# MATTER THEORY OF MAXWELL EQUATIONS 

WU SHENG-PING


#### Abstract

This article try to unified the four basic forces by Maxwell equations, the only experimental theory. Self-consistent Maxwell equation with the e-current from matter current is proposed. and is solved to four kinds of electrons and the structures of particles. The static properties and decay and scattering are reasoned, all meet experimental data. The momentum-energy tensor of the electromagnetic field coming to the equation of general relativity is discussed. In the end the conformation elementarily between this theory and QED and weak theory is discussed compatible, except some bias in some analysis.


## Contents

1. Unit Dimension of $s c h$ ..... 2
2. Quantization ..... 2
3. Self-consistent Electrical-magnetic Fields ..... 3
4. Stable Particle ..... 4
5. Radium Function ..... 4
6. Solution ..... 5
7. Electrons and Their Symmetries ..... 6
8. Mechanic Feature ..... 7
9. Propagation and Movement ..... 8
10. Antiparticle ..... 10
11. Conservation Law and Balance Formula ..... 11
12. Muon ..... 11
13. Pion Positive ..... 12
14. Pion Neutral ..... 12
15. tau ..... 13
16. Proton ..... 13
17. Scattering ..... 14
18. The Great Unification ..... 14
19. Conclusion ..... 15
References ..... 15
[^0]
## 1. Unit Dimension of sch

A rebuilding of units and physical dimensions is needed. Time $s$ is fundamental. The velocity of light is set to 1

$$
\text { Velocity : } c=1
$$

Hence the dimension of length is

$$
L: c
$$

The $\hbar$ is set to 1

$$
\text { Energy : } \hbar=1
$$

In Maxwell equations the following is set

$$
c \epsilon=1, c \mu=1
$$

One can have

$$
\begin{gathered}
\epsilon: \frac{Q^{2}}{\varepsilon L} \\
\mu: \frac{\varepsilon L}{c^{2} Q^{2}} \\
\text { UnitiveElectricalCharge }: \sigma=\sqrt{\hbar}
\end{gathered}
$$

It's very strange that the charge is analyzed as space and mass. Charge $Q$ is then defined as $Q / \sigma$ here,

$$
\begin{gathered}
\sigma=1.03 \times 10^{-17} C \approx 64 e, e / \sigma=e / \sigma=1.56 \times 10^{-2} \approx 1 / 64 \\
H: Q /(L T): \sqrt{\hbar} / c \\
E: \varepsilon /(L Q): \sqrt{\hbar} / c
\end{gathered}
$$

If $\hbar, c$ is taken as a number instead of unit, then all physical units is described as the powers of the second: $s^{n}$.

The unit of charge can be reset by linear variation of charge-unit

$$
Q \rightarrow C Q, Q: \sigma / C
$$

We will use it without detailed explanation.

## 2. Quantization

All discussion base on a explanation of quantization, or real probability explanation for quantum theory, which bases on a Transfer Probability Matrix (TPM)

$$
P_{i}(x) M=P_{f}(x)
$$

As a fact, that a particle appears in a point at rate 1 is independent with appearing at anther point at rate 1. There still another pairs of independent states

$$
S_{1}=e^{i p x}, S_{2}=e^{i p^{\prime} x}
$$

because

$$
<s_{1}, s_{2}>_{4}=\int d V s_{1} s_{2}^{*}=N \delta\left(p-p^{\prime}\right)
$$

$<s_{1}, s_{2}>_{4}$ means make product integrated in time-space. Similarly the symbol

$$
<s_{1}, s_{2}>
$$

is the product integrated in space and always means its branch of zero frequency. In fact in the TPM formulation, it's been accepted for granted that the Hermitian
inner-product is the measure of the dependence of two states, and it is also implied by the formula

$$
P_{1} M P_{2}^{*}
$$

Depending on this view point one can constructs a wave

$$
e^{i p x}
$$

and gifts it with the momentum explanation $p$, Then all quantum theory is set up. We always use the expresses

$$
\begin{gathered}
A^{\mu d}=A_{\mu}, A_{\mu}^{d}=A^{\mu} \\
<B A, B^{\prime} A^{d}>=:<B A, B^{\prime} A>
\end{gathered}
$$

It's depending on context. $B, B^{\prime}$ are operators.

## 3. Self-consistent Electrical-magnetic Fields

Try equation for the free E-M field in mass-center frame

$$
\begin{gather*}
A_{, j}^{i, j}-A_{, j}^{j, i}=i A_{\nu}^{*} \cdot \partial^{i} A^{\nu} / 2+c c ., \quad Q_{e}=1  \tag{3.1}\\
\left.<A^{d}, i A_{\nu}^{*} \cdot \partial A^{\nu} / 2\right)>_{4}+c c .=0  \tag{3.2}\\
Q_{e}=\int d V\left(i A_{\nu}^{*} \cdot \partial^{t} A^{\nu} / 2+c c .\right) \tag{3.3}
\end{gather*}
$$

It's deduced by using momentum to express e-current.

$$
\begin{gathered}
\left(A^{i}\right):=(V, \mathbf{A}),\left(J^{i}\right)=(\rho, J) \\
\partial:=\left(\partial_{i}\right):=\left(\partial_{t}, \partial_{x_{1}}, \partial_{x_{2}}, \partial_{x_{3}}\right) \\
\partial^{\prime}:=\left(\partial^{i}\right):=\left(-\partial_{t}, \partial_{x_{1}}, \partial_{x_{2}}, \partial_{x_{3}}\right)
\end{gathered}
$$

The equation 3.1 have symmetry

$$
C P T, c c . P T
$$

If the gauge is

$$
\partial_{\mu} A^{\mu}=0
$$

the continuous charge current meets

$$
\partial_{\mu} \cdot J^{\mu}=0
$$

The energy of field $A$ is $\epsilon:=\int d V\left(E^{2}+H^{2}\right) / 2$ and with the zero border condition

$$
\begin{aligned}
& \varepsilon:=<\partial A^{\nu}\left|\partial A_{\nu}>:=<\partial A\right| \partial A>, F:=<A^{\nu}, J_{\nu}> \\
& \epsilon=\varepsilon+F
\end{aligned}
$$

For decay process of a particle the state is

$$
A=K * A_{i}+G * A_{f}, *:=*_{\mathbf{x}}
$$

With particle number conservation,

$$
<K, K>+<G, G>=1, K=f(t) g(\mathbf{x}), F_{f}=0
$$

In this process the work outward is zero

$$
<A, i A_{\nu} \partial A^{\nu} / 2+c c .>+c c .=0
$$

with the normalization of $A_{i}, A_{f}$.

$$
|K|_{t t} / F_{i}=|K| F_{i}
$$

$$
K=e^{-C t}, C=-F_{i}=\left(\varepsilon_{f}-\varepsilon_{i}\right) / 2
$$

## 4. Stable Particle

All particles are elementarily E-M fields is presumed. It's trying to find stable solution of the Maxwell equations in complex domain. One can write down a function initially and correct it by re-substitution. Here is the initial state

$$
V=V_{i} e^{-i k t}, A_{i}=V, \partial_{\mu} \partial^{\mu} A_{i}^{\nu}=0
$$

Substituting into equation 3.1

$$
\begin{gathered}
\partial_{\mu} \partial^{\mu} A_{i}^{\nu}-\partial^{\nu} \partial_{\mu} A_{i}^{\mu}=J_{i} \\
J_{i}=-\partial^{\nu} \partial_{\mu} A_{i}^{\mu}=-\partial^{\nu} \partial_{t} V
\end{gathered}
$$

It has the properties

$$
\partial \cdot J_{i}=0
$$

$J_{i}$ causes the initial fields $V$, so that it is the real seed of recursive algorithm.
We can calculates the solution by recursive re-substitution for the two sides of the equation. The first correction $E_{2}, H_{2}$

$$
\begin{align*}
\nabla \cdot E_{2} & =i e_{/ \sigma} A_{i \nu}^{*} \cdot \partial_{t} A_{i}^{\nu} / 2+c c  \tag{4.1}\\
\nabla \times H_{2} & =-i e_{/ \sigma} A_{i \nu}^{*} \cdot \nabla A_{i}^{\nu} / 2+c c
\end{align*}
$$

We calls the fields' correction $A_{n}$ with $n$ degrees of $A_{i}$ the n degrees correction. By the condition 3.1 to solve the dynamic process in the mass-center frame

$$
\begin{gathered}
\hat{P}^{\prime}\left(A-A_{i}\right)=\hat{P}\left(A-A_{i}\right) \\
\hat{P}(A):=F\left(i A^{\nu *} \partial A_{\nu} / 2+c c .\right) \\
\hat{P}^{\prime}:=g_{i j} s^{i} s^{j}
\end{gathered}
$$

Then the dependence between initial state and later state is

$$
\begin{equation*}
<A\left|\hat{P}^{\prime} /\left(\hat{P}^{\prime}-\hat{P}\right)\right| A_{i}>_{4} \tag{4.2}
\end{equation*}
$$

because

$$
\int d A<A^{*}\left(i A_{i}^{\nu *} \partial A_{\nu / 2}\right), 1 /\left(\hat{P}^{\prime}-\hat{P}\right) A_{i}>_{4}=0
$$

## 5. Radium Function

Firstly

$$
\nabla^{2} A=-k^{2} A
$$

is solved. Exactly, it's solved in spherical coordinate

$$
0=r^{2}\left(\nabla^{2} f+k^{2} f\right)=\left(r^{2} f_{r}\right)_{r}+k^{2} r^{2} f+\frac{1}{\sin \theta}\left(\sin \theta f_{\theta}\right)_{\theta}+\frac{1}{\sin ^{2} \theta}\left(f_{\phi}\right)_{\phi}
$$

Its solution is

$$
\begin{gathered}
f=R \Theta \Phi=R_{l} Y_{l m} \\
\Theta=P_{l}^{m}(\cos \theta), \Phi=\cos (\alpha+m \phi) \\
R_{l}=N \eta_{l}(k r), \eta_{l}(r)=r^{l} \int_{0}^{\infty} \frac{(1-\lambda)^{l}}{(1+\lambda)^{l+2}} \cos (\lambda r) d \lambda \\
\int_{0}^{\infty} d r \cdot r^{2} R^{2}=1
\end{gathered}
$$



Figure 1. the shape of radium function $R_{1}$ by DFT
$R$ is solved like

$$
\begin{gathered}
\left(r^{2} R_{r}\right)_{r}=-k^{2} r^{2} R+l(l+1) R, l \geq 0 \\
R \rightarrow r R^{\prime} \\
\left(r^{2} R^{\prime}\right)_{r r}=-k^{2} r^{2} R^{\prime}+l(l+1) R^{\prime} \\
R^{\prime} \rightarrow r^{l-1} R^{\prime} \\
r R_{r r}^{\prime}+2(l+1) R_{r}^{\prime}+k^{2} r R^{\prime}=0 \\
r \rightarrow r / k \\
\left(s^{2} F\right)^{\prime}+2(l+1) F+F^{\prime}=0, F=F\left(R^{\prime}\right)
\end{gathered}
$$

$F()$ is the Fourier transform

$$
R^{\prime}=\int_{0}^{\infty} \frac{(1-\lambda)^{l}}{(1+\lambda)^{l+2}} \cos (\lambda r) d \lambda
$$

For $l=1$, the function $R_{1}$ has zero derivative at $r=0$ and is zero as $r \rightarrow \infty$.

## 6. Solution

The derivatives of the function of electron has a strange breaking point in coordinate origin hence without normal convenience of Fourier transform. The following are some proximation of the first rank. The solution of $l=1, m=1, Q=e_{/ \sigma}$ is calculated or tested for electron.

$$
A_{1}=N R_{1}(k r) Y_{1,1}
$$

The curve of $R_{1}$ is like the one in the figure 1 .
The magnetic dipole moment $\mu_{z}$ is calculated as the first rank of proximation

$$
\begin{gathered}
\mu_{z}=<A\left|-i \partial_{\phi}\right| A>/ 2 \\
=1 / 2, k_{e}=1, Q_{e}=1
\end{gathered}
$$

The power of unit of charge is not equal for this equation, but it's valid for unit $Q=e$.

$$
\frac{1}{2}=\mu_{B}, k_{e}=1, Q_{e}=1
$$

## 7. Electrons and Their Symmetries

Some states of electrical field $A$ are defined as the core of the electron, it's the initial function $A_{i}=V$ for the re-substitution to get the whole electron function:

$$
\begin{gathered}
e_{r}^{+}: N R_{1}(k r) Y_{1,1} e^{-i k t} \\
e_{l}^{+}: N R_{1}(k r) Y_{1,-1} e^{-i k t} \\
e_{r}^{-}:-N R_{1}(k r) Y_{1,1} e^{i k t} \\
e_{l}^{-}:-N R_{1}(k r) Y_{1,-1} e^{i k t} \\
k=m_{e}
\end{gathered}
$$

$r, l$ is the direction of the spin. We use these symbols $e$ to express the complete potential field $A$ or the abstract particle.

Energy of static E-field crossing is discussed. In the first one of rank of correction ie. the static field is

$$
e^{*}\left(i \partial^{\prime}\right) e=J_{e}, Q_{e}=1
$$

then the charge is normalized

$$
Q=<e_{\mu}\left|i \partial_{t}\right| e^{\mu}>=1, Q_{e}=1
$$

Hence

$$
<\partial e \mid \partial e>/ 2=k_{e} / e_{/ \sigma}, k_{e}=m_{e}
$$

The static energy of electric field between $A_{2}$ is

$$
\varepsilon_{q}=-e_{/ \sigma}^{3} k_{e} / 2=-\frac{1}{6.7 \times 10^{-16} s}
$$

Energy of the static magnetic field crossing

$$
\varepsilon_{m}^{\prime}=\varepsilon_{e}
$$

Hence the gross energy is

$$
\varepsilon_{e}=2 \varepsilon_{q}=-\frac{1}{3.355 \times 10^{-16} s}
$$

The value of crossing term generated by static fields between electrons are

| $\varepsilon_{e}$ | $e_{r}^{+}$ | $e_{r}^{-}$ | $e_{l}^{+}$ | $e_{l}^{-}$ |
| :---: | :---: | :---: | :---: | :---: |
| $e_{r}^{+}$ | + | - | 0 | 0 |
| $e_{r}^{-}$ | - | + | 0 | 0 |
| $e_{l}^{+}$ | 0 | 0 | + | - |
| $e_{l}^{-}$ | 0 | 0 | - | + |

The field of four kinds of electrons has symmetries

$$
\begin{gathered}
e_{l}^{+}: E_{n}+M_{n} \\
e_{r}^{+}: E_{n}-M_{n} \\
e_{l}^{-}:(-1)^{n-1} E_{n}+(-1)^{n / 2} M_{n} \\
e_{r}^{-}:(-1)^{n-1} E_{n}-(-1)^{n / 2} M_{n}
\end{gathered}
$$

$E: E\left(A_{i}\right)$ is the abstract electrical field, $M: M\left(A_{i}\right)$ is the abstract magnetic field, the derivatives are solved. $n$ is the degree of the correction. The non zero crossing in re-substitution is the crossing with $A_{i}$. The correction with higher absolute frequency than $k_{e}$ is also zero.

Calculating the crossing part between $e_{r}^{+}, e_{l}^{-}$. the non zero results of crossing is between $A_{2}$ and $A_{6}$ and between $A_{4}$.

$$
\varepsilon_{x} \approx-e_{/ \sigma}^{7} k_{e} / 4 \approx-\frac{1}{2.18 \times 10^{-8} s}
$$

The theorem 9.6 is used. The value of this crossing term generated between electrons are

$$
\begin{array}{ccccc}
\varepsilon_{x} & e_{r}^{+} & e_{r}^{-} & e_{l}^{+} & e_{l}^{-} \\
e_{r}^{+} & + & 0 & 0 & - \\
e_{r}^{-} & 0 & + & - & 0 \\
e_{l}^{+} & 0 & - & + & 0 \\
e_{l}^{-} & - & 0 & 0 & +
\end{array}
$$

## 8. Mechanic Feature

If the equation that connects space and E-M fields is written down for cosmos of electrons, it's the following:

$$
\begin{gather*}
R_{i j}-\frac{1}{2} R g_{i j}=8 \pi G T_{i j} / c^{4}  \tag{8.1}\\
T_{i j}=F_{i}^{k *} F_{k j}-g_{i j} F_{\mu \nu} F^{\mu \nu^{*}} / 4
\end{gather*}
$$

$F$ is the electromagnetic tensor. This equation give mass because the space is decided by E-M fields instantly.

Because fields $F$ is additive, the group of electrons are express by:

$$
F=\sum_{i} f_{i} * \partial e_{i},<f_{i} \mid f_{i}>=1
$$

It's called propagation. The convolution is made only in space:

$$
f * g=\int d V f(t, y-x) g(t, x)
$$

Each $f_{i}$ is normalized to 1 . We always use

$$
\sum_{i} f_{i} * e_{i}, \sum_{i} f_{i} * \partial e_{i}
$$

to express its abstract construction and the field.
When the mechanical physical is discussed, observing the Energy-Momentum tensor $T$ we have the momentum is

$$
\begin{gather*}
p_{, \nu}^{\mu}=T_{\nu}^{\mu}  \tag{8.2}\\
\varepsilon=<\partial A \mid \partial A>
\end{gather*}
$$

So that the spin of electron is calculated as

$$
S_{e}=<A\left|\partial_{\phi} \cdot \partial_{t}\right| A>/ 2=1 / 2
$$

The MDM (magnetic Dipole moment) of electron is calculated by the equation 3.1

$$
\mu_{e}=\frac{1}{2}<A\left|-i \partial_{\phi}\right| A>=1 /\left(2 k_{e}\right), Q_{e}=1
$$

## 9. Propagation and Movement

Define symbols for particle $x$

$$
\begin{gathered}
e_{x r}^{+}:=N \cdot R_{1}\left(k_{x} r\right) Y(1,1) e^{-i k_{x} t} \\
e_{x x}^{+}:=\left(e_{x l}^{+}+e_{x r}^{+}\right) / \sqrt{2} \\
\quad<e_{x} \mid e_{x}>=1
\end{gathered}
$$

The propagations is the $f(x)$ in

$$
f(x) * e
$$

The following are stable propagation:

| particle | electron | photon | neutino |
| :--- | :---: | :---: | :---: |
| notation | $e_{r}^{+}$ | $\gamma_{r}$ | $\nu_{r}$ |
| structure | $e_{r}^{+}$ | $\left(e_{r}^{+}+e_{r}^{-}\right)$ | $\left(e_{r}^{+}+e_{l}^{-}\right)$ |

By mathematic

$$
\varsigma_{k, l, m}(x):=R_{l}(k r) Y_{l, m}, \varsigma_{k}(x)=\varsigma_{k}^{ \pm}(x):=\varsigma_{k, 1, \pm 1}(x)
$$

meets the following results
Theorem 9.1.

$$
\int d V R\left(\varsigma_{k}^{ \pm}(x)\right) \varsigma_{k}^{*}(x-y)=0, y \neq O
$$

$R$ is any rotation.
Proof. Use the limit

$$
\lim _{k^{\prime} \rightarrow k}\left(\int d V \varsigma_{k}^{ \pm}(x) \varsigma_{k^{\prime}}^{*}(x-y)\right)
$$

and the identity

$$
h \nabla^{2} g-g \nabla^{2} h=\nabla \cdot(h \nabla g-g \nabla h)
$$

For the function, it's strange in grid origin.

Theorem 9.2.

$$
<f(x) * \varsigma_{k}\left|g(x) * \varsigma_{k}>=<f(x)\right| g(x)>
$$

$|f|^{2},|g|^{2}$ is integrable.
It's proved by

$$
<\sum_{i} a_{i} \varsigma_{k}\left(x-x_{i}\right) \mid \sum_{i} b_{i} \varsigma_{k}\left(x-x_{i}\right)>=\sum_{i} a_{i}^{*} b_{i}
$$

Theorem 9.3. if $e^{i \mathbf{p r}}, \varsigma_{k}$ is normalized to 1 ,

$$
e^{i \mathbf{p r}} * \varsigma_{k}=\omega e^{i \mathbf{p r}},|\omega|=1
$$

Theorem 9.4.

$$
\nabla\left(\varsigma_{k} * \varsigma_{k^{\prime}}\right)=\left(\nabla \varsigma_{k}\right) * \varsigma_{k^{\prime}}+\varsigma_{k} * \nabla\left(\varsigma_{k^{\prime}}\right)
$$

$$
\begin{gathered}
-\partial_{y} \int d V_{x} I(y-x)_{\varsigma_{k}}(x-y)_{\varsigma_{k^{\prime}}}(x) \\
=-\int d V_{x} I^{\prime}(y-x)_{\varsigma_{k}}(x) \varsigma_{k^{\prime}}(x) \\
=\int d V_{x} I(x-y)\left(\varsigma_{k}(x-y) \varsigma_{k^{\prime}}(x)\right)_{x} \\
=\int d V_{z} I(z)\left(\varsigma_{k}(z) \varsigma_{k^{\prime}}(z+y)\right)_{z}, z=x-y \\
=\int d V_{z}\left(\varsigma_{k}^{\prime}(-z) \varsigma_{k^{\prime}}(z+y)+\varsigma_{k}(-z) \varsigma_{k^{\prime}}^{\prime}(z+y)\right) \\
=\int d V_{z}\left(\varsigma_{k}^{\prime}(z) \varsigma_{k^{\prime}}(-z+y)+\varsigma_{k}(z) \varsigma_{k^{\prime}}^{\prime}(-z+y)\right) \\
I(y-x):=\left\{\begin{array}{l}
0, x \neq O \\
1, x=O
\end{array}\right.
\end{gathered}
$$

Theorem 9.5.

$$
<\left(\nabla \varsigma_{k}\right) * \varsigma_{1}\left|\varsigma_{k} * \varsigma_{1}>=<k \varsigma_{k} * \nabla \varsigma_{1}\right| \varsigma_{k} * \varsigma_{1}>
$$

## Theorem 9.6.

$$
\begin{gathered}
\varsigma_{1} * \frac{1}{r}=\varsigma_{1} \\
\int d V \varsigma_{1} \cdot \varsigma_{1}^{*} \cdot \varsigma_{1} \cdot \varsigma_{1}^{*} \\
=C \int d P \cdot F\left(\varsigma_{1}\right) * F\left(\varsigma_{1}^{*}\right) * F\left(\varsigma_{1}\right) * F\left(\varsigma_{1}^{*}\right) \\
=\int d P \omega * \omega^{*} * \omega * \omega^{*}=1
\end{gathered}
$$

Theorem 9.7.

$$
\begin{gathered}
<\left(\nabla \varsigma_{k}\right) * \varsigma_{1}\left|\left(\nabla \varsigma_{k}\right) * \varsigma_{1}>=<\left(\nabla \varsigma_{k}\right) * \varsigma_{1}\right| \varsigma_{k} *\left(\nabla \varsigma_{1}\right)> \\
\approx k<\varsigma_{k} * \varsigma_{1} \mid \varsigma_{k} * \varsigma_{1}>
\end{gathered}
$$

The figure 2 is the shape of distribution of momenta of electron function $e_{x}$.
The movement of the propagation is called Movement, ie. the third level wave, harmonic wave. The mechanical movements $p$ of particle $e_{x} * \sum e$ by relative theory is

$$
A=e^{i \mathbf{p x}-i k t} * e_{\mathbf{x}} e^{-i k_{x} t} * \sum e
$$

The Lorentz invariance are

$$
-p^{\mu} p_{\mu}=C, L\left(k_{x}\right)=k_{x}
$$

Because the self coordinate measure of the particle $e_{x}$ is $k_{x}^{2}$, so that

$$
p^{\mu} p_{\mu}=0
$$

The static MDM (magnetic dipole moment) is approximately by the condition 8.2

$$
\mu=\sum_{i}<\int d x_{i} \cdot e_{x} * \partial e_{i}\left(x_{i}\right)|-i \mathbf{r} \times \nabla| \int d x_{i} \cdot e_{x} * \partial e_{i}\left(x_{i}\right)>/ 2 ., Q_{e}=1
$$



Figure 2. the shape of distribution of radioactive momenta of electron fields in one direction: $k /(1+k)^{4}-4 k /(1+k)^{5}$, calculated through spherical Bessel functions

$$
\mu_{z}=\sum_{i}<e_{x} * e_{i}\left(x_{i}\right) \left\lvert\, e_{x} *\left(-i \partial_{\phi} e_{i}\left(x_{i}\right)\right)>\frac{k_{e}}{2 k_{x}}\right.
$$

Its spin is approximately

$$
\begin{gathered}
S_{z}=\sum_{i}<\int d x \cdot e_{x} * \partial e_{i}\left(x_{i}\right)\left|-\partial_{\phi} \partial_{t}\right| \int d x \cdot e_{x} * \partial e_{i}\left(x_{i}\right)>/ 2 ., Q_{e}=1 \\
=\sum_{i}<e_{x} * e_{i}\left(x_{i}\right) \mid e_{x} *\left(-i \partial_{\phi} e_{i}\left(x_{i}\right)\right)>k_{e i} / 2
\end{gathered}
$$

Mechanical spin decouples between electrons.
Calculating the following coupling system

$$
\begin{gathered}
F=e_{x} * \sum_{i} \partial e_{i} \\
\partial \cdot \partial^{\prime} e_{x}=0 \\
e_{x}=e^{-i N t} \varsigma_{N}, N \approx<\partial A^{\nu} \mid \partial A_{\nu}>/ 2, Q_{e}=1 \\
\text { 10. ANTIPARTICLE }
\end{gathered}
$$

Antimatter is the positive matter reverse world-line (PT), so that it meets

$$
\partial_{\nu} \partial^{\nu} A^{i}=-i e_{/ \sigma} A_{\nu}^{*} \cdot \partial^{i} A_{\nu} / 2+c c .
$$

From

$$
\partial_{\nu} \partial^{\nu}\left(A^{i}(x)+B\right)=i e_{/ \sigma}\left(-A_{\nu}(x)+B\right)^{*} \cdot \partial^{i}\left(A_{\nu}(x)+B\right) / 2+c c .
$$

We have

$$
\partial_{\nu} \partial^{\nu}\left(A^{i}(-x)+B\right)=i e_{/ \sigma}\left(A_{\nu}(-x)+B\right)^{*} \cdot \partial^{i}\left(A_{\nu}(-x)+B\right) / 2+c c
$$

$B$ is outer field the particle is in. If $A(x)$ describes positive matter, $A(-x))$ is describes antimatter, we define

$$
\overline{A(x)}:=A(-x)
$$

We have the reaction in four-dimension map

$$
p \rightarrow, A(x) \rightarrow \bullet \rightarrow p^{\prime}
$$

equivalent to

$$
p \rightarrow \bullet \rightarrow A(-x), \rightarrow p^{\prime}
$$

and

$$
\overline{e_{r}^{+}} \approx e_{r}^{-}
$$

## 11. Conservation Law and Balance Formula

No matter in E-M fields level or in movement (the third) level, the conservation law is conservation of momentum and conservation of angular momentum. A balance formula for a reaction is the equivalent formula in positive matter, ie. after all anti-matter is shifted to the other side of the reaction formula. Balance formula is suitable for the analysis of the energy transition of decay. The invariance of electron itself in reaction is also a conservation law.
12. Muon

Generally, there are kinds of energy increments.
Weak coupling

$$
W:<e_{r}^{+} \mid e_{l}^{-}>
$$

Light coupling

$$
L:<e_{r}^{+} \mid e_{r}^{-}>
$$

Weak side coupling

$$
W s:<e_{r}^{+}\left|e_{l}^{-}>-<e_{x} * e_{r}^{+}\right| e^{i p x} * e_{l}^{-}>
$$

Light side coupling

$$
L s:<e_{r}^{+}\left|e_{r}^{-}>-<e_{x} * e_{r}^{+}\right| e^{i p x} * e_{r}^{-}>
$$

Strong coupling

$$
S:<e_{r}^{+} \mid e_{r}^{+}>
$$

Because of the degrees of the derivatives the anti-matter couplings are the same. $\mu$ is composed of

$$
\mu_{r}^{+}: e_{\mu} *\left(e_{r}^{+}+\overline{\nu_{r}}\right)
$$

From the equation 8.1 and 9.1 and the other deductive, $\mu$ is with mass $3 m_{e} / e_{/ \sigma}=$ $3 \times 64 k_{e}$, spin $1 / 2, \mathrm{MDM} \mu_{B} k_{e} / k_{\mu}$.

The main channel of decay

$$
\begin{gathered}
\mu_{r}^{+} \rightarrow M_{l}^{+}+\overline{\nu_{l}} \\
M_{r}^{+}=e_{M} *\left(\overline{e_{l}^{-}}+\nu_{l}\right) \\
e_{\mu} * e_{r}^{+}+e^{-i p_{1} x} * e_{M}^{*} * e_{l}^{-}+\overline{e^{i p_{2} x}} * \nu_{l} \rightarrow \overline{e_{\mu}} * \nu_{r}+\overline{e^{i p_{1} x}} * \overline{e_{M}} \nu_{l}
\end{gathered}
$$

The outer waves $e_{\mu}$ and $e^{-i p_{1} x} * e_{M}^{*}, e_{\mu}$ and $e^{-i p_{2} x}$ are coupling. The energy difference is kind of $W s$, the interacting field is $E$ that between $A_{2}, A_{6}$.

$$
\begin{gathered}
2<\overline{e_{\mu}} * \partial e_{r}^{+}\left|\overline{e_{\mu}} * \partial e_{l}^{-}>-2<\overline{e_{\mu}} * \partial e_{r}^{+}\right| e^{i \mathbf{p}_{1} \mathbf{r}+i k_{\mu} t} * \partial e_{l}^{-}> \\
p_{i}^{\mu} p_{i \mu}=0
\end{gathered}
$$

$$
\begin{aligned}
& \left.=2\left(1-\frac{k_{\mu}}{k_{\mu}+k_{e}}\right)<\overline{e_{\mu}} * \partial e_{l}^{+} \right\rvert\, e^{i \mathbf{p}_{1} \mathbf{r}+i k_{\mu} t} * \partial e_{r}^{-}> \\
& \left.=2\left(1-\frac{k_{\mu}}{k_{\mu}+k_{e}}\right)<\overline{e_{\mu}} * e_{l}^{+} \right\rvert\, e^{i \mathbf{p}_{1} \mathbf{r}+i k_{\mu} t} * \nabla^{2} e_{r}^{-}>
\end{aligned}
$$

sum up in spectrum of $p_{1}: p_{1}^{\mu} p_{1 \mu}=0$

$$
=\frac{2 k_{e} \varepsilon_{x}}{k_{\mu}}
$$

The emission of decay is

$$
=-\frac{1}{2.1 \times 10^{-6} s} \quad\left[2.1970 \times 10^{-6} s\right][1]
$$

The data in square bracket is experimental data. The decay of particle $M$ is like a scattering with no energy emission

$$
M_{r}^{+} \rightarrow \overline{e_{l}^{-}}+\nu_{l}
$$

## 13. Pion Positive

Pion positive is

$$
\pi_{l}^{-}: e_{\pi} *\left(\overline{e_{r}^{+}}+e_{l}^{-}\right)+e_{\pi}^{*} * e_{r}^{+}
$$

It's with mass $5 \times 64 m_{e}$, spin $1 / 2$ and MDM $\mu_{B} k_{e} / k_{\pi^{+}}$.
Decay Channels:

$$
\pi_{l}^{-} \rightarrow \mu_{l}^{-}+\nu_{r}
$$

It's with balance formula

$$
e_{\pi}^{*} * e_{r}^{+}+e_{\pi} * e_{l}^{-}+\overline{e^{i p_{1} x}} * \overline{e_{\mu}} * \nu_{r} \rightarrow \overline{e_{\pi}} * e_{r}^{+}+e^{i p_{1} x} * e_{\mu} * e_{l}^{-}+e^{i p_{2} x} * \nu_{r}
$$

The emission of energy is kind of $W$

$$
\varepsilon_{x}=-\frac{1}{2.18 \times 10^{-8} s} \quad\left[\left(2.603 \times 10^{-8} s\right][1]\right.
$$

The referenced data is the full width.

## 14. Pion Neutral

Pion neutral is atom-like particle

$$
\pi^{0}: e_{\pi^{0}} * \nu_{r}+e_{\pi^{0}}^{*} * \nu_{l}
$$

It has mass $4 \times 64 m_{e}$, zero spin and zero MDM. Its decay modes are

$$
\pi^{0} \rightarrow \gamma_{r}+\gamma_{l}
$$

The loss of energy is kind of $L$

$$
4 \varepsilon_{e}=-\frac{1}{8.39 \times 10^{-17} s} \quad\left[8.4 \times 10^{-17} s\right][1]
$$

## 15. TAU

$\tau$ maybe that

$$
\tau_{l}^{+}: e_{\tau} *\left(5 e_{r}^{+}+\overline{5 e_{r}^{+}+e_{r}^{-}}\right)
$$

Its mass $51 \times 64 m_{e}$, spin $1 / 2, \operatorname{MDM} \mu_{B} k_{e} / k_{\mu}$. It has decay mode

$$
\tau_{l}^{+} \rightarrow \mu_{l}^{+}+\nu_{l}+\overline{\nu_{l}}
$$

$e_{\tau} * 5 e_{r}^{+}+\overline{e^{i p_{1} x}} * \overline{e_{\mu}} * \nu_{l}+\overline{e^{i p_{2} x}} * \nu_{l} \rightarrow \overline{e_{\tau}} * 5 e_{r}^{+}+\overline{e_{\tau}} * e_{r}^{-}+e^{i p_{1} x} * e_{\mu} * e_{l}^{+}+e^{i p_{3} x} * \nu_{l}$ The energy gap is kind of $L s, E=A_{2}$

$$
\begin{gathered}
5<\overline{e_{\tau}} * \partial E_{r}^{+} \mid \overline{e_{\tau}} * \partial E_{r}^{-}> \\
-5<\overline{e_{\tau}} * \partial E_{r}^{+} \mid e^{i \mathbf{p}_{\mathbf{1}} \mathbf{r}-i k_{\tau} t} * \partial E_{r}^{-}> \\
p_{i}^{\mu} p_{i \mu}=0 \\
\left.=5\left(1-\frac{k_{\tau}}{k_{\tau}+k_{e}}\right)<\overline{e_{\tau}} * E_{r}^{+} \right\rvert\, e^{i \mathbf{p}_{\mathbf{1}} \mathbf{r}-i k_{\tau} t-i k_{e} t} * \nabla^{2} E_{r}^{-}> \\
=\frac{5 \varepsilon_{e}}{k_{\tau} / k_{e}} \\
=-\frac{1}{6 \times 10^{-14} s} \quad\left[2.9 \times 10^{-13} s, B R .0 .17\right][1]
\end{gathered}
$$

Depending on this kinds of particle including

$$
q_{r}^{n+}:=n\left(e_{r}^{+}, \overline{e_{r}^{+}}\right)
$$

we can construct particles of great mass decaying without strong emission (light radiative), for example

$$
e_{L} *\left(q_{r}^{n+}, \overline{e_{l}^{-}}\right)
$$

This series of particle has included $\mu, \tau$ and in fact almost all light radiative particles are of this kind, they are created in colliding. Another condition is possibly that, in the collision, the created light radioactive particle $\left(q_{r}^{n+}, e_{l}^{-}\right)$with different $n$ is mixed to some rates as to the detector can't distinguish them.

Because the channel width decides the channel branch rates, obviously the most experimental data violate this rule. So that the channels listing after the same name of a particle in fact belong to different particles.

The particle $K^{+}$possibly is

$$
K^{+}=\left(q_{r}^{3+}, \overline{\nu_{l}+e_{l}^{-}}\right) \rightarrow \mu_{r}^{+}+\overline{\nu_{l}}
$$

It has emission of $L s$.

## 16. Proton

Proton may be like

$$
p_{r}^{-}: e_{p} *\left(e_{r}^{+}+e_{r}^{-}+e_{l}^{+}+e_{l}^{-}+\overline{e_{l}^{+}+2 e_{r}^{+}}\right)+e_{p}^{*} *\left(e_{r}^{+}+e_{r}^{-}+e_{l}^{+}+e_{l}^{-}+\overline{2 e_{l}^{-}}\right)
$$

The mass is $27 \times 64 m_{e}$ that's very close to the real mass. The MDM is calculated as $3 \mu_{N}$, spin is $1 / 2$. The proton thus designed is eternal because if it decay even to the finest blocks the energy of emission is negative.

We define an unit: Mass-number Unit

$$
m=m_{e} \sigma / e \approx 64 m_{e}
$$

## 17. Scattering

The scattering can be calculated as dynamic electromagnetic mechanical theory, ie. the magnitude scattered is calculated by the formula 4.2 . From the equation 3.1 the operator of current is

$$
2 j^{\mu}=i e_{/ \sigma} A_{\mu}^{*} \partial A^{\mu}-i e_{/ \sigma} A^{\mu} \partial A_{\mu}^{*}
$$

The reaction is like

$$
\sum_{i} f_{i} * e_{i} \rightarrow \sum_{i} f_{i}^{\prime} * e_{i}
$$

For example the scattering in some frame

$$
\begin{gathered}
e^{i p_{1} x} * e+e^{i p_{2} x} * e \rightarrow e^{i p_{3} x} * e+e^{i p_{4} x} * e \\
J_{13}=i e_{/ \sigma} A_{1}^{*} \partial A_{1}-i e_{/ \sigma} A_{3} \partial A_{3}^{*}=i e_{/ \sigma} \overline{A_{1}} \partial A_{3}-i e_{/ \sigma} A_{3} \partial \overline{A_{1}}
\end{gathered}
$$

The transfer is

$$
i \mu \approx \frac{C\left(p_{1}^{\prime}+p_{3}^{\prime}\right)^{\nu}\left(p_{2}^{\prime}+p_{4}^{\prime}\right)_{\nu}}{\left(p_{1}^{\prime}-p_{3}^{\prime}\right)^{2}}
$$

The $p_{i}^{\prime}$ is the cap momentum relative to $p_{i}$.

$$
i C=e^{2}=\frac{\varepsilon_{e}}{k_{e} e}
$$

The interaction is between $A_{2}$. In the mean effect rate of transfer for the scattering of one to one electrons is

$$
\frac{|\mu|^{2}}{2 k_{1} \cdot 2 k_{2} \cdot 2 k_{3} \cdot 2 k_{4}}
$$

## 18. The Great Unification

Firstly we redefine the unit second to simplify the equation 8.1

$$
\begin{gathered}
1=8 \pi G / c^{4} \\
(8 \pi G)_{T=s} C T^{2} / \hbar=1, c=1, \hbar=1
\end{gathered}
$$

The general relative equation is

$$
T_{i j}=R_{i j}-g_{i j} R / 2
$$

the EM equation is

$$
T_{i j}=F_{i k}^{*} F_{j}^{k}-g_{i j} F_{\mu \nu}^{*} F^{\mu \nu} / 4
$$

We observe that the co-variant curvature is

$$
R_{i j}=F_{i k}^{*} F_{j}^{k}+g_{i j} F_{\mu \nu}^{*} F^{\mu \nu} / 8
$$

## 19. Conclusion

The relative theory is applied to electromagnetic wave to give the mechanism meaning of the fields, by energy-momentum tensor. In my view point the sumup of the grains (as electrons) of electromagnetic field is expression of mechanic movement. Fortunately this model explained all the effects in the known world: strong, weak and electromagnetic effects, and even subclassify them further if not being to add new ones. In this model the only field is electromagnetic field, and this stands for the philosophical with the point of that unified world is from an unique source. All depend on a simple fact: the current of matter in a system is time-invariantly zero in mass-center frame, and we can devise current of matter to analysis the e-charge current.

Except electron function my description of particles in fact has the same form with Quantum Electromagnetic Mechanics, and they two should reach the same result theoretically. But my theory isn't compatible to the theory of quarks, the upper part of standard model, if not it is calculated in the style of Quantum Electromagnetic Mechanics. In fact, The electron function is a good promotion for the experimental model of proton that went up very early.

Underline my calculations a fact is that the electron has the same phase (electron resonance), which the Cosmos Explosion would explain, all electrons are generated in the same time and place, the same source.

## References

[1] K. Nakamura et al. (Particle Data Group), JPG 37, 075021 (2010) (URL: http://pdg.lbl.gov) E-mail address: hiyaho@126.com

Wuhan University, Wuhan, Hubei Province, The People's Republic of China. PostCODE: 430074


[^0]:    Date: Jun 11, 2017.
    Key words and phrases. Maxwell equations, Decay, Antiparticle.

