this family appears with a certain probability guided by the
corresponding FokkdPlanck equationfig. 6.

Figure 6. Resonance in the probal;ility space

Turning ton-dimensional case we have

v =1 E[azj—v—em& | sin v], 0'v'l, (61)

(62)
i=12,..n, k=12..m

I"#$%6&$)*+$,)-$./00/1234$-285307-+$/.$8-9%

#o (2"2I " ),j=12,..ni=12,..n,k=12..m (63)

Jig =k
i=1 i

If theexcitation/ in Eqgs. (61) and (§2are selected as following

11
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i=n j2
b=t :(az"z#%),j:12,...n,i:12,...n,k:12...m (64)
1,“. kn :1

i
it will generate reonance with the eigevalue (63, andthe corresponding OdecayO will dominate over the
reg of decays; in terms of Eq. (Bthis means that the probability denditwill tend to its maximunat

i=n ; 2
5 = (a2#°" Jk_iz)ll, (65)

= 1/$jk1v---]

i=1 i
along that trajectory which is the OwimgO solution ofhe system (61), Fig..@he value of this maximum
is irrelevant, bt its location is important: it is given by the following values of the coordinates

V¥ =y (t9),i =12,.n (66)

4. Search in unsorted database.

In this section we will apply the $edupervise dynamidstroduced above to solthe problem of search in
unsorted database by improving the Gr@atgorithm.Grover's algorithnis aquantum algorithnthat

finds with high probability the unique input tdodadk boxfunction that produces particular output value,
using justo(NY?) evaluations of the function, whekeis the size of the functiontiomain It was originated

by Lov Groverin 1996.The analogous pro&in in classical computation cannot be solved in fewer
thanO(N) evaluations (because, in the worst case, the Nth member of the domain might be the correct
member)Unlike other quantum algorithms, which may provide exponential speedup over their classical
counterparts, Grover's algorithm provides only a quadratic speedup. However, even quadratic speedup is
considerable wheN is large At roughly the same time that Grover published his algorithmasproved

that no quantum solution to the problem carleate the function fewer thad(N*?) times, so Grover's
algorithm is asymptotically optim#b]. However that ppof does not contradictur claim to improve the
Grover algorithm sincéhe selfsupervised dynamics is neither quantumMewtonian: it repreens a
guantumclassical hybrid capable to violate the second law of thermodynamics.

The algorithmformulated asthe following. Consider an unsorted d#i@se consisting of:” items
labeled with a string of numberg,, j,,...j,as shown in Eq.(§3for n=m. Obviously a label includes

permutations of these numbefairning to Eqgs. (611 notice that each solution to this system can be labeled
similarly if the winning solution in Eqs. (2 has its maximum at a point with the
coordinates;*, v,,*,..v* defined by Eqgs (66 Then one can introduce the forced étwon defined by Eq.
(64) that provideghe resonant solution of Eq. (62nd as a result, the coordinatg$, v,*,..v*, of this
maximum will representhe address of the item Question. According to Eq. (B4he number of possible
values of forced excitations providing required resonances is equak'tp and that is exactly the
number of the items to be rietved. Therefore, each item can be retrieved by the corresponding resonance
with the forced excitation (lving the values from the set (§4vith the probability that dominates over the
probabilities for wrong addresses to occur. Strictly speaking, aesmmance solution has a smaller, but
non-zero probability to occur; tmeby a few number of Bernoulli trials, the most probable solution can be
found.Indeed, the probability of succedsg and failure p; after the irst trial is, respectively

PO P (67)
Then the probability of success after M trials is
l,=1"@"H"$1 a M$ % (68)

Therefore, aftepolynomialnumber of trials, one arrived at the solution to the problem (unless the function
! is flat).

12
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Let us now briefly review the procedure of the retrieval. Assume that the label of the item to be found

is/ e i The first step is to write down the analytical solution to Bg) (hat consists of freand
1 n.

forced motions as in the omtBmensional case:

L=l 41, (69)
Here
' s d)2az
%=1 ce '’ | (70)
j=1
n m
O/t * ./
"% = te¥ t$ $ COSzl—kVi (71)
i=1 k=1 i

whereC; are constants to be found from the initial conditions, and

. -2
1=n J
lx=1 =@ 3),j=12.ni=12.nk=12.m (@3
" ey i |
The second step ito substitute the solution (6@1to Eq. (6). The third step is taun the system (§1
measure the vaéis of v at t =1// * and obtain the address of the item in the form of a string of

coordinatesy*, v,*,..v*,, Fig. 7.

pV =05D)

(2)

Figure 7. Maximum probability, selected (1) and not selected (2) items.

It should be noticed that the capacity of timsorted databass of orderO(n")i.e. exponential with

respect to its dimensionality while all the resources providing its implementation are of dd{e), i.e.
polynomial since theumbe of equations in the system (6i$ n, and the number of terms in the analytical
solution to Eq§2) (to be substituted into Eqgs. (§%re of the orde®(n) as well. Indeed, the infinite sum

in Eq. (70) converges very fast to equal distributiortted probability density, and practically, only the
forced component of theolution represented by Eq. §7& important, and this component contad(s’)
number of terms.

5. Discussion and conclusion

The basic idea of this paper is to create a new Kimtyimamical systems that would preserve superposition
of random solutions, while allowing one to measure its state variables using classical methods. In other
words, such a hybrid system would reinforce the advantages and minimize limitations of botimcgsaeht
classical aspect3hese systems have been analyzdd]iand [§. It has been shown there that along with
preservation of superposition, such an important property of quantum systems agrditact
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decomposability in hybrids is lost. Let us alichat the main advantage of this property in terms of
guantum information is in blowing up an input of a polynomial complexity into an output of exponential
complexity, with no additional resources requireid. 8

Combinatorial optimization
1 2 3 4 n

2
Input = n Output=n"

Quantum mechanics

\ A0 w00 AP 0 e 00 )
Input=n [ o ’]@---@[s P } Output = n

0 0 ... g M7 0 6 - 0 2@

Figure 8. Mapping combinatorial optimization to quantum mechanics.

The greatesthallenge of our approach in this paper was in finding a OOreplacementO for the fundamental
property of the Schridingeguation in quanturalassical hybrids. It turns out that eigealues of linear
parabolic DE possess similar property.deed, consider a lineardimensional parabolic PDE subject to
boundary conditions. Then the eigealues correspondinty each variable form a sequence of

monotonously increasing positimlmberski(l) ...7\i(n). However, each linear combitian of these eigen

values represents another eigatue of the solution, and that is the same OOcombinatorial explosionO that is
illustrated inFig. 8 Due to that property, for eachstring-number label, one can find an exdibatforce

that activates the corresponding eig@ue. The second challenge was to satisfy a global (normalization)
constraint imposed upon the piattility density (in addition to boundary conditions). That was achieved via
a special form of the excitatidorce.Finally these work ada positive commertb a questiorposed in [T
CanNP-complete problems be solved efficiently in the physical universee answegiven by the

author, Scott Aaronsois negativeTo our opinion, it could be positiiewe complementhe (physical
worldOwith selfsupervised systems capable to viol&iesecond law of thermodynamics in ordeffitwl

short cutgo solutionsof combinatorial problemsAnother evidence of OmysteriousO power of €If
supervise systentgas bea demonstrated in [6] where a different type of the ODE that belongs to the same
class of selsupervising systenfinds the global maximum of an integrable, but not necessarily
differentiable functionThe idea of thalgorithmis very simple: introduce ositive function to be

maximized as the probability density to which the solution is attracted. Then the larger value of this
function will have the higher probability to appear. Special attention is paid to simulation of integer
programming, NFcompleteproblems and information retrieval.

Thusthe challenge of this paper is to relate artificial intuitbased intelligencerepresented by self
supervised systemsp solutions of NRcomplete problemsBy selfsupervised systemwe understand
systems hat are capable to move from disorder to order without external effort, i.e. in violation of the
second law of thermodynamids.has been demonstrated, [1], that such systems exis¢ mathematical
world: they are presented by ODE coupled with theioukille equation, but they belong neither to
Newtonian nor to quantum physics since tlaeg @pable toviolate the second law of thermodynamics.
That suggests that machines could siatulate intuition-based intelligencé they are composed only of
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physical parts, but without digital components. Nevertheless it was fsudldguantumclassicalhybrids
[1], that simulates some sElf-supervisedsystems. The main achievement of this work is a demaditst
that selfsupervisedsystems can solve Nebmplee problems in polynomial time by replacing an
enumeration of exponentially large number of possible choices with a short cut providedhdwy a
Newtonian and noguantum nature of seffupervised systems.
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