The real parts of the nontrivial Riemann zeta function zeros Igor Turkanov

Abstract

This theorem is based on holomorphy of studied functions and the fact that nearby of a singularity point the imaginary part of the specific function can accept zero value.

The colored markers are:

- - assumption or a fact which is not proven at present;
- - the statement which requires additional attention;
- - statement which is proved earlier or clearly undestandable.

THEOREM

- The real parts of all the nontrivial Riemann zeta function zeros ρ are equal $\operatorname{Re}(\rho)=\frac{1}{2}$.

PROOF:

- According to the functional equality [10, p. 22], [5, p. 8-11]:

$$
\begin{equation*}
\Gamma\left(\frac{s}{2}\right) \pi^{-\frac{s}{2}} \zeta(s)=\Gamma\left(\frac{1-s}{2}\right) \pi^{-\frac{1-s}{2}} \zeta(1-s), \quad \operatorname{Re}(s)>0 \tag{1}
\end{equation*}
$$

$\zeta(s)$ - the Riemann zeta function, $\Gamma(s)$ - the Gamma function.

- From [5, p. 8-11] $\zeta(\bar{s})=\overline{\zeta(s)}$, it means that $\forall \rho=\sigma+i t: \zeta(\rho)=0$ and $0 \leqslant \sigma \leqslant 1$ we have:

$$
\begin{equation*}
\zeta(\bar{\rho})=\zeta(1-\rho)=\zeta(1-\bar{\rho})=0 \tag{2}
\end{equation*}
$$

- From [11], [9, p. 128], [10, p. 45] we know that $\zeta(s)$ has no nontrivial zeros on the line $\sigma=1$ and consequently on the line $\sigma=0$ also, in accordance with (2) they don't exist.

Let's denote the set of nontrivial zeros $\zeta(s)$ through \mathcal{P} (multiset with consideration of multiplicitiy):

$$
\begin{align*}
\mathcal{P} & \stackrel{\text { def }}{=}\{\rho: \zeta(\rho)=0, \rho=\sigma+i t, 0<\sigma<1\} . \\
\text { And: } \mathcal{P}_{1} & \stackrel{\text { def }}{=}\left\{\rho: \zeta(\rho)=0, \rho=\sigma+i t, 0<\sigma<\frac{1}{2}\right\}, \tag{3}\\
\mathcal{P}_{2} & \stackrel{\text { def }}{=}\left\{\rho: \zeta(\rho)=0, \rho=\frac{1}{2}+i t\right\}, \\
\mathcal{P}_{3} & \stackrel{\text { def }}{=}\left\{\rho: \zeta(\rho)=0, \rho=\sigma+i t, \frac{1}{2}<\sigma<1\right\} .
\end{align*}
$$

Then:

$$
\begin{gathered}
\mathcal{P}=\mathcal{P}_{1} \cup \mathcal{P}_{2} \cup \mathcal{P}_{3} \quad \text { and } \mathcal{P}_{1} \cap \mathcal{P}_{2}=\mathcal{P}_{2} \cap \mathcal{P}_{3}=\mathcal{P}_{1} \cap \mathcal{P}_{3}=\varnothing \\
\mathcal{P}_{1}=\varnothing \Leftrightarrow \mathcal{P}_{3}=\varnothing
\end{gathered}
$$

- Hadamard's theorem (Weierstrass preparation theorem) on the decomposition of function through the roots gives us the following result [10, p. 30], [5, p. 31], [12]:

$$
\begin{align*}
\zeta(s) & =\frac{\pi \overline{2} e^{a s}}{s(s-1) \Gamma\left(\frac{s}{2}\right)} \prod_{\rho \in \mathcal{P}}\left(1-\frac{s}{\rho}\right) e^{\frac{s}{\rho}}, \quad \operatorname{Re}(s)>0 \tag{4}\\
a & =\ln 2 \sqrt{\pi}-\frac{\gamma}{2}-1, \gamma-\text { Euler's constant and }
\end{align*}
$$

$$
\frac{\zeta^{\prime}(s)}{\zeta(s)}=\frac{1}{2} \ln \pi+a-\frac{1}{s}+\frac{1}{1-s}-\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}+\sum_{\rho \in \mathcal{P}}\left(\frac{1}{s-\rho}+\frac{1}{\rho}\right)
$$

- According to the fact that $\frac{\Gamma^{\prime}\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}$ - Digamma function of [10, p. 31], [5, p. 23] we have:

$$
\begin{gather*}
\frac{\zeta^{\prime}(s)}{\zeta(s)}=\frac{1}{1-s}+\sum_{\rho \in \mathcal{P}}\left(\frac{1}{s-\rho}+\frac{1}{\rho}\right)+\sum_{n=1}^{\infty}\left(\frac{1}{s+2 n}-\frac{1}{2 n}\right)+C \tag{6}\\
C=\mathrm{const}
\end{gather*}
$$

- From [4, p. 160], [8, p. 272], [3, p. 81]:

$$
\begin{equation*}
\sum_{\rho \in \mathcal{P}} \frac{1}{\rho}=1+\frac{\gamma}{2}-\ln 2 \sqrt{\pi}=0,0230957 \ldots \tag{7}
\end{equation*}
$$

Indeed, from (2):

$$
\sum_{\rho \in \mathcal{P}} \frac{1}{\rho}=\frac{1}{2} \sum_{\rho \in \mathcal{P}}\left(\frac{1}{1-\rho}+\frac{1}{\rho}\right)
$$

- From (5):

$$
2 \sum_{\rho \in \mathcal{P}} \frac{1}{\rho}=\lim _{s \rightarrow 1}\left(\frac{\zeta^{\prime}(s)}{\zeta(s)}-\frac{1}{1-s}+\frac{1}{s}-a-\frac{1}{2} \ln \pi+\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}\right)
$$

- Also it's known, for example, from [10, p. 49], [3, p. 98] that the number of nontrivial zeros of $\rho=\sigma+i t$ in strip $0<\sigma<1$, the imaginary parts of which t are less than some number $T>0$ is limited, i.e.

$$
\|\{\rho: \rho \in \mathcal{P}, \rho=\sigma+i t,|t|<T\}\|<\infty
$$

Indeed, it can be presented that on the contrary the sum of $\sum_{\rho \in \mathcal{P}} \frac{1}{\rho}$ would have been unlimited.

Thus $\forall T>0 \exists \delta_{x}>0, \delta_{y}>0$ such that

$$
\begin{equation*}
\text { in area } 0<t \leqslant \delta_{y}, 0<\sigma \leqslant \delta_{x} \text { there are no zeros } \rho=\sigma+i t \in \mathcal{P} \text {. } \tag{8}
\end{equation*}
$$

Let's consider random root $q \in \mathcal{P}_{1} \cup \mathcal{P}_{2}$
Let's denote $k(q)$ the multiplicity of the root q.
Let's examine the area $Q(R) \stackrel{\text { def }}{=}\{s:\|s-q\| \leqslant R, R>0\}$.
From the fact of finiteness of set of nontrivial zeros $\zeta(s)$ in the limited area follows $\exists R>0$, such that $Q(R)$ does not contain any root from \mathcal{P} except q.

Fig. 1.

- From [1], [10, p. 31], [5, p. 23] we know that the Digamma function $\frac{\Gamma^{\prime}\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}$ in the area $Q(R)$ has no poles, i.e. $\forall s \in Q(R)$

$$
\left\|\frac{\Gamma^{\prime}\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}\right\|<\infty .
$$

Let's denote:

$$
I_{\mathcal{P}}(s) \stackrel{\text { def }}{=}-\frac{1}{s}+\frac{1}{1-s}+\sum_{\rho \in \mathcal{P}} \frac{1}{s-\rho}
$$

and

$$
\begin{equation*}
I_{\mathcal{P} \backslash\{q\}}(s)=-\frac{1}{s}+\frac{1}{1-s}+\sum_{\rho \in \mathcal{P} \backslash\{q\}} \frac{1}{s-\rho} . \tag{9}
\end{equation*}
$$

Hereinafter $\mathcal{P} \backslash\{q\} \stackrel{\text { def }}{=} \mathcal{P} \backslash\{(q, k(q))\}$ (the difference in the multiset).
Summation - $\sum_{\rho \in \mathcal{P}} \frac{1}{s-\rho}$ and $\sum_{\rho \in \mathcal{P} \backslash\{q\}} \frac{1}{s-\rho}$ further we shall consider as the sum of pairs $\left(\frac{1}{s-\rho}+\frac{1}{s-(1-\rho)}\right)$ and $\sum_{\rho \in \mathcal{P}} \frac{1}{\rho}$ as the sum of pairs $\left(\frac{1}{\rho}+\frac{1}{1-\rho}\right)$ as a consequence of division of the sum from (6) $\sum_{\rho \in \mathcal{P}}\left(\frac{1}{s-\rho}+\frac{1}{\rho}\right)$ into $\sum_{\rho \in \mathcal{P}} \frac{1}{s-\rho}+\sum_{\rho \in \mathcal{P}} \frac{1}{\rho}$. As specifed in [4], [6], [8], [10].

Let's note that $I_{\mathcal{P} \backslash\{q\}}(s)$ is holomorphic function $\forall s \in Q(R)$.
Then from (5) we have:

$$
\begin{equation*}
\frac{\zeta^{\prime}(s)}{\zeta(s)}=\frac{1}{2} \ln \pi+a-\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}+\sum_{\rho \in \mathcal{P}} \frac{1}{\rho}+I_{\mathcal{P}}(s) . \tag{10}
\end{equation*}
$$

And in view of (7):

$$
\begin{equation*}
\operatorname{Im} \frac{\zeta^{\prime}(s)}{\zeta(s)}=\operatorname{Im}\left(-\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}+I_{\mathcal{P}}(s)\right) \tag{11}
\end{equation*}
$$

Let's note that from the equality of

$$
\begin{equation*}
\sum_{\rho \in \mathcal{P}} \frac{1}{1-s-\rho}=-\sum_{(1-\rho) \in \mathcal{P}} \frac{1}{s-(1-\rho)}=-\sum_{\rho \in \mathcal{P}} \frac{1}{s-\rho} \tag{12}
\end{equation*}
$$

follows that:

$$
I_{\mathcal{P}}(1-s)=-I_{\mathcal{P}}(s), I_{\mathcal{P} \backslash\{q\}}(1-s)=-I_{\mathcal{P} \backslash\{1-q\}}(s), \operatorname{Re}(s)>0 .
$$

- Besides

$$
I_{\mathcal{P} \backslash\{q\}}(s)=I_{\mathcal{P}}(s)-\frac{k(q)}{s-q}
$$

and $I_{\mathcal{P} \backslash\{q\}}(s)$ is limited in the area of $s \in Q(R)$ as a result of absence of its poles in this area as well as its differentiability in each point of this area.

- If in (5) to replace s with $1-s$ that in view of (7):

$$
\begin{equation*}
\frac{\zeta^{\prime}(s)}{\zeta(s)}+\frac{\zeta^{\prime}(1-s)}{\zeta(1-s)}=-\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}-\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{1-s}{2}\right)}{\Gamma\left(\frac{1-s}{2}\right)}+\ln \pi, R e(s)>0 . \tag{13}
\end{equation*}
$$

- Let's examine a circle with the center in a point q and radius $r \leqslant R$, laying in the area of $Q(R)$:

Fig. 2.

- For $s=x+i y, q=\sigma_{q}+i t_{q}$

$$
\operatorname{Im} \frac{k(q)}{s-q}=\operatorname{Im} \frac{k(q)}{x+i y-\sigma_{q}-i t_{q}}=\frac{k(q)\left(t_{q}-y\right)}{\left(x-\sigma_{q}\right)^{2}+\left(y-t_{q}\right)^{2}}=k(q) \frac{t_{q}-y}{r^{2}},
$$

Consider also the function $\ln \zeta(s)$ - principal branch function $\operatorname{Ln} \zeta(s)$ for which of the (4), in view of $(7) \forall s \in Q(R)$ is true:

$$
\begin{equation*}
\ln \zeta(s)=\frac{\ln \pi}{2} s-\ln (s(1-s))-\ln \Gamma\left(\frac{s}{2}\right)+\sum_{\rho \in \mathcal{P}} \ln \left(1-\frac{s}{\rho}\right) . \tag{14}
\end{equation*}
$$

The sum as stipulated earlier, is taken in pairs:

$$
\ln \left(1-\frac{s}{\rho}\right)+\ln \left(1-\frac{s}{1-\rho}\right) .
$$

Let's designate the real function of two variables for $s=x+i y$:

$$
\omega(x, y) \stackrel{\text { def }}{=} \operatorname{Im}\left(-\ln (s(1-s))-\ln \Gamma\left(\frac{s}{2}\right)+\sum_{\rho \in \mathcal{P} \backslash\{q\}} \ln \left(1-\frac{s}{\rho}\right)\right)
$$

Note that the function $\omega(x, y)$ and its partial derivatives on both variables exist and are limited to $\forall s=x+i y \in Q(R)$, since

$$
\omega(x, y)=\operatorname{Im} \ln \zeta(x+i y)-\frac{\ln \pi}{2} y-k(q) I m \ln \left(1-\frac{x+i y}{q}\right)
$$

Inside of area $Q(R)$ we take a point $M \stackrel{\text { def }}{=}\left(x_{M}, y_{M}\right)$, does not coincide which the point q.

Let's draw a looped curve from the point M so that it doesn't pass through the point q and is described by the function which has a continuous derivative at each point.

Let's designate: $f_{M}(\tau) \stackrel{\text { def }}{=} f_{x}(\tau)+i f_{y}(\tau)$:

Fig. 3.

In accordance with the construction let's denote $\tau_{M, 1}$ and $\tau_{M, 2}$ such that:

$$
f_{M}\left(\tau_{M, 1}\right)=x_{M}+i y_{M}, \quad f_{M}\left(\tau_{M, 2}\right)=x_{M}+i y_{M}
$$

Function $\operatorname{Im} \ln \zeta(s)-\frac{\ln \pi}{2} \operatorname{Im}(s)$ is differentiable and therefore continuous and differentiable in τ function $\operatorname{Im} \ln \zeta\left(f_{M}(\tau)\right)-\frac{\ln \pi}{2} \operatorname{Im}\left(f_{M}(\tau)\right)$.

It means that continuous on the segment and differentiable in the domestic range of this segment the real function gets at its ends the same values:

$$
\begin{gathered}
\operatorname{Im} \ln \zeta\left(f_{M}\left(\tau_{M, 1}\right)\right)-\frac{\ln \pi}{2} \operatorname{Im}\left(f_{M}\left(\tau_{M, 1}\right)\right)= \\
=\operatorname{Im} \ln \zeta\left(f_{M}\left(\tau_{M, 2}\right)\right)-\frac{\ln \pi}{2} \operatorname{Im}\left(f_{M}\left(\tau_{M, 2}\right)\right)= \\
=\operatorname{Im} \ln \zeta\left(f_{M}\left(x_{M}+i y_{M}\right)\right)-\frac{\ln \pi}{2} \operatorname{Im}\left(f_{M}\left(x_{M}+i y_{M}\right)\right) .
\end{gathered}
$$

By Rolle's theorem on the extremum of a differentiable function on the interval we have:

$$
\begin{equation*}
\exists \tau_{1} \in\left(\tau_{M, 1}, \tau_{M, 2}\right): \quad\left(\operatorname{Im} \ln \zeta\left(f_{M}(\tau)\right)-\frac{\ln \pi}{2} \operatorname{Im}\left(f_{M}(\tau)\right)\right)_{\tau=\tau_{1}}^{\prime}=0 \tag{15}
\end{equation*}
$$

I.e. on a curve described by function $f_{M}(\tau), \quad \tau \in\left(\tau_{M, 1}, \tau_{M, 2}\right)$ there is a point $\Theta_{w}=\Theta_{w}(M) \stackrel{\text { def }}{=} f_{M}\left(\tau_{1}\right)$ for which it is true (15).

- Let's consider the following option line, as a closed curve which passes through a point of M.

For any $0<r<R$ construct a circle centered at the point q and the radius r.

The point of intersection of the left semicircle of the circle and the line $y-t_{q}=x-\sigma_{q}$ let's denote as $J \xlongequal[=]{\text { def }}\left(x_{J}, y_{J}\right)$.

Let's construct a circle with the center in a point J, with radius:

$$
0<r_{\delta}<\min (r, R-r)
$$

As a point of M let's take more distant from q point of intersection of the circle with the line $y-t_{q}=x-\sigma_{q}$.

Fig. 4.

As the desired curve, we consider the circle with center at J and the radius r_{δ}.

Let's notice that the received curve satisfies to all declared properties for any as much as small radius since $\min (r, R-r)$.

Let's assign:

$$
\begin{equation*}
0<r_{\delta}=O\left(r^{3}\right)_{r \rightarrow 0} . \tag{16}
\end{equation*}
$$

Then $\exists 0<R_{1} \leqslant R: \forall 0<r<R_{1}$ the condition is satisfied:

$$
0<r_{\delta}<\min (r, R-r) .
$$

As τ take $\operatorname{Im}(s)=y$, then:

$$
f_{y}(y)=y, \quad x=f_{x}(y)=x_{J} \pm \sqrt{r_{\delta}^{2}-\left(y-y_{J}\right)^{2}}
$$

- According to [1, p. 67, 82]:

$$
\begin{gathered}
\operatorname{Im} \ln \left(1-\frac{x+i y}{q}\right)=\operatorname{Im} \ln \left(\sigma_{q}-x+i\left(t_{q}-y\right)\right)-\operatorname{Im} \ln (q)= \\
=\arctan \left(\frac{t_{q}-y}{\sigma_{q}-x}\right)-\arctan \left(\frac{t_{q}}{\sigma_{q}}\right) \\
\frac{d}{d x} \arctan (x)=\frac{1}{1+x^{2}}
\end{gathered}
$$

Then:

$$
\begin{gather*}
\frac{d}{d \tau} \operatorname{Im} \ln \left(1-\frac{x(\tau)+i \tau}{q}\right)_{\tau=\tau_{1}}=\frac{d}{d \tau} \arctan \left(\frac{t_{q}-\tau}{\sigma_{q}-x(\tau)}\right)_{\tau=\tau_{1}}= \\
=\frac{1}{1+\left(\frac{t_{q}-\tau_{1}}{\sigma_{q}-x\left(\tau_{1}\right)}\right)^{2}} \frac{\partial}{\partial \tau}\left(\frac{t_{q}-\tau}{\sigma_{q}-x\left(\tau_{1}\right)}\right)_{\tau=\tau_{1}}+ \\
+\frac{1}{1+\left(\frac{t_{q}-\tau_{1}}{\sigma_{q}-x\left(\tau_{1}\right)}\right)^{2}} \frac{\partial}{\partial x}\left(\frac{t_{q}-\tau_{1}}{\sigma_{q}-x}\right)_{x=x\left(\tau_{1}\right)} x^{\prime}\left(\tau_{1}\right)= \\
=-\frac{\sigma_{q}-x\left(\tau_{1}\right)}{\left(\sigma_{q}-x\left(\tau_{1}\right)\right)^{2}+\left(t_{q}-\tau_{1}\right)^{2}}+\frac{x^{\prime}\left(\tau_{1}\right)\left(t_{q}-\tau_{1}\right)}{\left(\sigma_{q}-x\left(\tau_{1}\right)\right)^{2}+\left(t_{q}-\tau_{1}\right)^{2}} \tag{17}
\end{gather*}
$$

And for the $s=x+i y$ equation (15) at the point $\Theta_{w}=\left(x\left(\tau_{1}\right), \tau_{1}\right)$ can be written as follows:

$$
\begin{gather*}
\frac{\sigma_{q}-x\left(\tau_{1}\right)}{\left(\sigma_{q}-x\left(\tau_{1}\right)\right)^{2}+\left(t_{q}-\tau_{1}\right)^{2}}-\frac{x^{\prime}\left(\tau_{1}\right)\left(t_{q}-\tau_{1}\right)}{\left(\sigma_{q}-x\left(\tau_{1}\right)\right)^{2}+\left(t_{q}-\tau_{1}\right)^{2}}= \\
=\omega\left(x\left(\tau_{1}\right), y\right)_{y=\tau_{1}}^{\prime}+x\left(\tau_{1}\right)^{\prime} \omega\left(x, \tau_{1}\right)_{x=x\left(\tau_{1}\right)}^{\prime} . \tag{18}
\end{gather*}
$$

- At $r \rightarrow 0$ and (16):

$$
\begin{aligned}
& \left(\sigma_{q}-x\left(\tau_{1}\right)\right)^{2}+\left(t_{q}-\tau_{1}\right)^{2} \leqslant\left(\frac{\sqrt{2}}{2} r+r_{\delta}\right)^{2}+\left(\frac{\sqrt{2}}{2} r+r_{\delta}\right)^{2}=r^{2}+O\left(r^{4}\right), \\
& \left(\sigma_{q}-x\left(\tau_{1}\right)\right)^{2}+\left(t_{q}-\tau_{1}\right)^{2} \geqslant\left(\frac{\sqrt{2}}{2} r-r_{\delta}\right)^{2}+\left(\frac{\sqrt{2}}{2} r-r_{\delta}\right)^{2}=r^{2}+O\left(r^{4}\right),
\end{aligned}
$$

i.e.

$$
\left(\sigma_{q}-x\left(\tau_{1}\right)\right)^{2}+\left(t_{q}-\tau_{1}\right)^{2}=r^{2}+O\left(r^{4}\right) .
$$

Hence from the equation (18) at $r \rightarrow 0 x^{\prime}\left(\tau_{1}\right)$:

$$
\begin{equation*}
x^{\prime}\left(\tau_{1}\right)=1-\omega\left(x\left(\tau_{1}\right), y\right)_{y=\tau_{1}}^{\prime} \sqrt{2} r+O\left(r^{2}\right) . \tag{19}
\end{equation*}
$$

Similar reasonings for $s=x+i y$ in the same area $s \in Q(R)$ points q for function $\operatorname{Im} \ln \zeta(1-s)-\frac{\ln \pi}{2} \operatorname{Im}(1-s)$ we shall come to conclusion that on the circle with the center in J and radius r_{δ} there should be a point $\Theta_{z}=\Theta_{z}(M) \stackrel{\text { def }}{=} f_{M}\left(\tau_{2}\right)$ for some $\tau_{2} \in\left(\tau_{M, 1}, \tau_{M, 2}\right)$ for which equality is true:

$$
\begin{equation*}
\left(\operatorname{Im} \ln \zeta\left(1-f_{M}(\tau)\right)\right)-\frac{\ln \pi}{2} \operatorname{Im}\left(1-f_{M}(\tau)\right)_{\tau=\tau_{2}}^{\prime}=0 . \tag{20}
\end{equation*}
$$

Indeed, if we apply the (14) value is $1-s$ instead of s :

$$
\begin{gathered}
\ln \zeta(1-s)-\frac{\ln \pi}{2}(1-s)= \\
-\ln ((1-s) s)-\ln \Gamma\left(\frac{1-s}{2}\right)+\sum_{\rho \in \mathcal{P}} \ln \left(1-\frac{1-s}{\rho}\right)
\end{gathered}
$$

that in view of that $\forall \rho \in \mathcal{P}$:

$$
\left(1-\frac{1-s}{\rho}\right)\left(1-\frac{1-s}{1-\rho}\right)=\left(1-\frac{s}{\rho}\right)\left(1-\frac{s}{1-\rho}\right)
$$

we have:

$$
\begin{equation*}
\ln \zeta(1-s)-\frac{\ln \pi}{2}(1-s)=-\ln (s(1-s))-\ln \Gamma\left(\frac{1-s}{2}\right)+\sum_{\rho \in \mathcal{P}} \ln \left(1-\frac{s}{\rho}\right) \tag{21}
\end{equation*}
$$

Let's designate the real function of two variables for $s=x+i y$:

$$
\omega(x, y)_{-} \stackrel{\text { def }}{=} \operatorname{Im}\left(-\ln (s(1-s))-\ln \Gamma\left(\frac{1-s}{2}\right)+\sum_{\rho \in \mathcal{P} \backslash\{q\}} \ln \left(1-\frac{s}{\rho}\right)\right) .
$$

Note that the function $\omega(x, y)_{\text {- }}$ and its partial derivatives on both variables exist and are limited to $\forall s=x+i y \in Q(R)$, since

$$
\omega(x, y)_{-}=\operatorname{Im} \ln \zeta(1-x-i y)+\frac{\ln \pi}{2} y-k(q) \operatorname{Im} \ln \left(1-\frac{x+i y}{q}\right)
$$

And all reasonings for functions $\ln \zeta(1-s)-\frac{\ln \pi}{2}(1-s)$ and $\omega(x, y)_{-}$are similar to reasonings for appropriate functions $\ln \zeta(s)-\frac{\ln \pi}{2}(s)$ and $\omega(x, y)$.

So, on the circle with the center in J and radius r_{δ} are two points of Θ_{w} and Θ_{z}, for which the equalities (15) and (20) respectively.

And similarly (19) at $r \rightarrow 0$:

$$
\begin{equation*}
x^{\prime}\left(\tau_{2}\right)=1-\omega_{-}\left(x\left(\tau_{2}\right), y\right)_{y=\tau_{2}}^{\prime} r+O\left(r^{2}\right) \tag{22}
\end{equation*}
$$

For $\forall s:\left\|s-\left(x_{J}+i y_{J}\right)\right\|<r_{\delta}$ derivative of function
$-\ln (s(1-s))+\sum_{\rho \in \mathcal{P}} \ln \left(1-\frac{s}{\rho}\right)$ is continuous and equal to:

$$
\frac{d}{d s}\left(-\ln (s(1-s))+\sum_{\rho \in \mathcal{P}} \ln \left(1-\frac{s}{\rho}\right)\right)=I_{\mathcal{P}}(s)
$$

Hence for fixed $0<r<R_{1}$ from the continuity of the given above function at the point J :
$\forall \varepsilon_{r}>0, \exists \delta_{\varepsilon_{r}}>0: \forall s:\left\|s-\left(x_{J}+i y_{J}\right)\right\|<\delta_{\varepsilon_{r}}$ follows:

$$
\begin{aligned}
& \left|\operatorname{Re} I_{\mathcal{P}}(s)-\operatorname{Re}_{\mathcal{P}}\left(x_{J}+i y_{J}\right)\right|<\frac{\varepsilon_{r}}{4}, \\
& \left|\operatorname{Im}_{\mathcal{P}}(s)-\operatorname{Im}_{\mathcal{P}}\left(x_{J}+i y_{J}\right)\right|<\frac{\varepsilon_{r}}{4} .
\end{aligned}
$$

Let's assign $\varepsilon_{r}=r$ then $\forall 0<r_{\delta}<\delta_{\varepsilon_{r}}$, at $r \rightarrow 0$, with the condition (16) similar to (17) where $f_{y}(\tau)=\tau, f_{x}(\tau)=x(\tau)$ is true:

$$
\begin{gathered}
\frac{d}{d \tau} \operatorname{Im}\left(-\ln \left(f_{M}(\tau)\left(1-f_{M}(\tau)\right)\right)+\sum_{\rho \in \mathcal{P}} \ln \left(1-\frac{f_{M}(\tau)}{\rho}\right)\right)_{\tau=\tau_{1}}- \\
-\frac{d}{d \tau} \operatorname{Im}\left(-\ln \left(f_{M}(\tau)\left(1-f_{M}(\tau)\right)\right)+\sum_{\rho \in \mathcal{P}} \ln \left(1-\frac{f_{M}(\tau)}{\rho}\right)\right)_{\tau=\tau_{2}}= \\
=\left(-\operatorname{Re} I_{\mathcal{P}}\left(\Theta_{w}\right)+x\left(\tau_{1}\right)^{\prime} \operatorname{Im} I_{\mathcal{P}}\left(\Theta_{w}\right)\right)- \\
-\left(-\operatorname{Re} I_{\mathcal{P}}\left(\Theta_{z}\right)+x\left(\tau_{2}\right)^{\prime} \operatorname{Im} I_{\mathcal{P}}\left(\Theta_{z}\right)\right)=
\end{gathered}
$$

$$
\begin{align*}
& =-\operatorname{Re} I_{\mathcal{P}}\left(\Theta_{w}\right)+\operatorname{Re} I_{\mathcal{P}}\left(x_{J}+i y_{J}\right)-\operatorname{Re}_{\mathcal{P}}\left(x_{J}+i y_{J}\right)+\operatorname{Re} I_{\mathcal{P}}\left(\Theta_{z}\right)+ \\
& +x\left(\tau_{1}\right)^{\prime} \operatorname{Im} I_{\mathcal{P}}\left(\Theta_{w}\right)-x\left(\tau_{1}\right)^{\prime} \operatorname{Im} I_{\mathcal{P}}\left(x_{J}+i y_{J}\right)+ \\
& +x\left(\tau_{2}\right)^{\prime} \operatorname{Im} I_{\mathcal{P}}\left(x_{J}+i y_{J}\right)-x\left(\tau_{2}\right)^{\prime} \operatorname{Im} I_{\mathcal{P}}\left(\Theta_{z}\right)+ \\
& +x\left(\tau_{1}\right)^{\prime} \operatorname{Im} I_{\mathcal{P}}\left(x_{J}+i y_{J}\right)-x\left(\tau_{2}\right)^{\prime} \operatorname{Im} I_{\mathcal{P}}\left(x_{J}+i y_{J}\right)= \\
& =O\left(\frac{r}{4}+\frac{r}{4}+\frac{r}{4}\left|x\left(\tau_{1}\right)^{\prime}\right|+\frac{r}{4}\left|x\left(\tau_{2}\right)^{\prime}\right|\right)+ \\
& +\left(x\left(\tau_{1}\right)^{\prime}-x\left(\tau_{2}\right)^{\prime}\right) \operatorname{Im} I_{\mathcal{P}}\left(x_{J}+i y_{J}\right)= \\
& =\left(x\left(\tau_{1}\right)^{\prime}-x\left(\tau_{2}\right)^{\prime}\right) \operatorname{Im} I_{\mathcal{P}}\left(x_{J}+i y_{J}\right)+O(r)= \\
& =\left(\omega_{-}\left(x\left(\tau_{2}\right), y\right)_{y=\tau_{2}}^{\prime} \sqrt{2} r-\omega\left(x\left(\tau_{1}\right), y\right)_{y=\tau_{1}}^{\prime} \sqrt{2} r+O\left(r^{2}\right)\right) * \\
& *\left(\operatorname{ImI}_{\mathcal{P} \backslash\{q\}}\left(x_{J}+i y_{J}\right)+\frac{t_{q}-y_{J}}{\left(\sigma_{q}-x_{J}\right)^{2}+\left(t_{q}-y_{J}\right)^{2}}\right)+O(r)= \\
& =\omega_{-}\left(x\left(\tau_{2}\right), y\right)_{y=\tau_{2}}^{\prime}-\omega\left(x\left(\tau_{1}\right), y\right)_{y=\tau_{1}}^{\prime}+O(r)= \\
& =-\frac{\partial}{\partial y} \operatorname{Im} \ln \Gamma\left(\frac{1-x\left(\tau_{2}\right)-i y}{2}\right)_{y=\tau_{2}}+\frac{\partial}{\partial y} \operatorname{Im} \ln \Gamma\left(\frac{x\left(\tau_{1}\right)+i y}{2}\right)_{y=\tau_{1}}+ \\
& +\operatorname{Re} I_{\mathcal{P} \backslash\{q\}}\left(\Theta_{w}\right)-\operatorname{Re} I_{\mathcal{P} \backslash\{q\}}\left(\Theta_{z}\right)+O(r)= \\
& =-\frac{\partial}{\partial y} \operatorname{Im} \ln \Gamma\left(\frac{1-x\left(\tau_{2}\right)-i y}{2}\right)_{y=\tau_{2}}+\frac{\partial}{\partial y} \operatorname{Im} \ln \Gamma\left(\frac{x\left(\tau_{1}\right)+i y}{2}\right)_{y=\tau_{1}}+ \\
& +o(1) \text {. } \tag{23}
\end{align*}
$$

Let's consider a difference of the equations (15) and (20) which on construction is equal 0 for $\forall 0<r<R_{1}$:

$$
\begin{gathered}
\lim _{r \rightarrow 0} 0=\lim _{r \rightarrow 0}\left(\left(\operatorname{Im} \ln \zeta\left(f_{M}(\tau)\right)-\frac{\ln \pi}{2} \operatorname{Im}\left(f_{M}(\tau)\right)\right)_{\tau=\tau_{1}}^{\prime}-\right. \\
\left.-\left(\operatorname{Im} \ln \zeta\left(1-f_{M}(\tau)\right)-\frac{\ln \pi}{2} \operatorname{Im}\left(1-f_{M}(\tau)\right)\right)_{\tau=\tau_{2}}^{\prime}\right)= \\
=\lim _{r \rightarrow 0}\left(-\left(\operatorname{Im} \ln \Gamma\left(\frac{f_{M}(\tau)}{2}\right)\right)_{\tau=\tau_{1}}^{\prime}+\left(\operatorname{Im} \ln \Gamma\left(\frac{1-f_{M}(\tau)}{2}\right)\right)_{\tau=\tau_{2}}^{\prime}+\right. \\
+\frac{d}{d \tau} \operatorname{Im}\left(-\ln \left(f_{M}(\tau)\left(1-f_{M}(\tau)\right)\right)+\sum_{\rho \in \mathcal{P}} \ln \left(1-\frac{f_{M}(\tau)}{\rho}\right)\right)_{\tau=\tau_{1}}^{-} \\
\left.-\left(\frac{d}{d \tau} \operatorname{Im}\left(-\ln \left(f_{M}(\tau)\left(1-f_{M}(\tau)\right)\right)+\sum_{\rho \in \mathcal{P}} \ln \left(1-\frac{f_{M}(\tau)}{\rho}\right)\right)_{\tau=\tau_{2}}\right)\right)=
\end{gathered}
$$

And then from (23) follows:

$$
\begin{gathered}
=\lim _{r \rightarrow 0}\left(-x\left(\tau_{1}\right)^{\prime} \frac{\partial}{\partial x}\left(\operatorname{Im} \ln \Gamma\left(\frac{x+i \tau_{1}}{2}\right)\right)_{x=x\left(\tau_{1}\right)}-\right. \\
-\frac{\partial}{\partial y}\left(\operatorname{Im} \ln \Gamma\left(\frac{x\left(\tau_{1}\right)+i y}{2}\right)\right)_{y=\tau_{1}}+ \\
+x\left(\tau_{2}\right)^{\prime} \frac{\partial}{\partial x}\left(\operatorname{Im} \ln \Gamma\left(\frac{1-x-i \tau_{2}}{2}\right)\right)_{x=x\left(\tau_{2}\right)}+ \\
+\frac{\partial}{\partial y}\left(\operatorname{Im} \ln \Gamma\left(\frac{1-x\left(\tau_{2}\right)-i y}{2}\right)\right)_{y=\tau_{2}}- \\
-\frac{\partial}{\partial y}\left(\operatorname{Im} \ln \Gamma\left(\frac{1-x\left(\tau_{2}\right)-i y}{2}\right)\right)_{y=\tau_{2}}+ \\
\left.+\frac{\partial}{\partial y}\left(\operatorname{Im} \ln \Gamma\left(\frac{x\left(\tau_{1}\right)+i y}{2}\right)\right)_{y=\tau_{1}}+o(1)\right)=
\end{gathered}
$$

$$
\begin{gathered}
=\lim _{r \rightarrow 0}\left(-\frac{\partial}{\partial x}\left(\operatorname{Im} \ln \Gamma\left(\frac{x+i y\left(\tau_{1}\right)}{2}\right)\right)_{x=\tau_{1}}+\right. \\
\left.+\frac{\partial}{\partial x}\left(\operatorname{Im} \ln \Gamma\left(\frac{1-x-i y\left(\tau_{2}\right)}{2}\right)\right)_{x=\tau_{2}}\right)= \\
=\operatorname{Im}\left(-\frac{d}{d s} \ln \Gamma\left(\frac{s}{2}\right)_{s=q}+\frac{d}{d s} \ln \Gamma\left(\frac{1-s}{2}\right)_{s=q}\right)= \\
=\operatorname{Im}\left(-\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{q}{2}\right)}{\Gamma\left(\frac{q}{2}\right)}-\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{1-q}{2}\right)}{\Gamma\left(\frac{1-q}{2}\right)}\right)=0
\end{gathered}
$$

Thus for the selected root q is:

$$
\begin{equation*}
\operatorname{Im}\left(-\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{q}{2}\right)}{\Gamma\left(\frac{q}{2}\right)}-\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{1-q}{2}\right)}{\Gamma\left(\frac{1-q}{2}\right)}\right)=0, \quad \forall q \in \mathcal{P}_{1} \cup \mathcal{P}_{2} \tag{24}
\end{equation*}
$$

- From (6) equality (24) can be rewritten as follows:

$$
\sum_{n=0}^{\infty}\left(\frac{t_{q}}{\left(2 n+\sigma_{q}\right)^{2}+t_{q}^{2}}-\frac{t_{q}}{\left(2 n+1-\sigma_{q}\right)^{2}+t_{q}^{2}}\right)=0
$$

I.e.

$$
\begin{gathered}
\sum_{n=0}^{\infty} \frac{t_{q}\left(\left(2 n+1-\sigma_{q}\right)^{2}-\left(2 n+\sigma_{q}\right)^{2}\right)}{\left(\left(2 n+\sigma_{q}\right)^{2}+t_{q}^{2}\right)\left(\left(2 n+1-\sigma_{q}\right)^{2}+t_{q}^{2}\right)}= \\
=\sum_{n=0}^{\infty} \frac{t_{q}\left(1-2 \sigma_{q}\right)(4 n+1)}{\left(\left(2 n+\sigma_{q}\right)^{2}+t_{q}^{2}\right)\left(\left(2 n+1-\sigma_{q}\right)^{2}+t_{q}^{2}\right)}= \\
=\left(1-2 \sigma_{q}\right) \sum_{n=0}^{\infty} \frac{t_{q}(4 n+1)}{\left(\left(2 n+\sigma_{q}\right)^{2}+t_{q}^{2}\right)\left(\left(2 n+1-\sigma_{q}\right)^{2}+t_{q}^{2}\right)}=0
\end{gathered}
$$

Sum

$$
\sum_{n=0}^{\infty} \frac{t_{q}(4 n+1)}{\left(\left(2 n+\sigma_{q}\right)^{2}+t_{q}^{2}\right)\left(\left(2 n+1-\sigma_{q}\right)^{2}+t_{q}^{2}\right)}
$$

exists and is not equal to 0 when $t_{q} \neq 0$ so the equality (24) is performed exclusively at

$$
\sigma_{q}=\frac{1}{2} .
$$

So, assuming that an arbitrary nontrivial root q of zeta functions belongs to the union $\mathcal{P}_{1} \cup \mathcal{P}_{2}$ we found that it belongs only to \mathcal{P}_{2}, i.e. $\mathcal{P}_{1}=\varnothing$.

And according to the fact that $\mathcal{P}_{1}=\varnothing \Leftrightarrow \mathcal{P}_{3}=\varnothing$ we have:

$$
\mathcal{P}_{3}=\mathcal{P}_{1}=\varnothing, \quad \mathcal{P}=\mathcal{P}_{2} .
$$

This proves the basic statement and the assumption which had been made by Bernhard Riemann about of the real parts of the nontrivial zeros of zeta function.

REFERENCES:

[1] Abramowitz, M. and Stegun, I. A. (Eds.). "Polygamma Functions."§6.4 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 260, 1972.
[2] Allouche, J.-P. "Series and Infinite Products related to Binary Expansions of Integers."1992.
[3] Davenport, H. Multiplicative Number Theory, 2nd ed. New York: Springer-Verlag, 1980.
[4] Edwards, H. M. Riemann's Zeta Function. New York: Dover, 1974.
[5] Karatsuba, A. A. and Voronin, S. M. The Riemann Zeta-Function. Hawthorn, NY: de Gruyter, 1992.
[6] Keiper, J. B. "Power Series Expansions of Riemann's xi Function."Math. Comput. 58, 765-773, 1992.
[7] Knuth, D. E. The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3rd ed. Reading, MA: Addison-Wesley, 1997.
[8] Lehmer, D. H. "The Sum of Like Powers of the Zeros of the Riemann Zeta Function."Math. Comput. 50, 265-273, 1988.
[9] Smith, D. E. A Source Book in Mathematics. New York: Dover, 1994.
[10] Titchmarsh, E. C. The Theory of the Riemann Zeta Function, 2nd ed. New York: Clarendon Press, 1987.
[11] Valle-Poussin C.J. De la Recherches analytiques sur la theorie des wombres partie I,II,III, Am. Soc. Sci. Bruxelles, Ser. A. - 1896-1897, t. 20-21.
[12] Voros, A. "Spectral Functions, Special Functions and the Selberg Zeta Function."Commun. Math. Phys. 110, 439-465, 1987.

