The real parts of the nontrivial Riemann zeta function zeros Igor Turkanov

ABSTRACT

This theorem is based on the study of holomorphy functions and on the fact that near the singularity point of the imaginary part of some rational function can accept an arbitrary preassigned value.

Registration contains colored markers:

- - a fact which is not proven at present or an assumption;
- - the statement which requires additional attention;
- - statement which is proved earlier or clearly undestandable.

THEOREM

- The real parts of all the nontrivial Riemann zeta function zeros ρ lie on the line $\Re(\rho)=\frac{1}{2}$.

PROOF:

- According to the functional equality [10, p. 22], [5, p. 8-11]:

$$
\begin{equation*}
\Gamma\left(\frac{s}{2}\right) \pi^{-\frac{s}{2}} \zeta(s)=\Gamma\left(\frac{1-s}{2}\right) \pi^{-\frac{1-s}{2}} \zeta(1-s), \quad \Re(s)>0 \tag{1}
\end{equation*}
$$

$\zeta(s)$ - the Riemann zeta function, $\Gamma(s)$ - the gamma function.

- From [5, p. 8-11] $\zeta(\bar{s})=\overline{\zeta(s)}$, it means that $\forall \rho=\sigma+i t: \zeta(\rho)=0$ and $0 \leqslant \sigma \leqslant 1$ we have:

$$
\begin{equation*}
\zeta(\bar{\rho})=\zeta(1-\rho)=\zeta(1-\bar{\rho}) \tag{2}
\end{equation*}
$$

- From [11], [9, p. 128], [10, p. 45] we know that $\zeta(s)$ it has no nontrivial zeros on the line $\sigma=1$ and consequently on the line $\sigma=0$ also, in accordance with (2) they are not present.

We denote the set of nontrivial zeros $\zeta(s)$ through \mathcal{P} :

$$
\mathcal{P} \equiv\{\rho: \zeta(\rho)=0, \rho=\sigma+i t, 0<\sigma<1\}
$$

and

$$
\begin{align*}
\mathcal{P}_{1} & \equiv\left\{\rho: \zeta(\rho)=0, \rho=\sigma+i t, 0<\sigma<\frac{1}{2}\right\} \tag{3}\\
\mathcal{P}_{2} & \equiv\left\{\rho: \zeta(\rho)=0, \rho=\frac{1}{2}+i t\right\} \\
\mathcal{P}_{3} & \equiv\left\{\rho: \zeta(\rho)=0, \rho=\sigma+i t, \frac{1}{2}<\sigma<1\right\}
\end{align*}
$$

Then:
$\mathcal{P}=\mathcal{P}_{1} \cup \mathcal{P}_{2} \cup \mathcal{P}_{3}$ and $\mathcal{P}_{1} \cap \mathcal{P}_{2}=\mathcal{P}_{2} \cap \mathcal{P}_{3}=\mathcal{P}_{1} \cap \mathcal{P}_{3}=\varnothing,\left\|\mathcal{P}_{1}\right\|=\left\|\mathcal{P}_{3}\right\|$

- Hadamard's theorem (Weierstrass preparation theorem) the decomposition of function through the roots gives us the following result [10, p. 30], [5, p. 31], [12]:

$$
\begin{gather*}
\zeta(s)=\frac{\pi \overline{2} e^{a s}}{s(s-1)} \prod_{\rho \in \mathcal{P}}\left(1-\frac{s}{\rho}\right) e^{\frac{s}{\rho}}, \quad \Re(s)>0 \tag{4}\\
a=\ln 2 \sqrt{\pi}-\frac{\gamma}{2}-1, \gamma-\text { Euler's constant and } \\
\frac{\zeta^{\prime}(s)}{\zeta(s)}=\frac{1}{2} \ln \pi+a-\frac{1}{s}+\frac{1}{1-s}-\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}+\sum_{\rho \in \mathcal{P}}\left(\frac{1}{s-\rho}+\frac{1}{\rho}\right) \tag{5}
\end{gather*}
$$

- According to the fact that $\frac{\Gamma^{\prime}\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}$ - Digamma function of [10, p. 31], [5, p. 23] should be:

$$
\begin{gather*}
\frac{\zeta^{\prime}(s)}{\zeta(s)}=\frac{1}{1-s}+\sum_{\rho \in \mathcal{P}}\left(\frac{1}{s-\rho}+\frac{1}{\rho}\right)+\sum_{n=1}^{\infty}\left(\frac{1}{s+2 n}-\frac{1}{2 n}\right)+C \tag{6}\\
C=\mathrm{const}
\end{gather*}
$$

- From [4, p. 160], [8, p. 272], [3, p. 81]:

$$
\begin{equation*}
\sum_{\rho \in \mathcal{P}} \frac{1}{\rho}=1+\frac{\gamma}{2}-\ln 2 \sqrt{\pi}=0,0230957 \ldots \tag{7}
\end{equation*}
$$

Indeed, from (2):

$$
\sum_{\rho \in \mathcal{P}} \frac{1}{\rho}=\frac{1}{2} \sum_{\rho \in \mathcal{P}}\left(\frac{1}{1-\rho}+\frac{1}{\rho}\right)
$$

- From (5):

$$
2 \sum_{\rho \in \mathcal{P}} \frac{1}{\rho}=\lim _{s \rightarrow 1}\left(\frac{\zeta^{\prime}(s)}{\zeta(s)}-\frac{1}{1-s}+\frac{1}{s}-a-\frac{1}{2} \ln \pi+\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}\right) .
$$

- Exactly the same, for example, [10, p. 49], [3, p. 98] the number of nontrivial zeros of $\rho=\sigma+$ it in strip $0<\sigma<1$, the imaginary parts of which t is less than some number $T>0$ is limited, i.e.

$$
\|\{\rho: \rho \in \mathcal{P}, \rho=\sigma+i t,|t|<T\}\|<\infty
$$

Indeed, it can be presented as the sum of $\sum_{\rho \in \mathcal{P}} \frac{1}{\rho}$ which would be unlimited.

Thus $\forall T>0 \exists \Delta_{x}>0, \Delta_{y}>0$ such that

$$
\begin{equation*}
\text { in area } 0<t \leqslant \Delta_{y}, 0<\sigma \leqslant \Delta_{x} \text { no zeros } \rho=\sigma+i t \in \mathcal{P} \text {. } \tag{8}
\end{equation*}
$$

Let's consider that any root $q \in \mathcal{P}_{1} \cup \mathcal{P}_{2}$
Let $k(q)$ be the multiplicity of the root of q.
Let's consider area $Q(R) \stackrel{\text { def }}{=}\{s:\|s-q\| \leqslant R, R>0\}$.
From the fact of finiteness of set of nontrivial zeros $\zeta(s)$ in the limited area is as follows $\exists R>0$, such that $Q(R)$ does not contain any roots from \mathcal{P} except q.

- From [1], [10, p. 31], [5, p. 23] we know that the Digamma function $\frac{\Gamma^{\prime}\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}$ in the field $Q(R)$ has no poles, i.e. $\forall s \in Q(R)$

$$
\left|\frac{\Gamma^{\prime}\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}\right|<\infty .
$$

Let us denote by:

$$
I_{\mathcal{P}}(s) \stackrel{\text { def }}{=}-\frac{1}{s}+\frac{1}{1-s}+\sum_{\rho \in \mathcal{P}} \frac{1}{s-\rho}
$$

and

$$
\begin{equation*}
I_{\mathcal{P} \backslash\{q\}}(s)=-\frac{1}{s}+\frac{1}{1-s}+\sum_{\rho \in \mathcal{P} \backslash\{q\}} \frac{1}{s-\rho} . \tag{9}
\end{equation*}
$$

Hereinafter $\mathcal{P} \backslash\{q\} \stackrel{\text { def }}{=} \mathcal{P} \backslash\{(q, k(q))\}$.
Note that $I_{\mathcal{P} \backslash\{q\}}(s)$ complex differentiable function $s \in Q(R)$.
Then from (5) we have:

$$
\begin{equation*}
\frac{\zeta^{\prime}(s)}{\zeta(s)}=\frac{1}{2} \ln \pi+a-\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}+\sum_{\rho \in \mathcal{P}} \frac{1}{\rho}+I_{\mathcal{P}}(s) . \tag{10}
\end{equation*}
$$

And in view of (7):

$$
\begin{equation*}
\operatorname{Im} \frac{\zeta^{\prime}(s)}{\zeta(s)}=\operatorname{Im}\left(-\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}+I_{\mathcal{P}}(s)\right) \tag{11}
\end{equation*}
$$

Note that the equality of

$$
\begin{equation*}
\sum_{\rho \in \mathcal{P}} \frac{1}{1-s-\rho}=-\sum_{(1-\rho) \in \mathcal{P}} \frac{1}{s-(1-\rho)}=-\sum_{\rho \in \mathcal{P}} \frac{1}{s-\rho} \tag{12}
\end{equation*}
$$

follows that:

$$
I_{\mathcal{P}}(1-s)=-I_{\mathcal{P}}(s), I_{\mathcal{P} \backslash\{q\}}(1-s)=-I_{\mathcal{P} \backslash\{q\}}(s), \Re(s)>0 .
$$

- Except for that

$$
I_{\mathcal{P} \backslash\{q\}}(s)=I_{\mathcal{P}}(s)-\frac{k(q)}{s-q}
$$

and $I_{\mathcal{P} \backslash\{q\}}(s)$ it is limited in the field of $s \in Q(R)$ in connection with absence of poles at it in this area and differentiability in each point of this area.

- From (1), (5) follows:

$$
\begin{align*}
\frac{\zeta^{\prime}(s)}{\zeta(s)}+\frac{\zeta^{\prime}(1-s)}{\zeta(1-s)} & =-\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}-\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{1-s}{2}\right)}{\Gamma\left(\frac{1-s}{2}\right)}+C, \tag{13}\\
C & =\text { const, } C \in \mathbb{R}
\end{align*}
$$

- Let's consider a circle with the center in a point q and radius $r \leqslant R$, laying in the field of $Q(R)$:

- For $s=x+i y, q=\sigma_{q}+i t_{q}$

$$
\operatorname{Im} \frac{k(q)}{s-q}=\operatorname{Im} \frac{k(q)}{x+i y-\sigma_{q}-i t_{q}}=\frac{k(q)\left(t_{q}-y\right)}{\left(x-\sigma_{q}\right)^{2}+\left(y-t_{q}\right)^{2}}=k(q) \frac{t_{q}-y}{r^{2}} .
$$

On each of the semicircles: left $-\left\{s:\|s-q\|=r, \sigma_{q}-r \leqslant x \leqslant \sigma_{q}\right\}$ and the right - $\left\{s:\|s-q\|=r, \sigma_{q} \leqslant x \leqslant \sigma_{q}+r\right\}$ function $\operatorname{Im} \frac{k(q)}{s-q}$ is continuous and takes values from $-\frac{k(q)}{r}$ to $\frac{k(q)}{r}, r>0$ and $k(q) \geqslant 1$ as the multiplicity of the root.

From (11) function

$$
\operatorname{Im} \frac{\zeta^{\prime}(s)}{\zeta(s)}-\operatorname{Im} \frac{k(q)}{s-q}=\operatorname{Im}\left(-\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}+I_{\mathcal{P} \backslash\{q\}}(s)\right)
$$

in the field of $Q(R)$ limited so $\exists H_{1}(R)>0, H_{1}(R) \in \mathbb{R}$:

$$
\begin{equation*}
\left|\operatorname{Im} \frac{\zeta^{\prime}(s)}{\zeta(s)}-\operatorname{Im} \frac{k(q)}{s-q}\right|<H_{1}(R), \quad \forall s \in Q(R) . \tag{14}
\end{equation*}
$$

From the properties of continuous functions on the interval taking all intermediate values between its extremes, it follows that $\exists R_{1}>0$:

$$
R_{1}<R, \frac{k(q)}{R_{1}}>H_{1}(R)
$$

and $\forall r>0, r<R_{1}$ there is for example on the left point of the semicircle $w_{r} \stackrel{\text { def }}{=} x_{w_{r}}+i y_{w_{r}}$ such that:

$$
\operatorname{Im} \frac{\zeta^{\prime}\left(w_{r}\right)}{\zeta\left(w_{r}\right)}-\operatorname{Im} \frac{k(q)}{w_{r}-q}=-\operatorname{Im} \frac{k(q)}{w_{r}-q},
$$

i.e.

$$
\begin{equation*}
\operatorname{Im} \frac{\zeta^{\prime}\left(w_{r}\right)}{\zeta\left(w_{r}\right)}=0, \quad \forall r>0, r<R_{1} . \tag{15}
\end{equation*}
$$

- From (11), similar to the (14) function

$$
\operatorname{Im} \frac{\zeta^{\prime}(1-s)}{\zeta(1-s)}+\operatorname{Im} \frac{k(q)}{s-q}=\operatorname{Im}\left(-\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{1-s}{2}\right)}{\Gamma\left(\frac{1-s}{2}\right)}-I_{\mathcal{P} \backslash\{q\}}(s)\right)
$$

is limited $\forall s \in Q(R)$ i.e. $\exists H_{2}(R)>0, H_{2}(R) \in \mathbb{R}$:

$$
\left|\operatorname{Im} \frac{\zeta^{\prime}(1-s)}{\zeta(1-s)}+\operatorname{Im} \frac{k(q)}{s-q}\right|<H_{2}(R), \quad \forall s \in Q(R) .
$$

which means: $\exists R_{2}>0$:

$$
R_{2}<R, \frac{k(q)}{R_{2}}>H_{2}(R)
$$

and $\forall r>0, r<R_{2}$ there is for example on the left point of the semicircle $z_{r}=x_{z_{r}}+i y_{z_{r}}$ such as:

$$
\begin{equation*}
\operatorname{Im} \frac{\zeta^{\prime}\left(1-z_{r}\right)}{\zeta\left(1-z_{r}\right)}=0, \quad \forall r>0, r<R_{2} \tag{16}
\end{equation*}
$$

From (11), (15), (16) follows:

$$
\left\{\begin{array}{c}
k(q) \frac{t_{q}-y_{w_{r}}}{r^{2}}=-\operatorname{Im}\left(-\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{w_{r}}{2}\right)}{\Gamma\left(\frac{w_{r}}{2}\right)}+I_{\mathcal{P} \backslash\{q\}}\left(w_{r}\right)\right) \tag{17}\\
k(q) \frac{t_{q}-y_{z_{r}}}{r^{2}}=\operatorname{Im}\left(-\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{1-z_{r}}{2}\right)}{\Gamma\left(\frac{1-z_{r}}{2}\right)}-I_{\mathcal{P} \backslash\{q\}}\left(z_{r}\right)\right)
\end{array}\right.
$$

for $\forall r>0, r<\min \left(R_{1}, R_{2}\right)$.
I.e. $t_{q}-y_{w_{r}}=O\left(r^{2}\right)$ and $t_{q}-y_{z_{r}}=O\left(r^{2}\right)$ when $r \rightarrow 0$.

For definiteness we will consider that w_{r} and z_{r} we find on the left semicircle $\|s-q\|=r, \Re(s) \leqslant \Re(q)=\sigma_{q}$ because on the right semicircle there are points with the same - (15), (16) properties.

Let's choose arbitrary of r_{1}, r_{2} will be right to inequalities:

$$
r_{1}>0, r_{2}>0, r_{2}<r_{1}, r_{1}<\min \left(R_{1}, R_{2}\right) .
$$

For them:

$$
\operatorname{Im} \frac{\zeta^{\prime}\left(w_{r_{1}}\right)}{\zeta\left(w_{r_{1}}\right)}=\operatorname{Im} \frac{\zeta^{\prime}\left(w_{r_{2}}\right)}{\zeta\left(w_{r_{2}}\right)}=0
$$

and

$$
\operatorname{Im} \frac{\zeta^{\prime}\left(1-z_{r_{1}}\right)}{\zeta\left(1-z_{r_{1}}\right)}=\operatorname{Im} \frac{\zeta^{\prime}\left(1-z_{r_{2}}\right)}{\zeta\left(1-z_{r_{2}}\right)}=0 .
$$

Let's connect the dots $w_{r_{1}}$ and $w_{r_{2}}$ by the curve line given by the function $f_{r_{1}, r_{2}}(\tau) \stackrel{\text { def }}{=} f_{x}(\tau)+i f_{y}(\tau)$ which has a derivative at every point of the interval:

In accordance with the construction let's denote $\tau_{r_{1}}$ and $\tau_{r_{2}}$ as follows:

$$
f_{r_{1}, r_{2}}\left(\tau_{r_{1}}\right)=w_{r_{1}}, f_{r_{1}, r_{2}}\left(\tau_{r_{2}}\right)=w_{r_{2}} .
$$

Function $\frac{\zeta^{\prime}(s)}{\zeta(s)}$ is meromorphic as a quotient of two holomorphic functions, consequently in a ring $r_{2} \leqslant\|s-q\| \leqslant r_{1}$ function $\operatorname{Im} \frac{\zeta^{\prime}(s)}{\zeta(s)}$ is differentiable and therefore continuous and differentiable on τ function $\operatorname{Im} \frac{\zeta^{\prime}\left(f_{r_{1}, r_{2}}(\tau)\right)}{\zeta\left(f_{r_{1}, r_{2}}(\tau)\right)}$ for any differentiable $f_{r_{1}, r_{2}}(\tau)$.

This means the real function which is continuous and differentiable on the segment takes on the ends of the same value:

$$
\operatorname{Im} \frac{\zeta^{\prime}\left(f_{r_{1}, r_{2}}\left(\tau_{r_{1}}\right)\right)}{\zeta\left(f_{r_{1}, r_{2}}\left(\tau_{r_{1}}\right)\right)}=\operatorname{Im} \frac{\zeta^{\prime}\left(f_{r_{1}, r_{2}}\left(\tau_{r_{2}}\right)\right)}{\zeta\left(f_{r_{1}, r_{2}}\left(\tau_{r_{2}}\right)\right)}=0 .
$$

According to the theorem on the extremum of a differentiable function on the interval we have:

$$
\begin{equation*}
\exists \tau_{1} \in\left(\tau_{r_{1},}, \tau_{r_{2}}\right): \quad\left(\operatorname{Im} \frac{\zeta^{\prime}\left(f_{r_{1}, r_{2}}\left(\tau_{1}\right)\right)}{\zeta\left(f_{r_{1}, r_{2}}\left(\tau_{1}\right)\right)}\right)^{\prime}=0 . \tag{18}
\end{equation*}
$$

I.e. on a curve line described by function $f_{r_{1}, r_{2}}(\tau), \tau \in\left(\tau_{r_{1}}, \tau_{r_{2}}\right)$ there is a
point of $\Theta_{1, w} \stackrel{\text { def }}{=} f_{r_{1}, r_{2}}\left(\tau_{1}\right)$ for which is true (18).

- Let's consider the following five versions as a curve line which is connecting points $w_{r_{1}}$ and $w_{r_{2}}$:

Taking into account the fact that we have chosen the left semicircle and $r_{2}<r_{1}$ these five variants of connection of the points $w_{r_{1}}$ and $w_{r_{2}}$ using the rounded corner are exhaustive.

The curve line is connecting $w_{r_{1}}$ and $w_{r_{2}}$, it is consisted of three sections $D_{1} E_{1}, E_{1} F_{1}, F_{1} G_{1}$ or one - $D_{1} G_{1}$. Segments $D_{1} E_{1}, F_{1} G_{1}$ or like in the fifth case $D_{1} G_{1}$ is a parallel to the relevant axes, in the case of existence of $E_{1} F_{1}$, we will construct it like a quarter of a circle with radius $\Delta_{1}>0$ and centered at $J_{1} \stackrel{\text { def }}{=} J_{1}\left(x_{\Delta_{1}}, y_{\Delta_{1}}\right)$.
It's clear that $\Delta_{1}<\left|\operatorname{Im}\left(w_{r_{1}}-w_{r_{2}}\right)\right|, \quad \Delta_{1}<\left|\Re\left(w_{r_{1}}-w_{r_{2}}\right)\right|$.

- Way $f_{r_{1}, r_{2}}(\tau)$ strictly speaking $f_{r_{1}, r_{2}}\left(\tau, \Delta_{1}\right)=f_{x}\left(\tau, \Delta_{1}\right)+i f_{y}\left(\tau, \Delta_{1}\right)$ in these five cases it will be described by the following equations systems.
For the segment $D_{1} E_{1}$:

$$
\left\{\begin{array}{l}
f_{x}\left(\tau, \Delta_{1}\right)=x_{w_{r_{1}}} \tag{19}\\
f_{y}\left(\tau, \Delta_{1}\right)=\tau,
\end{array}\right.
$$

where $y_{w_{r_{1}}} \leqslant \tau \leqslant\left(y_{w_{r_{2}}}-\Delta_{1}\right)$ for the first case and $\left(y_{w_{r_{2}}}+\Delta_{1}\right) \leqslant \tau \leqslant y_{w_{r_{1}}}$ for the second.
And

$$
\left\{\begin{array}{l}
f_{x}\left(\tau, \Delta_{1}\right)=x_{w_{r_{2}}} \tag{20}\\
f_{y}\left(\tau, \Delta_{1}\right)=\tau,
\end{array}\right.
$$

where $\left(y_{w_{r_{1}}}+\Delta_{1}\right) \leqslant \tau \leqslant y_{w_{r_{2}}}$ for the third case and $y_{w_{r_{2}}} \leqslant \tau \leqslant\left(y_{w_{r_{1}}}-\Delta_{1}\right)$ for the fourth.

For the segment $E_{1} F_{1}$:

$$
\left\{\begin{array}{l}
f_{x}\left(\tau, \Delta_{1}\right)=\tau \tag{21}\\
f_{y}\left(\tau, \Delta_{1}\right)=y_{w_{r_{2}}}-\Delta_{1}+\sqrt{\Delta_{1}^{2}-\left(\tau-x_{w_{r_{1}}}-\Delta_{1}\right)^{2}}
\end{array}\right.
$$

where $x_{w_{r_{1}}} \leqslant \tau \leqslant\left(x_{w_{r_{1}}}+\Delta_{1}\right)$ for the first variant.
And for the second variant:

$$
\left\{\begin{array}{l}
f_{x}\left(\tau, \Delta_{1}\right)=\tau \tag{22}\\
f_{y}\left(\tau, \Delta_{1}\right)=y_{w_{r_{2}}}+\Delta_{1}-\sqrt{\Delta_{1}^{2}-\left(\tau-x_{w_{r_{1}}}-\Delta_{1}\right)^{2}}
\end{array}\right.
$$

where $x_{w_{r_{1}}} \leqslant \tau \leqslant\left(x_{w_{r_{1}}}+\Delta_{1}\right)$.
For the third variant:

$$
\left\{\begin{array}{l}
f_{x}\left(\tau, \Delta_{1}\right)=\tau \tag{23}\\
f_{y}\left(\tau, \Delta_{1}\right)=y_{w_{r_{1}}}+\Delta_{1}-\sqrt{\Delta_{1}^{2}-\left(\tau-x_{w_{r_{2}}}+\Delta_{1}\right)^{2}}
\end{array}\right.
$$

where $\left(x_{w_{r_{2}}}-\Delta_{1}\right) \leqslant \tau \leqslant x_{w_{r_{2}}}$.
For the fourth variant:

$$
\left\{\begin{array}{l}
f_{x}\left(\tau, \Delta_{1}\right)=\tau \tag{24}\\
f_{y}\left(\tau, \Delta_{1}\right)=y_{w_{r_{1}}}-\Delta_{1}+\sqrt{\Delta_{1}^{2}-\left(\tau-x_{w_{r_{2}}}+\Delta_{1}\right)^{2}}
\end{array}\right.
$$

where $\left(x_{w_{r_{2}}}-\Delta_{1}\right) \leqslant \tau \leqslant x_{w_{r_{2}}}$.
For the segment $F_{1} G_{1}$:

$$
\left\{\begin{array}{l}
f_{x}\left(\tau, \Delta_{1}\right)=\tau \tag{25}\\
f_{y}\left(\tau, \Delta_{1}\right)=y_{w_{r_{2}}},
\end{array}\right.
$$

where $\left(x_{w_{r_{1}}}+\Delta_{1}\right) \leqslant \tau \leqslant x_{w_{r_{2}}}$ for the first and second cases. And

$$
\left\{\begin{array}{l}
f_{x}\left(\tau, \Delta_{1}\right)=\tau \tag{26}\\
f_{y}\left(\tau, \Delta_{1}\right)=y_{w_{r_{1}}},
\end{array}\right.
$$

where $x_{w_{r_{1}}} \leqslant \tau \leqslant\left(x_{w_{r_{2}}}-\Delta_{1}\right)$ for the third and fourth cases. For the segment $D_{1} G_{1}$ in the fifth case:

$$
\left\{\begin{array}{l}
f_{x}\left(\tau, \Delta_{1}\right)=\tau \tag{27}\\
f_{y}\left(\tau, \Delta_{1}\right)=y_{w_{r_{2}}},
\end{array}\right.
$$

where $x_{w_{r_{1}}} \leqslant \tau \leqslant x_{w_{r_{2}}}$.

- Let's assume that the point $\Theta_{1, w}$ lies on the segment $D_{1} E_{1}$:

Then (18) which is given (19) can be written to $s=x+i y, \quad y_{\tau_{1}} \stackrel{\text { def }}{=}$ $f_{y}\left(\tau_{1}\right), x_{\tau_{1}} \stackrel{\text { def }}{=} f_{x}\left(\tau_{1}\right)$ follows:

$$
\begin{equation*}
\left.\frac{d\left(\operatorname{Im} \frac{\zeta^{\prime}\left(x_{w_{r_{1}}}+i \tau\right)}{\zeta\left(x_{w_{r_{1}}}+i \tau\right)}\right)}{d \tau}\right|_{\tau=\tau_{1}}=\left.\frac{\partial\left(\operatorname{Im} \frac{\zeta^{\prime}(s)}{\zeta(s)}\right)}{\partial y}\right|_{s=f_{r_{1}, r_{2}}\left(\tau_{1}\right)}=0 \tag{28}
\end{equation*}
$$

- Or given (11):

$$
\begin{aligned}
& \left(-\frac{1}{2} \operatorname{Im} \frac{\Gamma^{\prime}\left(\frac{f_{r_{1}, r_{2}}\left(\tau_{1}\right)}{2}\right)}{\Gamma\left(\frac{f_{r_{1}, r_{2}}\left(\tau_{1}\right)}{2}\right)}+\operatorname{Im} I_{\mathcal{P} \backslash\{q\}}\left(f_{r_{1}, r_{2}}\left(\tau_{1}\right)\right)\right)^{\prime}= \\
& =-\left.\frac{\partial \frac{k(q)\left(t_{q}-y\right)}{\left(x_{w_{r_{1}}}-\sigma_{q}\right)^{2}+\left(y-t_{q}\right)^{2}}}{\partial y}\right|_{y=y_{\tau_{1}}}=-\frac{k(q)\left(\left(y_{\tau_{1}}-t_{q}\right)^{2}-\left(x_{w_{r_{1}}}-\sigma_{q}\right)^{2}\right)}{\left(\left(x_{w_{r_{1}}}-\sigma_{q}\right)^{2}+\left(\left(y_{\tau_{1}}-t_{q}\right)^{2}\right)^{2}\right.}
\end{aligned}
$$

The left part of last equality is limited $\forall r_{1}, r_{2}: r_{1}>0, r_{2}>0, r_{2}<$ $r_{1}, r_{1}<\min \left(R_{1}, R_{2}\right)$ and $f_{r_{1}, r_{2}}(\tau)$ from (19):

$$
\left(-\frac{1}{2} \operatorname{Im} \frac{\Gamma^{\prime}\left(\frac{x_{r_{1}}+i y}{2}\right)}{\Gamma\left(\frac{x_{r_{1}}+i y}{2}\right)}+\operatorname{Im} I_{\mathcal{P} \backslash\{q\}}\left(x_{r_{1}}+i y\right)\right)_{y=y_{r_{1}}}
$$

because in brackets is the imaginary part of a holomorphic $\forall s \in Q(R)$ functions

$$
\begin{equation*}
-\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}+I_{\mathcal{P} \backslash\{q\}}(s) \tag{29}
\end{equation*}
$$

The right part is equal to:

$$
-\frac{k(q)\left(\left(\left(y_{\tau_{1}}-t_{q}\right)^{2}-\left(x_{w_{r_{1}}}-\sigma_{q}\right)^{2}\right)\right.}{\left(\left(x_{w_{r_{1}}}-\sigma_{q}\right)^{2}+\left(\left(y_{\tau_{1}}-t_{q}\right)^{2}\right)^{2}\right.}=-\frac{k(q)\left(\left(\left(y_{\tau_{1}}-t_{q}\right)^{2}-\left(x_{w_{r_{1}}}-\sigma_{q}\right)^{2}\right)\right.}{r_{\theta_{w}}^{4}}
$$

where $r_{\theta_{w}}$ - radius from point q to $\Theta_{1, w}$.
Letting $r_{2} \rightarrow r_{1}$ and $r_{1} \rightarrow 0$.
While considering (17):

$$
\begin{equation*}
r_{\theta_{w}}=O\left(r_{1}\right), \quad\left(y_{\tau_{1}}-t_{q}\right)^{2}=O\left(r_{1}^{4}\right), \quad\left(x_{w_{r_{1}}}-\sigma_{q}\right)^{2}=O\left(r_{1}^{2}\right) . \tag{30}
\end{equation*}
$$

Therefore the expression

$$
-\frac{k(q)\left(\left(\left(y_{\tau_{1}}-t_{q}\right)^{2}-\left(x_{w_{r_{1}}}-\sigma_{q}\right)^{2}\right)\right.}{r_{\theta_{w}}^{4}}=O\left(r_{1}^{-2}\right), \quad r_{1} \rightarrow 0
$$

i.e. unlimited with a decrease r_{1}, which leads us to contradiction and means that the vertical stretch of the $D_{1} E_{1}$ consideration of the curve line doesn't have the point $\Theta_{1, w}$.

- On the basis of similar reasonings it is also true for the second, third and fourth version of a curve line. I.e. point $\Theta_{1, w}$ should be on a curve line between points E_{1} and G_{1} in first four versions of a curve line.
- Suppose that $\Theta_{1, w}$ lies in the quarter circle between points E_{1} and F_{1} as shown in the first four versions of a curve.

Considering that $J_{1}=J_{1}\left(x_{\Delta_{1}}, y_{\Delta_{1}}\right)$ and $\Theta_{1, w}=\Theta_{1, w}\left(x_{\tau_{1}}, y_{\tau_{1}}\right)$ we have:

$$
\left(x_{\tau_{1}}-x_{\Delta_{1}}\right)^{2}+\left(y_{\tau_{1}}-y_{\Delta_{1}}\right)^{2}=\Delta_{1}^{2} .
$$

Then the equations (21), (22), (23) and (24) can be written as a function of $y=y(x)$:

$$
y=y_{\Delta_{1}}+\sqrt{\Delta_{1}^{2}-\left(x-x_{\Delta_{1}}\right)^{2}}, \quad y \geqslant y_{\Delta_{1}}
$$

and

$$
y=y_{\Delta_{1}}-\sqrt{\Delta_{1}^{2}-\left(x-x_{\Delta_{1}}\right)^{2}}, \quad y \leqslant y_{\Delta_{1}} .
$$

- For definiteness we will consider that $y \geqslant y_{\Delta_{1}}$, then:

$$
\begin{equation*}
y(x)^{\prime}=-\frac{x-x_{\Delta_{1}}}{\sqrt{\Delta_{1}^{2}-\left(x-x_{\Delta_{1}}\right)^{2}}}=-\frac{x-x_{\Delta_{1}}}{y-y_{\Delta_{1}}} \tag{31}
\end{equation*}
$$

- And the equation (18) can be written as follows:

$$
\begin{gathered}
\left(-\frac{1}{2} \operatorname{Im} \frac{\Gamma^{\prime}\left(\frac{x+i y(x)}{2}\right)}{\Gamma\left(\frac{x+i y(x)}{2}\right)}+\operatorname{Im}_{\mathcal{P} \backslash\{q\}}(x+i y(x))\right)_{x=x_{\tau_{1}}}= \\
=-\left.\frac{d \frac{k(q)\left(t_{q}-y(x)\right)}{\left(x-\sigma_{q}\right)^{2}+\left(y(x)-t_{q}\right)^{2}}}{d x}\right|_{x=x_{\tau_{1}}}=
\end{gathered}
$$

The expression on the left side of the last equality in the partial derivatives:

$$
\begin{gathered}
\left.\frac{\partial}{\partial x}\left(-\frac{1}{2} \operatorname{Im} \frac{\Gamma^{\prime}\left(\frac{x+i y_{\tau_{1}}}{2}\right)}{\Gamma\left(\frac{x+i y_{\tau_{1}}}{2}\right)}+\operatorname{Im}_{\mathcal{P} \backslash\{q\}}\left(x+i y_{\tau_{1}}\right)\right)\right|_{x=x_{\tau_{1}}}+ \\
+\left.y\left(x_{\tau_{1}}\right)^{\prime} \frac{\partial}{\partial y}\left(-\frac{1}{2} \operatorname{Im} \frac{\Gamma^{\prime}\left(\frac{x_{\tau_{1}}+i y}{2}\right)}{\Gamma\left(\frac{x_{\tau_{1}}+i y}{2}\right)}+\operatorname{Im} I_{\mathcal{P} \backslash\{q\}}\left(x_{\tau_{1}}+i y\right)\right)\right|_{y=y_{\tau_{1}}}= \\
=O_{r_{1} \rightarrow 0}(1)+y\left(x_{\tau_{1}}\right)^{\prime} O_{r_{1} \rightarrow 0}(1)
\end{gathered}
$$

Considering continuity of sums in brackets at $\forall s=x+i y(x) \in Q(R)$ we have:

$$
\begin{equation*}
-\left.\frac{d \frac{k(q)\left(t_{q}-y(x)\right)}{\left(x-\sigma_{q}\right)^{2}+\left(y(x)-t_{q}\right)^{2}}}{d x}\right|_{x=x_{\tau_{1}}}=O(1)+y\left(x_{\tau_{1}}\right)^{\prime} O(1), \quad r_{1} \rightarrow 0 \tag{32}
\end{equation*}
$$

And reveal the derivative:

$$
\begin{gathered}
y\left(x_{\tau_{1}}\right)^{\prime} \frac{\left(y_{\tau_{1}}-t_{q}\right)^{2}-\left(x_{\tau_{1}}-\sigma_{q}\right)^{2}}{\left(\left(x_{\tau_{1}}-\sigma_{q}\right)^{2}+\left(y_{\tau_{1}}-t_{q}\right)^{2}\right)^{2}}-\frac{2\left(\sigma_{q}-x_{\tau_{1}}\right)\left(t_{q}-y_{\tau_{1}}\right)}{\left(\left(x_{\tau_{1}}-\sigma_{q}\right)^{2}+\left(y_{\tau_{1}}-t_{q}\right)^{2}\right)^{2}}= \\
=O_{r_{1} \rightarrow 0}(1)+y\left(x_{\tau_{1}}\right)^{\prime} O_{r_{1} \rightarrow 0}(1)
\end{gathered}
$$

At small Δ_{1}, for example, $\Delta_{1}=O_{r_{1} \rightarrow 0}\left(r_{1}^{2}\right)$ in accordance with (17) it follows that:

$$
t_{q}-y_{\tau_{1}}=O_{r_{1} \rightarrow 0}\left(r_{1}^{2}\right), \quad \sigma_{q}-x_{\tau_{1}}=O_{r_{1} \rightarrow 0}\left(r_{1}\right)
$$

and (32) can be written as:

$$
y\left(x_{\tau_{1}}\right)^{\prime} O\left(r_{1}^{-2}\right)-O\left(r_{1}^{-1}\right)=O(1)+y\left(x_{\tau_{1}}\right)^{\prime} O(1), \quad r_{1} \rightarrow 0
$$

i.e.

$$
\begin{equation*}
y\left(x_{\tau_{1}}\right)^{\prime}=O_{r_{1} \rightarrow 0}\left(r_{1}\right) . \tag{33}
\end{equation*}
$$

Let's note, that a sign in the case of $y \leqslant y_{\Delta_{1}}$ does not affect on the result (33) i.e. the ratio $\frac{x-x_{\Delta_{1}}}{y-y_{\Delta_{1}}}$ tends to 0 at $r_{1} \rightarrow 0$ for $\forall \Delta_{1}>0, \Delta_{1}=$ $O_{r_{1} \rightarrow 0}\left(r_{1}^{2}\right)$.
And besides:

$$
\left|y(x)^{\prime}\right|=\left|\frac{x-x_{\Delta_{1}}}{y-y_{\Delta_{1}}}\right| \leqslant\left|\frac{x_{\tau_{1}}-x_{\Delta_{1}}}{y_{\tau_{1}}-y_{\Delta_{1}}}\right|=\left|y\left(x_{\tau_{1}}\right)^{\prime}\right|,
$$

$\forall x: x_{\tau_{1}}<x<x_{\Delta_{1}}$ in the first and second version of the curve line or $\forall x: x_{\Delta_{1}}<x<x_{\tau_{1}}$ in the third and fourth.
I.e.

$$
\begin{equation*}
y(x)^{\prime}=O_{r_{1} \rightarrow 0}\left(r_{1}\right) \tag{34}
\end{equation*}
$$

for all the real parts of the x points $s=x+i y$ lying on the curve line under consideration between F_{1} and $\Theta_{1, w}$ for $\forall \Delta_{1}>0, \Delta_{1}=O_{r_{1} \rightarrow 0}\left(r_{1}^{2}\right)$.
Let's consider the third circle with the center in the point q and radius $r_{3}>0, r_{3}<r_{2}$.
For couples $\left(r_{2}, r_{3}\right)$ apply the same reasoning as for couples $\left(r_{1}, r_{2}\right)$.

- This means that on the left semicircle $s:\|s-q\|=r_{3}, \quad \Re(s) \leqslant \Re(q)$ where there is a point $w_{r_{3}}$, in accordance with the (15):

$$
\operatorname{Im} \frac{\zeta^{\prime}\left(w_{r_{3}}\right)}{\zeta\left(w_{r_{3}}\right)}=0
$$

Let's connect points $w_{r_{2}}$ and $w_{r_{3}}$ by a curved line in a same way as how we have connected $w_{r_{1}}$ and $w_{r_{2}}$.

At the same time we will choose those options of the curve lines at which point $w_{r_{2}}$ lies on the segment parallel to the real axis, so that at this point there were equal right and left derivative of the function describing the line connection points $w_{r_{1}}$ and $w_{r_{3}}$.

Depending on the location of the points $w_{r_{1}}$ and $w_{r_{2}}$ let's choose line connection like in the first, second or fifth variant that was taken into consideration earlier.
These three variants exhaustive, noting that $r_{2}<r_{1}$.
To connect $w_{r_{2}}$ and $w_{r_{3}}$ we choose respectively third, fourth or fifth a variant considered earlier connection.

- Without loss of generality, let's assume that $\operatorname{Im}\left(w_{r_{1}}\right)<\operatorname{Im}\left(w_{r_{2}}\right)<\operatorname{Im}\left(w_{r_{3}}\right)$ then the searched line will look as follows:
- On a line that passes through the points G_{1}, F_{2}, E_{2} there is a point $\Theta_{2, w} \stackrel{\text { def }}{=} x_{\tau_{2}}+i y_{\tau_{2}}$ such as:

$$
\left(\operatorname{Im} \frac{\zeta^{\prime}(x+i y(x))}{\zeta(x+i y(x))}\right)_{x=x_{\tau_{2}}}^{\prime}=0
$$

where $y(x)=\operatorname{Im} f_{r_{2}, r_{3}}(x)$.

- So that on a line which passes through points $E_{1}, F_{1}, G_{1}, F_{2}, E_{2}$ and consists of a horizontal site $F_{1} F_{2}$ and two quarters of circles with appropriating radiuses $\Delta_{1}>0, \quad \Delta_{2}>0, \quad \Delta_{1}=O_{r_{1} \rightarrow 0}\left(r_{1}^{2}\right), \quad \Delta_{2}=$ $O_{r_{1} \rightarrow 0}\left(r_{1}^{2}\right)$ by virtue of holomorphy $\frac{\zeta^{\prime}(s)}{\zeta(s)}$ at all points $s \in Q(R) \backslash\{q\}$ function

$$
\left(\operatorname{Im} \frac{\zeta^{\prime}(x+i y(x))}{\zeta(x+i y(x))}\right)_{x}^{\prime}
$$

is differentiable everywhere along the stated line and takes in the points $x_{r_{1}}$ and $x_{r_{2}}$ the same value that is equal to 0 .

Let's note that $x_{r_{1}}<x_{r_{2}}$. This follows from the theorem on the extreme of it the point where the derivative becomes 0 does not coincide with the end point of the segment, i.e., it lies strictly inside it. So $\Theta_{1, w} \neq G_{1}$ and $\Theta_{2, w} \neq G_{1}$.

- Applying again the theorem on the extreme of the function, differentiable on the segment and takes the same values at the ends, we find that between $\Theta_{1, w}$ and $\Theta_{2, w}$ on the line $E_{1} F_{1} G_{1} F_{2} E_{2}$ must be a point $\Theta_{0, w} \stackrel{\text { def }}{=} x_{\tau_{0}}+i y_{\tau_{0}}, \tau_{0} \in$ $\left(\tau_{1}, \tau_{2}\right)$:

$$
\begin{equation*}
\left(\operatorname{Im} \frac{\zeta^{\prime}(x+i y(x))}{\zeta(x+i y(x))}\right)_{x=x_{\tau_{0}}}^{\prime \prime}=0 . \tag{35}
\end{equation*}
$$

This can be rewritten as follows:

$$
\begin{gather*}
\left(-\frac{1}{2} \operatorname{Im} \frac{\Gamma^{\prime}\left(\frac{x+i y(x)}{2}\right)}{\Gamma\left(\frac{x+i y(x)}{2}\right)}+\operatorname{Im}_{\mathcal{P} \backslash\{q\}}(x+i y(x))\right)_{x=x_{\tau_{0}}}^{\prime \prime}= \\
=\left(-\frac{k(q)\left(t_{q}-y(x)\right)}{\left(\sigma_{q}-x\right)^{2}+\left(t_{q}-y(x)\right)^{2}}\right)_{x=x_{\tau_{0}}}^{\prime \prime} \tag{36}
\end{gather*}
$$

The left part of last equality in private derivatives looks as follows:

$$
\begin{aligned}
& \left.\frac{d}{d x}\left(\frac{\partial}{\partial x}\left(-\frac{1}{2} \operatorname{Im} \frac{\Gamma^{\prime}\left(\frac{x+i y(x)}{2}\right)}{\Gamma\left(\frac{x+i y(x)}{2}\right)}+\operatorname{Im}_{\mathcal{P} \backslash\{q\}}(x+i y(x))\right)\right)\right|_{x=x_{\tau_{0}}}+ \\
& +\left.\frac{d}{d x}\left(y(x)^{\prime} \frac{\partial}{\partial y}\left(-\frac{1}{2} \operatorname{Im} \frac{\Gamma^{\prime}\left(\frac{x+i y(x)}{2}\right)}{\Gamma\left(\frac{x+i y(x)}{2}\right)}+\operatorname{Im}_{\mathcal{P} \backslash\{q\}}(x+i y(x))\right)\right)\right|_{\substack{x=x_{\tau_{0}} \\
y=y_{\tau_{0}}}}= \\
& =\left.\frac{\partial^{2}}{\partial x^{2}}\left(-\frac{1}{2} \operatorname{Im} \frac{\Gamma^{\prime}\left(\frac{x+i y_{\tau_{0}}}{2}\right)}{\Gamma\left(\frac{x+i y_{\tau_{0}}}{2}\right)}+\operatorname{ImI}_{\mathcal{P} \backslash\{q\}}\left(x+i y_{\tau_{0}}\right)\right)\right|_{x=x_{\tau_{0}}}+ \\
& +\left.2 y\left(x_{\tau_{0}}\right)^{\prime} \frac{\partial^{2}}{\partial x \partial y}\left(-\frac{1}{2} \operatorname{Im} \frac{\Gamma^{\prime}\left(\frac{x+i y}{2}\right)}{\Gamma\left(\frac{x+i y}{2}\right)}+\operatorname{Im} I_{\mathcal{P} \backslash\{q\}}(x+i y)\right)\right|_{\substack{x=x_{\tau_{0}} \\
y=y_{\tau_{0}}}}+ \\
& +\left.\left(y\left(x_{\tau_{0}}\right)^{\prime}\right)^{2} \frac{\partial^{2}}{\partial y^{2}}\left(-\frac{1}{2} \operatorname{Im} \frac{\Gamma^{\prime}\left(\frac{x_{\tau_{0}}+i y}{2}\right)}{\Gamma\left(\frac{x_{\tau_{0}}+i y}{2}\right)}+\operatorname{Im} I_{\mathcal{P} \backslash\{q\}}\left(x_{\tau_{0}}+i y\right)\right)\right|_{y=y_{\tau_{0}}}+
\end{aligned}
$$

$$
\begin{gathered}
+\left.y\left(x_{\tau_{0}}\right)^{\prime \prime} \frac{\partial}{\partial y}\left(-\frac{1}{2} \operatorname{Im} \frac{\Gamma^{\prime}\left(\frac{x_{\tau_{0}}+i y}{2}\right)}{\Gamma\left(\frac{x_{\tau_{0}}+i y}{2}\right)}+\operatorname{Im}_{\mathcal{P} \backslash\{q\}}\left(x_{\tau_{0}}+i y\right)\right)\right|_{y=y_{\tau_{0}}} \stackrel{\text { def }}{=} \\
\stackrel{\text { def }}{=} A_{0}\left(x_{\tau_{0}}, y_{\tau_{0}}\right)+A_{1}\left(x_{\tau_{0}}, y_{\tau_{0}}\right) y\left(x_{\tau_{0}}\right)^{\prime}+ \\
+A_{2}\left(x_{\tau_{0}}, y_{\tau_{0}}\right)\left(y\left(x_{\tau_{0}}\right)^{\prime}\right)^{2}+A_{3}\left(x_{\tau_{0}}, y_{\tau_{0}}\right) y\left(x_{\tau_{0}}\right)^{\prime \prime}
\end{gathered}
$$

This is similar to (29) all $A_{i}(x, y), i \in[0 ; 3]$ limited to $\forall s=x+i y \in Q(R)$.
The right side of (36) in turn:

$$
\begin{array}{r}
\left(-\frac{k(q)\left(t_{q}-y(x)\right)}{\left(\sigma_{q}-x\right)^{2}+\left(t_{q}-y(x)\right)^{2}}\right)_{x=x_{\tau_{0}}}^{\prime \prime}= \\
=k(q)\left(\frac{y(x)^{\prime}\left(\left(t_{q}-y(x)\right)^{2}-\left(\sigma_{q}-x\right)^{2}\right)}{\left(\left(\sigma_{q}-x\right)^{2}+\left(t_{q}-y(x)\right)^{2}\right)^{2}}\right)_{x=x_{\tau_{0}}}^{\prime}- \\
-k(q)\left(\frac{2\left(t_{q}-y(x)\right)\left(\sigma_{q}-x\right)}{\left(\left(\sigma_{q}-x\right)^{2}+\left(t_{q}-y(x)\right)^{2}\right)^{2}}\right)_{x=x_{\tau_{0}}}^{\prime}= \\
=k(q) y\left(x_{\tau_{0}}\right)^{\prime \prime} \frac{\left(t_{q}-y_{\tau_{0}}\right)^{2}-\left(\sigma_{q}-x_{\tau_{0}}\right)^{2}}{\left(\left(\sigma_{q}-x_{\tau_{0}}\right)^{2}+\left(t_{q}-y_{\tau_{0}}\right)^{2}\right)^{2}}+ \\
+\left.k(q) y\left(x_{\tau_{0}}\right)^{\prime} \frac{\partial}{\partial x}\left(\frac{\left(t_{q}-y_{\tau_{0}}\right)^{2}-\left(\sigma_{q}-x\right)^{2}}{\left(\left(\sigma_{q}-x\right)^{2}+\left(t_{q}-y_{\tau_{0}}\right)^{2}\right)^{2}}\right)\right|_{x=x_{\tau_{0}}}+ \\
+\left.k(q)\left(y\left(x_{\tau_{0}}\right)^{\prime}\right)^{2} \frac{\partial}{\partial y}\left(\frac{\left(t_{q}-y\right)^{2}-\left(\sigma_{q}-x_{\tau_{0}}\right)^{2}}{\left(\left(\sigma_{q}-x_{\tau_{0}}\right)^{2}+\left(t_{q}-y\right)^{2}\right)^{2}}\right)\right|_{y=y_{\tau_{0}}}- \\
-\left.k(q) \frac{\partial}{\partial x}\left(\frac{2\left(t_{q}-y_{\tau_{0}}\right)\left(\sigma_{q}-x\right)}{\left(\left(\sigma_{q}-x\right)^{2}+\left(t_{q}-y_{\tau_{0}}\right)^{2}\right)^{2}}\right)^{\prime}\right|_{x=x_{\tau_{0}}}- \\
-\left.k(q) y\left(x_{\tau_{0}}\right)^{\prime} \frac{\partial}{\partial y}\left(\frac{2\left(t_{q}-y\right)\left(\sigma_{q}-x_{\tau_{0}}\right)}{\left(\left(\sigma_{q}-x_{\tau_{0}}\right)^{2}+\left(t_{q}-y\right)^{2}\right)^{2}}\right)^{\prime}\right|_{y=y_{\tau_{0}}} \stackrel{\text { def }}{=} \\
\stackrel{\text { def }}{=} B_{0}\left(x_{\tau_{0}}, y_{\tau_{0}}\right)+B_{1}\left(x_{\tau_{0}}, y_{\tau_{0}}\right) y\left(x_{\tau_{0}}\right)^{\prime}+ \\
+B_{2}\left(x_{\tau_{0}} y_{\tau_{0}}\right)\left(y\left(x_{\tau_{0}}\right)^{\prime}\right)^{2}+B_{3}\left(x_{\tau_{0}}, y_{\tau_{0}}\right) y\left(x_{\tau_{0}}\right)^{\prime \prime} .
\end{array}
$$

- And (36) can be written as follows:

$$
\begin{array}{r}
A_{0}\left(x_{\tau_{0}}, y_{\tau_{0}}\right)+A_{1}\left(x_{\tau_{0}}, y_{\tau_{0}}\right) y\left(x_{\tau_{0}}\right)^{\prime}+ \\
+A_{2}\left(x_{\tau_{0}}, y_{\tau_{0}}\right)\left(y\left(x_{\tau_{0}}\right)^{\prime}\right)^{2}+A_{3}\left(x_{\tau_{0}}, y_{\tau_{0}}\right) y\left(x_{\tau_{0}}\right)^{\prime \prime}= \\
=B_{0}\left(x_{\tau_{0}}, y_{\tau_{0}}\right)+B_{1}\left(x_{\tau_{0}}, y_{\tau_{0}}\right) y\left(x_{\tau_{0}}\right)^{\prime}+ \\
+B_{2}\left(x_{\tau_{0}}, y_{\tau_{0}}\right)\left(y\left(x_{\tau_{0}}\right)^{\prime}\right)^{2}+B_{3}\left(x_{\tau_{0}}, y_{\tau_{0}}\right) y\left(x_{\tau_{0}}\right)^{\prime \prime}
\end{array}
$$

Or:

$$
\begin{align*}
& \left(B_{3}\left(x_{\tau_{0}}, y_{\tau_{0}}\right)-A_{3}\left(x_{\tau_{0}}, y_{\tau_{0}}\right)\right) y\left(x_{\tau_{0}}\right)^{\prime \prime}= \\
A_{0}\left(x_{\tau_{0}}, y_{\tau_{0}}\right)-B_{0}\left(x_{\tau_{0}}, y_{\tau_{0}}\right)+ & \left(A_{1}\left(x_{\tau_{0}}, y_{\tau_{0}}\right)-B_{1}\left(x_{\tau_{0}}, y_{\tau_{0}}\right)\right) y\left(x_{\tau_{0}}\right)^{\prime}+ \tag{37}\\
+ & \left(A_{2}\left(x_{\tau_{0}}, y_{\tau_{0}}\right)-B_{2}\left(x_{\tau_{0}}, y_{\tau_{0}}\right)\right)\left(y\left(x_{\tau_{0}}\right)^{\prime}\right)^{2}
\end{align*}
$$

- Still to be specific we will assume that $y \geqslant y_{\Delta_{1}}$, then from the (31):

$$
\begin{array}{r}
y(x)^{\prime \prime}=\left(-\frac{x-x_{\Delta_{1}}}{\sqrt{\Delta_{1}^{2}-\left(x-x_{\Delta_{1}}\right)^{2}}}\right)^{\prime}= \\
=-\frac{\sqrt{\Delta_{1}^{2}-\left(x-x_{\Delta_{1}}\right)^{2}}-\left(x-x_{\Delta_{1}}\right)\left(-\frac{x-x_{\Delta_{1}}}{\sqrt{\Delta_{1}^{2}-\left(x-x_{\Delta_{1}}\right)^{2}}}\right)}{\Delta_{1}^{2}-\left(x-x_{\Delta_{1}}\right)^{2}}= \\
=-\frac{\Delta_{1}^{2}}{\left(\Delta_{1}^{2}-\left(x-x_{\Delta_{1}}\right)^{2}\right)^{\frac{3}{2}}}
\end{array}
$$

- Let's suppose that $\Theta_{0, w}$ lies in one of the quarters of circles centered at the points J_{1}, J_{2} and radius Δ_{1}, Δ_{2}, between the points $\Theta_{1, w}$ and F_{1} or between F_{2} and $\Theta_{2, w}$. To be specific we will assume that it is - the first quarter of the circle.

Then using the (34) we have:

$$
\frac{x_{\tau_{0}}-x_{\Delta_{1}}}{y_{\tau_{0}}-y_{\Delta_{1}}}=O_{r_{1} \rightarrow 0}\left(r_{1}\right), \quad\left(x_{\tau_{0}}-x_{\Delta_{1}}\right)^{2}+\left(y_{\tau_{0}}-y_{\Delta_{1}}\right)^{2}=\Delta_{1}^{2}
$$

Consequently:

$$
\left(x_{\tau_{0}}-x_{\Delta_{1}}\right)^{2}=\frac{\Delta_{1}^{2}}{1+O_{r_{1} \rightarrow 0}\left(r_{1}^{2}\right)}
$$

and

$$
y\left(x_{\tau_{0}}\right)^{\prime \prime}=-\frac{\Delta_{1}^{2}}{\left(\Delta_{1}^{2}-\left(x_{\tau_{0}}-x_{\Delta_{1}}\right)^{2}\right)^{\frac{3}{2}}}=-\frac{1}{\Delta_{1}\left(1-\left(\frac{1}{1+O_{r_{1} \rightarrow 0}\left(r_{1}^{2}\right)}\right)\right)^{\frac{3}{2}}} .
$$

It means that $\exists R_{3}>0, \quad R_{3}<\min \left(R_{1}, R_{2}\right)$:for any fixed $r_{1}<R_{3}$ and $\forall \forall r_{3}<r_{2}<r_{1}, \quad r_{2}>0, r_{3}>0$, the second derivative $y(x)^{\prime \prime}$ at the point $x_{\tau_{0}}$ is unlimited at $\Delta_{1} \rightarrow 0$.

Then function

$$
\begin{aligned}
B_{3}\left(x_{\tau_{0}}, y_{\tau_{0}}\right) & =k(q) \frac{\left(t_{q}-y_{\tau_{0}}\right)^{2}-\left(\sigma_{q}-x_{\tau_{0}}\right)^{2}}{\left(\left(\sigma_{q}-x_{\tau_{0}}\right)^{2}+\left(t_{q}-y_{\tau_{0}}\right)^{2}\right)^{2}}= \\
& =k(q) \frac{\left(t_{q}-y_{\tau_{0}}\right)^{2}-\left(\sigma_{q}-x_{\tau_{0}}\right)^{2}}{r_{\tau_{0}}^{4}},
\end{aligned}
$$

where $r_{\tau_{0}}$ the length of the radius of a circle with center at the point q passing through $\Theta_{0, w}$ such $\forall M_{1}>0 \exists R_{4}>0, R_{4}<R_{3}: \forall r_{1}<R_{4}, \quad \exists \delta>$ $0, \forall r_{2}, r_{3}:\left|r_{1}-r_{3}\right|<\delta$

$$
\left|B_{3}\left(x_{\tau_{0}}, y_{\tau_{0}}\right)\right|>M_{1} .
$$

- This follows from the (30).

As a M_{1} constant we will take:

$$
M_{1}=\max _{x+i y \in Q(R)}\left(\left|A_{3}(x, y)\right|\right),
$$

then $\forall r_{1}<R_{4}, \exists \delta>0, \forall r_{2}, r_{3}:\left|r_{1}-r_{3}\right|<\delta:$

$$
\begin{equation*}
\left|B_{3}\left(x_{\tau_{0}}, y_{\tau_{0}}\right)-A_{3}\left(x_{\tau_{0}}, y_{\tau_{0}}\right)\right|>0 . \tag{38}
\end{equation*}
$$

Then for $\forall M_{2}>0 \exists R_{5}>0, R_{5}<R_{4}: \forall r_{1}<R_{5}, \quad \exists \delta>0, \forall r_{2}, r_{3}$: $\left|r_{1}-r_{3}\right|<\delta, \exists \Delta_{1}>0$:

$$
\left|\left(B_{3}\left(x_{\tau_{0}}, y_{\tau_{0}}\right)-A_{3}\left(x_{\tau_{0}}, y_{\tau_{0}}\right)\right) y\left(x_{\tau_{0}}\right)^{\prime \prime}\right|>M_{2}
$$

I.e. in the left part of equality (37) is infinitely increasing function with $\Delta_{1} \rightarrow 0$ for any fixed three r_{1}, r_{2}, r_{3} that satisfies the condition (38).

In the right part (37), in view of (34) there is a sum of the limited functions for the same fixed three r_{1}, r_{2}, r_{3} and $\Delta_{1} \rightarrow 0$.
Indeed, from the (34) it follows that $\forall \epsilon>0, \exists R_{6}>0: \forall r_{1}<R_{6}$ fulfilled $\left|y\left(x_{\tau_{0}}\right)^{\prime}\right|<\epsilon$.

And taking M_{2} for fixed r_{1}, r_{2}, r_{3} that satisfy the condition (38) and $r_{1}<R_{6}$:

$$
\begin{aligned}
M_{2}=\max _{s=x+i y: r_{3} \leqslant\|s-q\| \leqslant r_{1}}\left(\left|A_{0}(x, y)-B_{0}(x, y)\right|\right. & +\left|A_{1}(x, y)-B_{1}(x, y)\right| \epsilon+ \\
& \left.+\left|A_{2}(x, y)-B_{2}(x, y)\right| \epsilon^{2}\right),
\end{aligned}
$$

we come to the contradiction in (37).
It means that the assumption that the point $\Theta_{0, w}$ lays on the open arch of the circle between points $\Theta_{1, w}$ and F_{1} since instant place is incorrectly.
Similarly it is false from a certain moment and the assumption that the point $\Theta_{0, w}$ lays on the opened arch of the second circle between points F_{2} and $\Theta_{2, w}$.
I.e. for any r_{1} since some threshold exist $r_{2}>0, r_{3}>0, \Delta_{1}>0$ so that the point $\Theta_{0, w}$ lies on the segment $F_{1} F_{2}$.

And (36) can be written as:

$$
\begin{gather*}
\left(-\frac{1}{2} \operatorname{Im} \frac{\Gamma^{\prime}\left(\frac{x+i y_{\tau_{0}}}{2}\right)}{\Gamma\left(\frac{x+i y_{\tau_{0}}}{2}\right)}+\operatorname{Im} I_{\mathcal{P} \backslash\{q\}}\left(x+i y_{\tau_{0}}\right)\right)_{x=x_{\tau_{0}}}^{\prime \prime}= \\
=\left(-\frac{k(q)\left(t_{q}-y_{\tau_{0}}\right)}{\left(\sigma_{q}-x\right)^{2}+\left(t_{q}-y_{\tau_{0}}\right)^{2}}\right)_{x=x_{\tau_{0}}}^{\prime \prime} \tag{39}
\end{gather*}
$$

Or

$$
\begin{equation*}
\left(-\frac{k(q)\left(t_{q}-y_{\tau_{0}}\right)}{\left(\sigma_{q}-x\right)^{2}+\left(t_{q}-y_{\tau_{0}}\right)^{2}}\right)_{x=x_{\tau_{0}}}^{\prime \prime}=O_{r_{1} \rightarrow 0}(1) \tag{40}
\end{equation*}
$$

Let's open the brackets of the last equality:

$$
\begin{array}{r}
\left(-\frac{k(q)\left(t_{q}-y_{\tau_{0}}\right)}{\left(\sigma_{q}-x\right)^{2}+\left(t_{q}-y_{\tau_{0}}\right)^{2}}\right)_{x=x_{\tau_{0}}}^{\prime \prime}= \\
-k(q)\left(\frac{-2\left(\sigma_{q}-x\right)\left(t_{q}-y_{\tau_{0}}\right)}{\left(\left(\sigma_{q}-x\right)^{2}+\left(t_{q}-y_{\tau_{0}}\right)^{2}\right)^{2}}\right)_{x=x_{\tau_{0}}}^{\prime}= \\
=-2 k(q)\left(t_{q}-y_{\tau_{0}}\right) \frac{\left(t_{q}-y_{\tau_{0}}\right)^{2}-3\left(\sigma_{q}-x_{\tau_{0}}\right)^{2}}{\left(\left(\sigma_{q}-x_{\tau_{0}}\right)^{2}+\left(t_{q}-y_{\tau_{0}}\right)^{2}\right)^{3}}
\end{array}
$$

- From (17) with condition $r_{3} \rightarrow r_{2} \rightarrow r_{1} \rightarrow 0$:

$$
\left(t_{q}-y_{\tau_{0}}\right)^{2}=O\left(r_{1}^{4}\right), \quad\left(\sigma_{q}-x_{\tau_{0}}\right)^{2}=O\left(r_{1}^{2}\right)
$$

and (40) can be written as follows:

$$
\left(t_{q}-y_{\tau_{0}}\right) O\left(r_{1}^{-4}\right)=O(1), \quad r_{3} \rightarrow r_{2} \rightarrow r_{1} \rightarrow 0
$$

According to the fact that $y_{\tau_{0}}=y_{\tau_{2}}$ because the point $\Theta_{0, w}$ lies on the segment $F_{1} F_{2}$ we get:

$$
t_{q}-y_{\tau_{2}}=O\left(r_{2}^{4}\right), \quad r_{2} \rightarrow 0
$$

or

$$
\begin{equation*}
t_{q}-y_{w_{r}}=O\left(r^{4}\right), \quad r \rightarrow 0 \tag{41}
\end{equation*}
$$

If our assumption that for any $R_{7}>0, R_{7}<R: \exists r_{1}<R_{7}$: point $\Theta_{1, w}$ lays on an arch of a circle of one of versions about connection of points $w_{r_{1}}$ and $w_{r_{2}}$ is incorrect that $\exists R_{7}>0, R_{7}<R: \forall r_{1}<R_{7}$: point $\Theta_{1, w}$ lies on the segment $F_{1} G_{1}$ so we will not constract a third circle with a radius r_{3} and search for the point $\Theta_{0, w}$.

- That's enough to rewrite (18) as:

$$
\begin{gathered}
\left(-\frac{1}{2} \operatorname{Im} \frac{\Gamma^{\prime}\left(\frac{x+i y_{\tau_{1}}}{2}\right)}{\Gamma\left(\frac{x+i y_{\tau_{1}}}{2}\right)}+\operatorname{Im} I_{\mathcal{P} \backslash q\}}\left(x+i y_{\tau_{1}}\right)\right)_{x=x_{\tau_{1}}}= \\
=\left(-\frac{k(q)\left(t_{q}-y_{\tau_{1}}\right)}{\left(\sigma_{q}-x\right)^{2}+\left(t_{q}-y_{\tau_{1}}\right)^{2}}\right)_{x=x_{\tau_{1}}}^{\prime}
\end{gathered}
$$

Or

$$
2 k(q) \frac{\left(\sigma_{q}-x_{\tau_{1}}\right)\left(t_{q}-y_{\tau_{1}}\right)}{\left(\left(\sigma_{q}-x_{\tau_{1}}\right)^{2}+\left(t_{q}-y_{\tau_{1}}\right)^{2}\right)^{2}}=O(1), \quad r_{2} \rightarrow r_{1} \rightarrow 0
$$

Then on the basis of (17), under condition of $r_{2} \rightarrow r_{1} \rightarrow 0$:

$$
\left(t_{q}-y_{\tau_{1}}\right) O\left(r_{1}^{-3}\right)=O(1), \quad r_{2} \rightarrow r_{1} \rightarrow 0
$$

And according to the fact that $y_{\tau_{1}}=y_{w_{r_{2}}}$ as the point $\Theta_{1, w}$ lies on the segment $F_{1} G_{1}$ we receive:

$$
t_{q}-y_{w_{r_{2}}}=O\left(r_{2}^{3}\right), \quad r_{2} \rightarrow 0
$$

i.e.

$$
\begin{equation*}
t_{q}-y_{w_{r}}=O\left(r^{3}\right), \quad r \rightarrow 0 \tag{42}
\end{equation*}
$$

Let's combine all of the cases from (41) and (42):

$$
\begin{equation*}
t_{q}-y_{w_{r}}=O\left(r^{3}\right), \quad r \rightarrow 0 \tag{43}
\end{equation*}
$$

Similarly acting with the point z_{r} we come to conclusion that:

$$
\begin{equation*}
t_{q}-y_{z_{r}}=O\left(r^{3}\right), \quad r \rightarrow 0 \tag{44}
\end{equation*}
$$

Let's consider the limit:

$$
\lim _{r \rightarrow 0}\left(\operatorname{Im} \frac{\zeta^{\prime}\left(w_{r}\right)}{\zeta\left(w_{r}\right)}+\operatorname{Im} \frac{\zeta^{\prime}\left(1-z_{r}\right)}{\zeta\left(1-z_{r}\right)}\right) .
$$

By the construction of (15) and (16):

$$
\begin{equation*}
\lim _{r \rightarrow 0}\left(\operatorname{Im} \frac{\zeta^{\prime}\left(w_{r}\right)}{\zeta\left(w_{r}\right)}+\operatorname{Im} \frac{\zeta^{\prime}\left(1-z_{r}\right)}{\zeta\left(1-z_{r}\right)}\right)=0 \tag{45}
\end{equation*}
$$

And if we expand:

$$
\begin{array}{r}
\lim _{r \rightarrow 0} \operatorname{Im}\left(-\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{w_{r}}{2}\right)}{\Gamma\left(\frac{w_{r}}{2}\right)}-\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{1-z_{r}}{2}\right)}{\Gamma\left(\frac{1-z_{r}}{2}\right)}+I_{\mathcal{P} \backslash\{q\}}\left(w_{r}\right)-I_{\mathcal{P} \backslash\{q\}}\left(z_{r}\right)+\right. \\
+ \\
\left.+k(q) \frac{t_{q}-y_{w_{r}}}{r^{2}}-k(q) \frac{t_{q}-y_{z_{r}}}{r^{2}}\right) \stackrel{\text { def }}{=} I_{1}+I_{2}+I_{3}
\end{array}
$$

where:

$$
I_{1}=\lim _{r \rightarrow 0} \operatorname{Im}\left(-\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{w_{r}}{2}\right)}{\Gamma\left(\frac{w_{r}}{2}\right)}-\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{1-z_{r}}{2}\right)}{\Gamma\left(\frac{1-z_{r}}{2}\right)}\right)
$$

$$
\begin{gathered}
I_{2}=\lim _{r \rightarrow 0} \operatorname{Im}\left(I_{\mathcal{P} \backslash\{q\}}\left(w_{r}\right)-I_{\mathcal{P} \backslash\{q\}}\left(z_{r}\right)\right), \\
I_{3}=\lim _{r \rightarrow 0} \operatorname{Im}\left(k(q) \frac{t_{q}-y_{w_{r}}}{r^{2}}-k(q) \frac{t_{q}-y_{z_{r}}}{r^{2}}\right) .
\end{gathered}
$$

By the continuity of the digamma function and the function $\operatorname{Im}_{I_{\mathcal{P} \backslash\{q\}}(s),} \forall s \in$ $Q(R)$ we have:

$$
\begin{gathered}
I_{1}=\operatorname{Im}\left(-\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{q}{2}\right)}{\Gamma\left(\frac{q}{2}\right)}-\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{1-q}{2}\right)}{\Gamma\left(\frac{1-q}{2}\right)}\right), \\
I_{2}=0,
\end{gathered}
$$

In accordance with (43) and (44)

$$
I_{3}=0
$$

Thus, from the (45) we have:

$$
\begin{equation*}
\operatorname{Im}\left(-\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{q}{2}\right)}{\Gamma\left(\frac{q}{2}\right)}-\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{1-q}{2}\right)}{\Gamma\left(\frac{1-q}{2}\right)}\right)=0, \quad \forall q \in \mathcal{P}_{1} \cup \mathcal{P}_{2} \tag{46}
\end{equation*}
$$

- From (6) equality (46) can be written as follows:

$$
\sum_{n=1}^{\infty}\left(\frac{t_{q}}{\left(2 n+\sigma_{q}\right)^{2}+t_{q}^{2}}-\frac{t_{q}}{\left(2 n+1-\sigma_{q}\right)^{2}+t_{q}^{2}}\right)=0
$$

I.e.

$$
\begin{array}{r}
\sum_{n=1}^{\infty} \frac{t_{q}\left(\left(2 n+1-\sigma_{q}\right)^{2}-\left(2 n+\sigma_{q}\right)^{2}\right)}{\left(\left(2 n+\sigma_{q}\right)^{2}+t_{q}^{2}\right)\left(\left(2 n+1-\sigma_{q}\right)^{2}+t_{q}^{2}\right)}= \\
=\sum_{n=1}^{\infty} \frac{t_{q}\left(1-2 \sigma_{q}\right)(4 n+1)}{\left(\left(2 n+\sigma_{q}\right)^{2}+t_{q}^{2}\right)\left(\left(2 n+1-\sigma_{q}\right)^{2}+t_{q}^{2}\right)}= \\
=\left(1-2 \sigma_{q}\right) \sum_{n=1}^{\infty} \frac{t_{q}(4 n+1)}{\left(\left(2 n+\sigma_{q}\right)^{2}+t_{q}^{2}\right)\left(\left(2 n+1-\sigma_{q}\right)^{2}+t_{q}^{2}\right)}=0 .
\end{array}
$$

Sum

$$
\sum_{n=1}^{\infty} \frac{t_{q}(4 n+1)}{\left(\left(2 n+\sigma_{q}\right)^{2}+t_{q}^{2}\right)\left(\left(2 n+1-\sigma_{q}\right)^{2}+t_{q}^{2}\right)}
$$

exists and is not equal to 0 when $t_{q} \neq 0$ so the equality (46) is performed exclusively at

$$
\sigma_{q}=\frac{1}{2}
$$

So, assuming that an arbitrary nontrivial root of zeta functions q belongs to the union $\mathcal{P}_{1} \cup \mathcal{P}_{2}$ we found that it belongs only to \mathcal{P}_{2}, i.e. $\mathcal{P}_{1}=\varnothing$.

And according to the fact that $\left\|\mathcal{P}_{3}\right\|=\left\|\mathcal{P}_{1}\right\|=0$ we have:

$$
\mathcal{P}_{3}=\mathcal{P}_{1}=\varnothing, \quad \mathcal{P}=\mathcal{P}_{2}
$$

Which is given above proves the basic statement and the assumption which had been made by Bernhard Riemann about the location of the real parts of the nontrivial zeros of zeta function.

REFERENCES:

[1] Abramowitz, M. and Stegun, I. A. (Eds.). "Polygamma Functions."§6.4 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 260, 1972.
[2] Allouche, J.-P. "Series and Infinite Products related to Binary Expansions of Integers."1992.
[3] Davenport, H. Multiplicative Number Theory, 2nd ed. New York: Springer-Verlag, 1980.
[4] Edwards, H. M. Riemann's Zeta Function. New York: Dover, 1974.
[5] Karatsuba, A. A. and Voronin, S. M. The Riemann Zeta-Function. Hawthorn, NY: de Gruyter, 1992.
[6] Keiper, J. B. "Power Series Expansions of Riemann's xi Function."Math. Comput. 58, 765-773, 1992.
[7] Knuth, D. E. The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3rd ed. Reading, MA: Addison-Wesley, 1997.
[8] Lehmer, D. H. "The Sum of Like Powers of the Zeros of the Riemann Zeta Function."Math. Comput. 50, 265-273, 1988.
[9] Smith, D. E. A Source Book in Mathematics. New York: Dover, 1994.
[10] Titchmarsh, E. C. The Theory of the Riemann Zeta Function, 2nd ed. New York: Clarendon Press, 1987.
[11] Valle-Poussin C.J. De la Recherches analytiques sur la theorie des wombres partie I,II,III, Am. Soc. Sci. Bruxelles, Ser. A. - 1896-1897, t. 20-21.
[12] Voros, A. "Spectral Functions, Special Functions and the Selberg Zeta Function."Commun. Math. Phys. 110, 439-465, 1987.

