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Summary 

There are many fundamental physical constants that appear in equations today, such as Planck’s constant (h) to 
calculate photon energy, or Coulomb’s constant (k) to calculate the electromagnetic force, or the gravitational 
constant (G), when using Newton’s law for calculating gravitational force.  They appear in equations without 
explanations.  They are simply numbers that have been given letters to make an equation work.   
 
This paper has derived and explained 20 different constants used in physics today, including the aforementioned 
Planck’s constant, Coulomb’s constant and gravitational constant.  They have meaning.  There is a reason that they 
reside in equations, and understanding these values unlocks a better understanding of the core of particle physics. 
 
With the exception of one constant, all of the derived values are accurate to less than 0.002% of the difference from 
their currently accepted values, using recent CODATA values, and the values calculated in this paper.  Many of the 
constants are an exact match with no difference (0.000%).  Each constant was derived using new wave constants 
from the energy wave equations proposed within this paper, and the complementary Particle Energy and Interaction1 
and Forces 2 papers.  Only the radius of the proton exceeds this accuracy at a difference of 1.411%, however, the 
proton’s exact radius is subject to debate.3 
 
The equations not only derive the correct value but also the units of the existing physical constant.  Some of the 
calculations require an equivalent SI unit in wave theory to match units, such as charge needs to be measured in 
wave amplitude (meters) instead of Coulombs, but all units align properly when this is exchanged.  Details to 
reproduce these values, including their units, are explained in this paper. 
 
This paper also includes proposed models for the geometries of both the electron and the proton.  The equations 
yield some descriptions about their characteristics and visuals are provided in this paper to explain these findings.  
 
Twenty common fundamental physical constants were solved in this paper.  The method was scientific, starting 
with energy wave equations to model particle energies and forces.  Many of today’s physical constants appeared 
when modeling energies and forces using these energy wave equations.  All 20 of these physical constants are 
documented as further proof that the energy wave equations are accurate and have the ability to calculate many of 
the characteristics of subatomic particles and their interactions with other particles.    
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1. Fundamental Physical Constants & Energy Wave Constants 
Twenty fundamental physical constants known commonly throughout physics are derived and explained by four 
wave constants in this paper: wave speed, wavelength, amplitude and density and by two variables that are constant 
to the electron.  Of the four wave constants, only wave speed is known in today’s physical constants (the speed of 
light).  This section details the new constants and their notation.  

The fundamental physical constants are shown below in Table 1.1 with their current values (CODATA 2014)4, 
along with calculated values found in this paper.  Section 2 details the calculations and provides an explanation 
for most of the physical constants and why they appear in equations.  Of these constants calculated, only the 
proton radius has a value that differs by greater than 0.002%. 

Physical	Constant	 CODATA	Value	 Calculated	 %	Diff	 Modifier	

Fine	Structure	Constant	 7.2974E-03	 7.2974E-03	 0.000%	
	

Electron	Energy	 8.1871E-14	 8.1871E-14	 0.000%	 	

Electron	Mass	 9.1094E-31	 9.1094E-31	 0.000%	
	

Electron	Classical	Radius	 2.8179E-15	 2.8179E-15	 0.000%	
	

Proton	Radius	 8.7516E-16	 8.6281E-16	 1.411%	
	

Bohr	Radius	 5.2918E-11	 5.2918E-11	 0.000%	
	

Electron	Compton	Wavelength	 2.4263E-12	 2.4263E-12	 0.002%	
	

Rydberg	Constant	(Joules)	 2.1799E-18	 2.1799E-18	 -0.002%	
	

Rydberg	Constant	(meters)	 1.0974E+07	 1.0974E+07	 -0.002%	
	

Planck	Constant	 6.6261E-34	 6.6261E-34	 0.000%	
	

Planck	Time	 5.3912E-44	 5.3912E-44	 0.000%	
	

Planck	Length	 1.6162E-35	 1.6162E-35	 0.000%	
	

Planck	Mass	 2.1765E-08	 2.1765E-08	 0.000%	
	

Planck	Charge	 1.8755E-18	 1.8755E-18	 0.001%	
	

Elementary	Charge	 1.6022E-19	 1.6022E-19	 0.001%	
	

Coulomb	Constant	 8.9876E+09	 8.9878E+09	 -0.002%	
	

Electric	Constant	-	Vacuum	Perm.	 8.8542E-12	 8.8540E-12	 0.002%	
	

Magnetic	Constant	 1.2566E-06	 1.2567E-06	 -0.002%	
	

Bohr	Magneton	 9.2740E-24	 9.2739E-24	 0.001%	
	

Gravitational	Constant	 6.6741E-11	 6.6741E-11	 0.000%	
	 

Table 1.1 – Fundamental Physical Constants 

Δl
Δl
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Δl
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Δl
e− 1−( )

Δl
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Δl
2e 2+( )
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Δl
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Table 1.1 includes a column for the modifier that was used, if needed, for physical constants to offset the 
calculations using the energy wave equations.  There is only one modifier, but its use depends on how wave 
constants appear in the equations that derive the fundamental physical constants.  This is explained in Section 1.2.  
There is also a very curious pattern to the modifier as it relates to the accuracy rate (% Diff) that remains 
unexplained and may be the subject of future work.    

Some of the fundamental physical constants, when derived by wave equations, appear to be complex and not have 
any meaning.  Yet, when merged with the fine structure constant, they become simpler and they provide clues as to 
their true significance.  This has been documented within each section for the derived constant, when applicable.  
Lastly, due to the importance of the fine structure constant, a potential theory about this constant is provided in 
the Appendix as the basis for further exploration. 

 

1.1.   Energy Wave Equation Constants 

Some of the constants and variables used to model the energy wave equations differ from standard physics and their 
use and notation needs to be established. 

Notation 

The energy wave equations include notation to simplify variations of energies and wavelengths at different particle 
sizes (K) and shells (n), in addition to differentiating longitudinal and transverse waves.  The following notation is 
used:   

Notation Meaning 

λl l - longitudinal 

λt t - transverse 

Ke e – electron  

E(K) Energy at particle wave center count (K)  

λt(K,n) Transverse wavelength at particle wave center count (K) and shell (n) 

Table 1.1.1 – Energy Wave Equation Notation 

Constants and Variables 

The following are the wave constants and variables used in the energy wave equations, including constants for the 
electron that are commonly used in this paper.  There are four universal wave constants (one of which is known in 
physics – speed of light).  There are two variables that are constant for the electron that are commonly used and 
have sub notation “e” for the electron.  Thus, there are only a total of six constants that are used throughout these 
equations, with exception of pi (π) and Euler’s number (e) that are well known in physics equations.   

There are also two constants that can be derived from other constants (amplitude factor for gravity of the electron, 
and the shell energy multiplier).  They are used for readability purposes in the equations. 

Symbol Definition Value (units) 
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Wave Constants 

Al Amplitude (longitudinal) 3.662788538 x 10-10  (m) 

λl Wavelength (longitudinal) 2.817940327 x 10-17 (m) 

ρ Density (aether) 9.422494853 x 10-30  (kg/m3) 

c Wave velocity (speed of light) 299,792,458 (m/s) 

Variables 

δ Amplitude factor variable - (m3) 

K Particle wave center count variable - dimensionless 

n Particle shells  variable - dimensionless 

N Particle orbits (formerly n) variable - dimensionless 

Q Particle count in a group variable - dimensionless 

Electron Constants 

Ke Particle wave center count - electron 10 - dimensionless 

δe Amplitude factor – single electron 0.9936170 - (m3) 

Electron Constants (Derived)  

δGe Amplitude factor – Gravity electron 
δGe  = δe

e 
0.9827442 - (m3) 

Oe Shell energy multiplier – electron 

 

2.138743820 - dimensionless 

Table 1.1.2 – Energy Wave Equation Constants and Variables 

 

1.2.   Energy Wave Equation Modifier 

The energy wave equations make assumptions of perfect spherical volumes for particles and cylindrical volumes for 
photons, in addition to perfect constructive and destructive wave interference for amplitude, meaning that wave 
centers must be placed at exact wavelengths in geometric formation when creating particles.  In reality, the 
experimental data shows slight imperfections in the wave constants.  The energy wave equations match 
experimental data and show the validity of the equations for calculating: particle mass and energy, atomic orbitals, 
electromagnetic wavelengths and energy during particle interaction, the electromagnetic force, gravitational force 

Oe
n3 n 1−( ) 3−

n4n 1=

Ke
∑=
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and strong force.  All of the above equations and examples were illustrated in the Particle Energy and Interaction and 
Forces papers.   

To match existing data, an amplitude factor for the electron (δe) was modified from its expected value of 1 to 
0.9936170 to account for imperfections in volume and constructive wave interference.  A dimensional modifier (Δl) 
is set to this exact same value, but given notation “l” for longitudinal since it is modifying an imperfection in the 
longitudinal wave constant that may or may not be related to the electron.  However, note that there is only one 
correction modifier: for example, a particle may not be a perfect sphere due to spin, or in certain three dimensional 
geometries, it may be impossible to place wave centers exactly at nodes on a wavelength, relative to each other.  

For the purpose of calculating some of the fundamental physical constants, the imperfections accounted for in the 
amplitude factor for the single electron needs to be applied as a modifier in the derivations of the physical 
constants.  Essentially it reverses the assumptions in the wave constants when calculating known physics constants.   

There is an interesting pattern to the modifier that is found in Table 1.1.  When gravity is accounted for in an 
equation, the modifier may appear to a power of the Euler number.  Sometimes the modifier appears as the 
inverse, or sometimes the square, but no reason has been found for the pattern, or why the gravity modifier is 
raised to the power of Euler’s number (e). 

 

Symbol Definition Value (units) 

Modifier 

Δl Modifier – single electron Same as δe (0.9936170) - dimensionless 

Table 1.2.1 – Energy Wave Equation Modifier 

 

For clarity, when “e” is used in sub notation, it represents a constant that is specific to the electron.  However, “e” 
is also Euler’s number, which is only used in the modifier for calculation of fundamental physical constants.  When 
used in the modifier, it appears in the exponent.  It is Euler’s number, or 2.7182818284.  For example,  

Δl
(-e - 1) = Δl

(-2.7182818284 - 1) = Δl
(-3.7182818284) = 0.993617(-3.7182818284 - 1) = 1.0241 
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2. Fundamental Physical Constants - Derived and Explained 

 

There are dozens of physical constants that are used in calculations in physics today, many of which have a value 
and solve an equation, yet have no meaning or explanation of its value.  While developing the energy wave 
equations proposed herein, some of these fundamental physical constants could be derived and explained.   

The explanation of the equations for energy, wavelength and forces are available in the Particle Energy and Interaction 
and the Forces papers, but in this paper, the physical constants will be explained and derived using the four wave 
constants and constant properties of the electron (where applicable).    

 

2.1.   Electron Energy & Mass 

Electron Rest Energy 

Electron energy and mass were derived from the Longitudinal Energy Equation, responsible for particle energy, in 
the Particle Energy and Interaction paper.  Particles are standing, longitudinal waves with amplitudes that decrease with 
the square of the distance from the particle core.  Particles consist of wave centers (K) that reflect incoming waves 
(in-waves), perhaps like a three-dimensional mirror that reflects and creates spherical out-waves that are responsible 
for its standing waves.  A special particle appears at K=10 (10 wave centers in the core) matching the electron’s rest 
energy and mass.  

 

(2.1.1) 

 
Calculated Value: 8.1871E-14 
Difference from CODATA: 0.000% 
Calculated Units: Joules (kg m2/s2) 
 

 
Electron Rest Mass 

Electron rest mass is the same Longitudinal Energy Equation, without c2 in the equation.  Mass is simply standing, 
longitudinal waves of energy. 

 

(2.1.2) 

Ee El 10( )

4π!Ke
5Al
6c2

3λl
3

n3 n 1−( ) 3−

n4n 1=

Ke
∑= =

me

4π!Ke
5Al
6

3λl
3

n3 n 1−( ) 3−

n4n 1=

Ke
∑=



 

 10 

Calculated Value: 9.1094E-31 
Difference from CODATA: 0.000% 
Calculated Units: kg   

 
 

Shell Energy Multiplier 

The energy equation appears or is used to derive many of the fundamental physical constants, and since the 
summation in the equation remains constant for the electron, it is given a special constant (Oe) for readability 
purposes when the calculation is used for the electron.  The short form will be used in subsequent equations and 
derivations.  In other words: 

 

(2.1.3) 

  

(2.1.4) 

 

2.2.  Electron Radius 

Particles have a defined radius as eventually its standing waves, which defines its mass and potential energy, 
converts to traveling waves at this edge (radius).  Traveling waves still have an effect on other particles although 
amplitude decreases with the square of the distance from the core.  The electron has 10 wave centers (K=10), and 
these wave centers have an effect on the particle’s wavelength and amplitude.  Amplitude is constructive, and 
becomes K * Al (amplitude); likewise wavelength becomes K * λl (wavelength).  There are a total of K standing 
waves in each particle, so for the electron, this is 10 wavelengths, or K wavelengths.  Thus the radius becomes the 
number of wavelengths K, multiplied by the electron wavelength distance in meters, K * λl.  This is K2 λl.  

The electron has been modeled in Section 3.1, along with visuals of the proposed geometry of the particle and a 
comparison against pictures of the electron. 

 
(2.2.1) 

 

Calculated Value: 2.8179E-15 
Difference from CODATA: 0.000% 
Calculated Units: meters (m)  

Ee
4π!Ke
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6c2

3λl
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n4n 1=
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2.3.  Proton Radius 

In this wave theory, the proton has a different structure than the currently accepted structure consisting of three 
quarks.  Note that Section 3.2 includes an explanation of the strong force color and an explanation of why quarks 
are found in proton collisions from particle accelerator experiments.  This paper calculates the radius of the proton 
based on a new proposed structure, which has been modeled in Section 3.2 matching these equations. 

The proton radius is based on four electrons in a tetrahedral shape.  At a separation distance of one electron 
wavelength (Kλl), it forms a strong bond (gluons) due to constructive wave interference of four electrons.  This 
creates a new amplitude and core, explaining why electrons are not repelled at this distance (they form a new core).  
The original electrons lose their individual standing waves as they form a new particle.  The original radius of K2λl 
meters is now only one-electron wavelength Kλl meters.  Kλl is the electron core radius.   

The radius to the circumpshere of a tetrahedral shape is used below in the calculation, with variable (a) as the length 
of the base (the calculation of radius is the square root of 3/8 * a).  At the base of one edge of the tetrahedron are 
two electrons.  They both have a radius of Kλl, or 2 Kλl in diameter.  Two electrons with this diameter, separated by 
one electron wavelength is: 2Kλ + 2Kλ + Kλ, = 5Kλ meters in length for the base of the tetrahedron.  Now, the 
following equations model the radius of the particle with this base (a):    

 
(2.3.1) 

  
(2.3.2) 

 
(2.3.3) 

 

Calculated Value: 8.6281E-16 
Difference from CODATA: 1.411% 
Calculated Units: meters (m)  

Note:  No modifier has been used in the calculation of the proton.  Its value differs from the CODATA value of 
8.7516E-16, but the radius of the proton is subject to debate.  Various experiments have a range of 8.4E-16 to 8.7E-
16 m.5   

 

2.4.  Bohr Radius 

The Bohr radius is based on the fine structure constant (α), which is derived later in this paper and thus not 

a 5Keλl=

rp
3
8
a·=

rp
3
8
5Keλl·=
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required as a separate constant for the energy wave equations.  For the purpose of equation readability, its symbol 
will be used here in this section. 

The distance for the first orbital shell (N=1) in hydrogen (Bohr radius) along with all the orbital shells of hydrogen 
were derived and calculated in the Particle Energy and Interaction paper.  It can be modeled as the distance, in 
wavelengths, proportional to the square of the fine structure constant.   

First, the number of wavelengths, or shells (n), are modeled.  To get the number of wavelengths for the first orbital 
shell, the following is used:      

 (2.4.1) 

  
(2.4.2) 

 

(2.4.3) 

n1=187,779 wavelengths 

 
This provides the number of wavelengths from the atom’s core.  However, the Bohr radius is measured in meters.  
It needs to be multiplied by the number of electron wavelengths (Kλl): 

 (2.4.4) 

 

Calculated Value: 5.2918E-11 
Difference from CODATA: 0.000% 
Calculated Units: meters (m)  	

 

2.5.  Electron Compton Wavelength 

The electron Compton wavelength is derived from the Transverse Wavelength Equation, also illustrated in the 
Particle Energy and Interaction paper.  Because the Compton wavelength is when all of the energy of the electron is 
transferred from rest mass energy to photon energy, and since there are two photons generated, it occurs at n=K/2, 
or 5 wavelengths for the electron (the electron is K=10). 

 (2.5.1) 

N 1=

nN Ke
N
αe⎝ ⎠
⎜ ⎟
⎛ ⎞ 2=

n1 Ke
1
αe⎝ ⎠
⎜ ⎟
⎛ ⎞ 2=

a0 n1Keλl=

ne 5=
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(2.5.2) 

 

Calculated Value: 2.4419E-12 
Difference from CODATA: -0.641% 

 

Modifier 

As explained in Section 1.2, some of the physical constants require the modifier to readjust the imperfections in the 
wave constants.   

  

(2.5.4) 

 

Calculated Value: 2.4263E-12 
Difference from CODATA: 0.002% 
Calculated Units: meters (m)  

 

2.6.  Rydberg Constant & Rydberg Unit of Energy 

The Rydberg Constant (meters) 

The Rydberg constant was derived from the Transverse Wavelength Equation in the Particle Energy and Interaction 
paper.  It is used to determine photon wavelengths.  During the derivation of the Transverse Wavelength equation, 
it was noticed that amplitude was related to the fine structure constant, shown in Eq. 2.6.1.  Since the fine structure 
constant can also be derived (it is found in Section 2.18), it can replace the value in Eq. 2.6.1 to solve for the 
Rydberg constant in terms of wave constants and electron constants. 

 

(2.6.1) 

λC 10 5,( )

4 ne( ) Al

3 Ke( ) 3
=

λC'
4 ne( ) Al

3 Ke( ) 3
Δl( )=

R∞
3Ke

2αe
2

4Al
=
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(2.6.2) 

 

(2.6.3) 

 

Calculated Value: 1.0904E+07 
Difference from CODATA: 0.637% 
 

Modifier 

As explained in Section 1.2, some of the physical constants require the modifier to readjust the imperfections in the 
wave constants (in this case the inverse of the modifier).   

  

(2.6.3) 

Calculated Value: 1.0974E+07 
Difference from CODATA: -0.002% 
Calculated Units: m-1 

 

Relationship to the Fine Structure Constant 

The Rydberg constant is the first of the constants detailed in this paper that show a relationship to the fine structure 
constant.  The above was derived from fine structure constant, so this is a reverse of Eqs. 2.6.1 to 2.6.3.  However, 
it is shown again in Eqs. 2.6.4 and 2.6.5 as the ratio between the square of the fine structure constant and the 
Rydberg constant.  It simplifies to what is seen in the Transverse Wavelength Equation from Particle Energy and 
Interaction, which is a ratio of the volume transformation between a spherical particle and a cylindrical photon.  

 

R∞
3Ke

2

4Al

πKe
4Al
6Oe

λl
3δe⎝ ⎠

⎜ ⎟
⎜ ⎟
⎛ ⎞ 2

=

R∞
3π2Ke

10Al
11Oe

2

4λl
6δe
2

=

R∞'
3π2Ke

10Al
11Oe

2

4λl
6δe
2

Δl
1−( )=
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(2.6.4) 

 

(2.6.5) 

 

 

Rydberg Unit of Energy Constant (Joules) 

Similar to above, the Rydberg Unit of Energy constant appears in the Transverse Energy equation.  Its value, in 
relation to all four wave constants and electron constants, is as follows.  In the second equation, the fine structure 
constant is removed and replaced with its derived value from Section 2.18: 

 

(2.6.6) 

 

(2.6.7) 

 

(2.6.8) 

 
Calculated Value: 2.1660E-18 
Difference from CODATA: 0.637% 
 

αe
2
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πKe
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2
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αe
2
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⎜ ⎟
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=
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13Al
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2

λl
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Modifier 

Like the Rydberg Constant for wavelength, it requires the inverse of the modifier. 

  

(2.6.9) 

 
Calculated Value: 2.1799E-18 
Difference from CODATA: -0.002% 
Calculated Units: Joules (kg m2/s2)   

 

Relationship to the Fine Structure Constant 

Similar to the Rydberg constant, this ratio also documents the relationship between the Rydberg unit of energy and 
the square of the fine structure constant, leading to the basis of the Transverse Energy Equation. 

 

 

(2.6.10) 

 

(2.6.11) 

 

 

2.7.  Planck Constant 

Planck constant is another fundamental physical constant that was derived with the Transverse Energy Equation in 
the Particle Energy and Interaction paper.  The Planck constant appears as a combination of wave constant values when 
solving for energy when transverse wavelength (or frequency) is variable.  This is shown in Eq. 2.7.1 below. The 
value on the right is the only variable, which is the inverse of transverse wavelength, based on the value of K 

Ry'
2π3!Ke

13Al
11c2Oe

2

λl
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αe
2
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⎜ ⎟
⎜ ⎟
⎛ ⎞ 2

=
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αe
2
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(normally 10 for an electron) and n (its current shell). 

It’s responsible for the famous equation E=hf, so a comparison has been shown in Eq. 2.7.2 to illustrate the 
constants and variables in this equation.  Frequency (f) is the wave speed c over the variable wavelength (Eq. 2.7.3).  
Thus the constants that remain, including one value of c, not two, becomes the constants seen in the Planck 
Constant (Eq. 2.7.4).  

 

(2.7.1) 

  (2.7.2) 

 

(2.7.3) 

 
(2.7.4) 

 

Calculated Value: 6.6261E-34 
Difference from CODATA: 0.000% 
Calculated Units: kg m2 / s  	

 

2.8.  Planck Length 

Planck length comes from a known relation of the square of the reduced Planck constant to the gravitational 
constant (G) and the cube of the speed of light.  Planck length can be derived correctly in value and units.  

In Eq. 2.8.2, the values of h and G are replaced by values found in this paper in Sections 2.7 and 2.17 respectively.  
Then, Eq. 2.8.3 is the simplified version once these values are inserted.  Units are in meters. 

 

(2.8.1) 
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(2.8.2) 

  

(2.8.3) 

 

Calculated Value: 1.6162E-35 
Difference from CODATA: 0.000% 
Calculated Units: m  
 
 

Relationship to the Fine Structure Constant 

Eq. 2.8.3 appears to be complex with no hint of the meaning of Planck length.  However, when Planck length is 
multiplied by the fine structure constant, it becomes clearer.  Ke

8 is found in Particle Energy and Interaction as the 
electron volume ratio between the photon and the particle core.  λ3 is the wavelength in three dimensions for the 
particle core.  The denominator resolves to amplitude squared.  Thus, one potential way to look at Planck length is 
that its inverse is amplitude squared over the three-dimensional particle core. 

 

 

(2.8.4) 

 

(2.8.5) 
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2.9.  Planck Mass 

Planck mass is thought to be the maximum possible mass capable of holding a single elementary charge.6  It shows 
up in equations for black holes, with the potential to spontaneously create a black hole.  As a mass, its units are 
measured in kg, which is consistent with the derivation shown below. 

While working on gravity, it was realized that Planck mass was related to the fine structure constant (αe) and the 
gravity of electron coupling constant (αGe).  This was found in Eq. 2.9.1.    

 

(2.9.1) 

 
In Eq. 2.9.2, the derivations for electron mass (me) and gravity of electron coupling constant (αGe) are replaced. The 
derivation for the gravity of electron coupling constant is found later in Section 2.17.  The fine structure constant 
does not need to be replaced as the gravity of electron coupling constant cancels it in Eq. 2.9.2.  Finally, the 
equation is simplified to become the derivation for Planck mass in Eq. 2.9.3. 

 

(2.9.2) 

  

(2.9.3) 

Calculated Value: 2.1765E-08 
Difference from CODATA: 0.000% 
Calculated Units: kg 

 

Relationship to the Fine Structure Constant 

When Planck mass is divided by the fine structure constant it becomes simpler, with elements in Eq. 2.9.5 that are 
found in the Transverse Wavelength Equation and the square root of an amplitude that also appears in Planck 
length.  However, the potential clue to its meaning may reside in Eq. 2.9.1 as the relation to the electron mass and 
the fine structure constant and coupling constant for gravity.  
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(2.9.4) 

 

(2.9.5) 

 

 

2.10. Planck Time 

The derivation of Planck time came from the current physics explanation as the square root of the reduced Planck 
constant and gravitational constant G over c5.  However, why is c5 in the equation for the current explanation of 
Planck time?  The square root would not produce units of seconds, so it must be hidden in h or G, thus these 
constants are not fundamental.  Although no new explanation of Planck Time is given here, it will be assumed that 
it is the smallest unit of time. 

Eq. 2.10.2 expands Eq. 2.10.1 based on values of h and G derived here in this paper.   

 

(2.10.1) 

  

(2.10.2) 

 
The equation can now be simplified to wave constants and known properties of the electron. 
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(2.10.3) 

  

(2.10.4) 

 

Calculated Value: 5.3912E-44 
Difference from CODATA: 0.000% 
Calculated Units: s (time in seconds) 	

 

Relationship to the Fine Structure Constant 

Planck time is another constant that is complex until related to the fine structure constant.  When doing so, it shows 
similarities to Planck mass and Planck length.     

 

 

(2.10.5) 

 

(2.10.6) 

 

 

2.11. Planck Charge 

It is known in physics that Planck charge is related to the elementary charge and the fine structure constant.  In 
wave theory, it is simply based on wave amplitude.  Charge is therefore amplitude.  As particles interact with each 
other, they constructively or destructively combine waves that affect amplitude.  Since charge is based on wave 
amplitude in meters, Coulombs becomes a unit that is measured in meters and not a separate SI unit.  
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(2.11.1) 

 

Calculated Value: 1.8314E-18 
Difference from CODATA: 2.354%	

 
Modifier 

As explained in Section 1.2, some of the physical constants require a modifier to readjust the imperfections in the 
wave constants.  The modifier in this case is the inverse of the dimensionless modifier for the electron, also raised 
to the power of Euler’s number (e). 

  

(2.11.2) 

 
Calculated Value: 1.8755E-18 
Difference from CODATA: 0.001% 
Calculated Units: m  

Note :   Units are in meters, not Coulombs (C), as wave theory measures charge based on amplitude, which is in meters.   

 

2.12. Elementary Charge 

The elementary charge was derived from known physics equations relating it to the Planck charge and the square 
root of the fine structure constant.  Both of these constants can be replaced with wave constants from values 
derived in this paper.  Note that the elementary charge (e) has been given a subnotation “e”, i.e. ee.  Similar to 
Planck charge, amplitude is responsible for charge and measured in meters.   

 
(2.12.1) 

  

(2.12.2) 

Expand the fine structure constant and solve. 
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(2.12.3) 

  

(2.12.4) 

 

Calculated Value: 1.5645E-19 
Difference from CODATA: 2.354%	

 
Modifier 

As explained in Section 1.2, some of the physical constants require a modifier to readjust the imperfections in the 
wave constants.  A note about this modifier. “e” is used as the symbol for elementary charge.  But it is also used as 
the mathematical constant, or Euler’s number (e).  And it has been used as sub notation for the electron.  For 
clarity, the “e” on the left side of the equation is solving for elementary charge (e).  When “e” is used in sub 
notation, this is for clarity that it is a constant specific to the electron (e.g. Ke).  In the modifier Δl, “e” is used in the 
power (-e-1).  The latter is Euler’s number. 

  

(2.12.5) 

 
Calculated Value: 1.6022E-19 
Difference from CODATA: 0.001% 
Calculated Units: m  

Note :   Units are in meters, not Coulombs (C), as wave theory measures charge based on amplitude, which is in meters.   

 

Relationship to the Fine Structure Constant 

Eq. 2.12.7 shows the ratio of the elementary charge to the square of the fine structure constant, becoming the 
amplitude known as Planck charge.  This is the reverse of the derivation in Eqs. 2.12.1 – 2.12.5, but is shown for 
completeness as another fundamental physical constant that is related to and simplified by the fine structure 
constant. 
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(2.12.6) 

 

(2.12.7) 

 

 

2.13. Coulomb Constant 

The Coulomb constant (k) is derived from the Force Equation (also shown in the Forces paper).  It is the 
combination of wave constants in the equation as only amplitude and distance are variables in the Force Equation 
for electromagnetism, thus it is shown as one constant in current physics equations.  In reality, it is a combination of 
wave constants.  The variable that affects force is amplitude (because wave centers move to minimize amplitude), 
and since longitudinal amplitude decreases with the square of distance, it is also seen in the equation.  

The Force Equation is shown in Eq. 2.13.1.  It is essentially the Longitudinal Energy Equation (particle energy) 
multiplied by the distance to the particle’s radius where standing waves convert to traveling waves (at K2 λl). In 
short, it is the energy that is required to move the wave centers at the core of the particle to the particle’s edge 
(radius), where it would transition from potential energy to kinetic energy.  The distance, r2, appears because of the 
effect of the amplitude from the second object exerting the force on the first object.  This is explained in great detail 
in the Forces paper. 

Eq. 2.13.2 simplifies the original Force Equation and separates amplitude and distance, as these are variables.  It was 
shown in the Forces paper to match experimental data in electromagnetism using wave constants (without the 
Coulomb constant). 
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(2.13.2) 

 
In current physics, the electromagnetic forces are calculated using the Coulomb constant as follows in Eq. 2.13.3.  
For the purpose of deriving the Coulomb constant, two electrons of a single charge (e) will be used.  Thus, the 
simplified equation in Eq. 2.13.4. 

 

(2.13.3) 

  
(2.13.4) 

 
Eqs. 2.13.4 and 2.13.2 are set equal to each other since the force calculations were proven to be equal in the Forces 
paper.  Distance (r) will drop from the equation so that Coulomb constant (k) can be solved in Eq. 2.13.6. 

 

(2.13.5) 

  

(2.13.6) 

 
Next, the elementary charge derived earlier can be replaced in Eq. 2.13.6 to solve for the Coulomb constant. 
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(2.13.8) 

 

Calculated Value: 9.4261E+9 
Difference from CODATA: -4.880% 
	

Modifier 

As explained in Section 1.2, some of the physical constants require a modifier to readjust the imperfections in the 
wave constants.  The modifier in this case is the dimensionless modifier for the electron also raised to the power of 
Euler’s number (e), and then squared. 

  

(2.13.9) 

 
Calculated Value: 8.9878E+9 
Difference from CODATA: -0.002% 
Calculated Units: kg m / s2   

Note :   The above units are based in kg * m/s2.  By comparison the Coulomb constant (k) is measured in N * m2/C2.  
However, in wave theory, C (Coulombs) are measured in m (meters) as charge is based on amplitude.  N (Newtons) can be 
expressed in kg * m/s2, so when N is expanded and C is represented by meters, it resolves to the correct units expected for the 
Coulomb constant.  The derivation of units from the current Coulomb constant to the wave theory version is as follows: 

 

(2.13.10) 

 

2.14. Electric Constant (Vacuum Permittivity) 

The electric constant is the inverse of 4*π k (Coulomb constant).  Thus, this value is derived based on the Coulomb 
constant found in Section 2.13. 
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(2.14.1) 

  

(2.14.2) 

 

(2.14.3) 

 

Calculated Value: 8.4422E-12 
Difference from CODATA: 4.653% 
 

Modifier 

As explained in Section 1.2, some of the physical constants require a modifier to readjust the imperfections in the 
wave constants.  The modifier in this case is the inverse of the dimensionless modifier for the electron also raised to 
the power of Euler’s number (e), and then squared. 

  

(2.14.4) 

 

Calculated Value: 8.8540E-12 
Difference from CODATA: 0.002% 
Calculated Units: s2 / kg m   

Note :   See Section 2.13 for an explanation of the Coulomb constant units.  When C (Coulombs) is adjusted to be m (meters), 
the units align as expected. 
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The magnetic constant is related to the inverse of the electric constant multiplied by c2.  Thus, it is derived based on 
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the value found in Section 2.14.   

 

(2.15.1) 

  

(2.15.2) 

 

(2.15.3) 

 

Calculated Value: 1.3180E-6  
Difference from CODATA: -4.880%	
	

Modifier 

The modifier in this case is the dimensionless modifier for the electron also raised to the power of Euler’s number 
(e), and then squared. 

  

(2.15.4) 

 

Calculated Value: 1.2567E-6  
Difference from CODATA: -0.002% 
Calculated Units: kg / m  	

Note :   The units are measured in kg / m compared with H / m for the Magnetic Constant, where H is Henries.  There isn’t 
an equivalent for Henries in wave theory so it is assumed it is equivalent to kg to match the units.  
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2.16. Bohr Magneton 

The Bohr Magneton is derived from known physics equations, however, replacing previous constants with ones 
that have been derived above with their energy wave equation equivalents.  The elementary charge, Planck constant 
and electron mass are all replaced with equivalents derived above in Sections 2.11, 2.7 and 2.1 respectively.  

 

(2.16.1) 

  

(2.16.2) 

 

(2.16.3) 

Calculated Value: 9.0557E-24 
Difference from CODATA: 2.354% 
	

Modifier 

As explained in Section 1.2, some of the physical constants require a modifier to readjust the imperfections in the 
wave constants.  The modifier in this case is the inverse of the dimensionless modifier for the electron also raised to 
the power of Euler’s number (e). 

  

(2.16.4) 

 
Calculated Value: 9.2739E-24 
Difference from CODATA: 0.001% 
Calculated Units: m3 / s	
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Note :   The above units are based in m3/s.  By comparison the Bohr Magneton is measured in J/T (Joules per Tesla).  Joules 
are measured in kg * m2/s2.  A Tesla is measured in kg / (C * s).  Again, C is measured in meters in wave theory as charge is 
based on amplitude.  When this is replaced, expected units align.  The derivation of units from the current Bohr Magneton to 
the wave theory version is as follows:  

 

(2.16.5) 

 

Relationship to the Fine Structure Constant 

The Bohr Magneton becomes clear when multiplied by the square root of the fine structure constant. In Eq. 
2.16.17, it is a relationship between an amplitude, a wavelength and the speed of the wave.   

 

 

(2.16.6) 

 

(2.16.7) 

 

2.17. Gravitational Constant 

The gravitational constant comes from the Force Equation (refer to the Forces paper) with a gravitational coupling 
(αGe) that is a reduction of amplitude for each particle slightly losing energy when in-waves transition to out-waves.  
The sub notation for the gravitational coupling is Ge - “G” for gravity and “e” for the electron. 
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coupling found in Eq. 2.17.2 is consistent with experiments, as it shows that gravity is 2.3 E-43 weaker than 
electromagnetism for two electrons.  However, the equation also could have been modeled as an amplitude factor, 
as coupling and amplitude factor are related for gravity in Eq. 2.17.2.  Gravity is a reduction in amplitude, which 
affects wave centers that will move to minimize amplitude, thus attracting particles together. Gravitational coupling 
for the electron is as follows: 

 

(2.17.2) 

 
Gravitational Coupling: 2.4005E-43   	

Next, the gravitational coupling constant in Eq. 2.17.2 can be added back into the Force Equation in Eq. 2.17.1.  
The variables Q1, Q2 and r have been isolated for convenience as they are variable. Eq. 2.17.4 is a simplified version 
of Eq. 2.17.3. 

 

(2.17.3) 

 

(2.17.4) 

 

Eq. 2.17.4 is the force equation for gravity.  To solve for the gravitational constant (G), the equation can be set 
equal to Newton’s version of the gravity equation, where F=G*mm/r2. In this case, the mass of two electrons will 
be used to set the two equations equal, or me

2.      

 

(2.17.5) 

 

On the left side of the equation (the energy wave equation force for gravity), Q1 and Q2 are set to one, since it is 
based on two electrons (one for Q1; one for Q2).  This equals the force of Newton’s gravitational formula for the 
mass of two electrons.  Since the mass of the electron was solved in Section 2.1, it can be replaced in the equation.  
Also, the fine structure constant can be replaced with a value found in Section 2.18.     
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(2.17.6) 

 

Now, the gravitational constant (G) can be isolated as shown in Eq. 2.17.7, and finally simplified in Eq. 2.17.8.  
Note that the value and units of G match the existing CODATA value. 

 

(2.17.7) 

 

(2.17.8) 

 

Calculated Value: 6.6741E-11  
Difference from CODATA: 0.000% 
Calculated Units: m3 / s2 kg  	

 

2.18. Fine Structure Constant 

The fine structure constant appears in many physics equations and is an essential part of many calculations.  In wave 
theory, the fine structure constant is the mass of the electron when the amplitude factor is (4/3) * K * ρ.  It’s 
unclear why this is the case, but one potential explanation is resonance, further explained in the Appendix.  Here, 
the derivation is based on a known equation for the fine structure constant from current physics (Eq. 2.18.1), using 
the elementary charge (e), electric constant (Ɛ), Planck constant (h) and speed of light (c), which are all derived 
above.  These values replace the known physical constant values in Eq. 2.18.2, which is then simplified to find the 
fine structure constant in Eq. 2.18.3. 
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(2.18.1) 

  

(2.18.2) 

 

(2.18.3) 

 

Calculated Value: 7.2974E-3  
Difference from CODATA: 0.000% 
Calculated Units: None (dimensionless)	
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3. Proposed Geometry 

 

The equations for the classical radius of the electron and the proton radius yield some clues to the structure of each 
of these particles.  In the case of the proton, it started with a proposed model very different from today’s 
understanding of a composite particle of three quarks.  Proposed geometric structures of each of these particles are 
described below to match the equations found in Section 2.  

 

3.1.  Electron  

The electron is comprised of standing waves of energy.  Traveling waves, throughout the universe, consist of energy 
with a given amplitude and wavelength.  Particles, such as the electron, have wave centers that reflect these waves.  
Wave centers may combine, similar to how protons and neutrons form to merge an atomic nucleus.  The geometric 
arrangements where wave centers minimize amplitude, i.e. the node of a wave, in combination leads to stable 
particles like the electron.   

The electron’s wave centers reflect in-waves of energy, and the reflected out-waves combine with the in-waves to 
create standing waves.  These standing waves cannot maintain their standing form for infinity, so they eventually 
convert to become traveling waves.  Standing waves of energy are potential energy, or the mass of the particle.  
Mass is based on the number of standing waves and the amplitude of the wave, and the particle is defined by its 
radius where standing waves become traveling waves.   

According to the energy wave equations the electron has a total of 10 wave centers.  It is not the fundamental 
particle and is therefore a composite particle of 10 individual wave centers.  In the Particle Energy and Interaction 
paper, it was shown that a particle with one wave center is nearly the measured mass of the neutrino, which is a 
more suitable candidate for being the fundamental particle given its size and mass.   

Although the equations don’t support a clear view of the exact geometry of the electron, the proposed structure is a 
3-level tetrahedron given that nearly all of the wave centers would be placed on the node of the wave and their 
amplitude is minimized.  The wave centers that are slightly off the node would attempt to move to the node, 
potentially introducing spin to the particle.  Again, this part is speculative and not supported by the equations, but 
would match the theory rules of wave center mechanics. 

The key features of the electron that are supported by the wave theory equations are: 
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Fig 3.1.1 – Electron Proposed Model 

 

Notes :  

• The electron is a combination of 10 particle wave centers (K) which causes a change in amplitude and wavelength 
proportional to the number of wave centers, i.e. amplitude (A) becomes K * A, and wavelength (λ) becomes K * λ. 

• The electron mass, like other particles derived with the Longitudinal Energy Equation, is standing waves of energy 
until the edge (radius of the electron) at K2 * λ.  At this point, standing waves convert to traveling waves. 

• The particle core has a radius of K * λ and a diameter of 2 K * λ, which is responsible for a phase shift.   
• There are 10 wavelengths of standing wave energy in the electron, yet the core has nearly 50% of the electron’s 

energy.   
• The electron is formed from spherical, longitudinal waves, which there are three dimensions of an in-wave and out-

wave each.  In other words, an amplitude of Ax, Ay, Az inwards (the in-wave) and likewise, the reflected wave of Ax, Ay, 

Az outwards (the out-wave).  These can also be represented as Ax-in, Ay-in, Az-in, and Ax-out, Ay-out, Az-out, for greater 
clarity, although it is typically listed simply as Al6 in most of the equations for readability as the values for amplitude 
are typically equal unless a particle interaction is considered. 

• Amplitude decreases with the square of the distance from the particle (r2) for the out-wave, also expressed as Al3 / r2. 
 

In 2008, scientists at Lund University in Sweden captured a video of the electron, very much resembling the 
standing wave structure suggested in this paper.7  The electron wavelength counts in Fig. 3.1.2 matches the expected 
value of standing waves from the Longitudinal Energy Equation.  It is a 10 wavelength radius from the particle core, 
otherwise referred to in earlier equations as K=10. 

Fig. 3.1.2 shows a still image of an electron captured on video.  On the left is the original picture; on the right is an 
attempt to measure wavelengths of the standing waves.  At the edge of the particle, standing waves break down to 
traveling waves.  The original video is available at: https://www.youtube.com/watch?v=zKwcWZ1z6J0. 
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Fig 3.1.2 –Electron as Captured by Lund University (wave l eng ths  counted on image  on r ight) 

 

3.2.  Proton 

The proton’s radius was calculated in Section 2.3 based on a tetrahedral structure with a base of five electron 
wavelengths (5Kλ).  Since the proton is known to be a composite particle, it needed to be modeled as a 
combination of particles, each with their own wave center count like the electron.  The energy of quarks can be 
represented by the Longitudinal Energy Equation to solve for the value of K, their particle wave center count.  The 
up quark is K=14 (14 wave centers) and the down quark is K=15 (15 wave centers) using the equation.   

However, it is also known that much of the energy in the proton is in its gluons, so an assumption was made that a 
stable particle less than 14 wave centers was responsible for the construction of the proton.  The electron was 
selected in this proposed model in a simple three-dimensional geometric arrangement.  Although electrons repel 
other electrons via the electromagnetic force, in the Forces paper, the strong force is described as creating a new core 
particle and a strong bond by electrons separated by one electron wavelength.  The proton was thus modeled as 
electrons in close proximity, forming a tetrahedron shape, with a positron in the center of the structure.  The anti-
proton would the opposite, with four positrons at the vertices of the tetrahedron and an electron in its center.   

Using this proposed geometric arrangement, the radius to the circumsphere of the new particle was calculated.  The 
model is shown in Fig. 3.2.1 below. 
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Fig 3.2.1 – Proton Proposed Model 

 

Notes :  

• The core of the proton is four electrons at the vertices of a tetrahedron 
• Prior to the capture of a positron in the center, the composite particle would have constructive wave addition of 

K=40 (4 * K for each electron where K=10).  This creates a new core with significantly more amplitude and energy 
than four single electrons.   

• A separation distance between each of the four electron cores of K * λ leaves room for a positron to be captured in 
the center of the tetrahedral structure.  According to experiments, there is also likely a neutrino captured somewhere 
within the structure. 

• Only one electron wavelength (K * λ) separates two electron cores, creating a new structure for a particle.  When 
combined, the electron no longer has 10 standing waves of energy.  Another electron core resides one electron 
wavelength away, creating a composite particle with a new core.  This causes a strong attraction (a unidirectional 
beam), otherwise known as a gluon. 

• The neutron has a similar structure to the proton as a tetrahedron of four electrons at the vertices, but when another 
electron is in the center of the structure, it “annihilates” with the positron to be neutral.  The wave centers for each of 
these particles still remain, but due to destructive wave interference, the combination of the electron and positron in 
the center causes it to be neutral.  However, if the particle is disturbed, the electron in the middle may be ejected, 
leaving the positron, causing it to become a proton.  

 

Quarks  

A new proposed model of the proton must match experimental evidence, including the quark and gluon nature of 
the proton.  In particle collisions with the proton, experiments demonstrate that the proton consists of three quarks 
(two up quarks and one down quark).  In fact, some higher energy experiments have shown that the proton may 
consist of four or five quarks.  In the latter experiment, when five quarks were discovered, evidence shows that the 
proton consists of four quarks and one anti-quark (otherwise referred to as a pentaquark).8   

First, the standard experiment needs to be explained to match the findings where three quarks are discovered within 
the proton structure.  In the typical particle collision with the proton, three quarks are detected.  Fig. 3.2.2 describes 
how another particle would affect the proton structure if it consists of four electrons and one positron.  Upon 
collision, the high-energy electrons would appear as quarks (they still contain a great amount of energy from 
constructive wave interference).  Since the positron would immediately annihilate with one of the four electrons, it 
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would not be detected.  The wave centers of the fourth electron and positron remain, but destructive waves reduce 
its amplitude to near zero, and as such, it has no charge that can be detected by an electromagnetic apparatus.  Thus, 
only three of the high-energy electrons would be detected.  Further, it’s possible that the effect of the fourth 
electron and positron on one of the remaining three electrons could cause slight constructive wave interference so 
that it appears to have slightly more energy (down quark) than the other two electrons (up quarks).  

 

Fig 3.2.2 – Proton Collisions 

This proposed model also fits higher energy experiments that recently show four quarks and an anti-quark.  
Reviewing Fig 3.2.2 again, each of the electrons would be the four quarks and the positron would be the anti-quark 
discovered in the experiment.   

Quarks are never found in isolation.  They are only found within the structure of the proton.  Given the 
representation of energy as wave amplitude, it is very possible that the proton consists of electrons, which appear in 
very different form when in close proximity, constructively adding wave amplitude and forming the core of a new 
particle.   

 

Spin & Color 

The explanation of color and the proton’s spin must also match experiments in the proposed structure of the 
proton.  First, spin can be explained in Fig 3.2.3.  The four electrons in the vertices of the tetrahedron might have 
spin that adds to zero.  The positron would have spin +½ or -½, giving the proton its spin. 

 

Fig 3.2.3 – Proton Spin 
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Spin is possibly the reason for determining the color of quarks, or the gluons that connect each of the quarks 
together.  The model for color was based on the current understanding of a proton’s three-quark arrangement.  
There are three colors: Red, Green and Blue.  Quarks don’t really have color, but this model was developed to 
simplify the understanding of the quark arrangement. 

When three quarks are detected, as suggested in Fig. 3.2.2, there would be three electrons with spin and one 
undetected electron-positron combination that may affect one of the electrons, causing it to be the down quark in 
the arrangement.  

Thus, the following would be the possible combinations of the gluon arrangements in Fig 3.2.3 (giving each a color 
name to map to the known colors): 

• Red: Two electrons of same spin (+½ and +½; or -½ and -½) 

• Green: Two electrons of opposite spin (+½ and -½) 

• Blue: One electron and the combination of the electron affected by the annihilated electron-positron (+½ 
and -½ + -½ + ½; or -½ and +½ + -½ + ½) 
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4. Conclusion 

 

Twenty of the common fundamental physical constants were derived and calculated using energy wave equations in 
this paper.  Although some of these constants required modification, there is only one modifier.  Most of the 
calculations matching experimental evidence using the energy wave equations do not require the use of a modifier.  
The exception is the Transverse Wavelength Equation used to calculate transverse wavelengths that uses the same 
modifier to obtain accurate wavelength calculations.  The modifier is necessary to map these equations to the 
known fundamental physical constants today, but these physical constants are not needed in energy and force 
calculations when the energy wave equations are used.   

Deriving and explaining many of these constants should be sufficient proof of a universe explained by wave energy. 
The difficult gravitational constant (G) was not only calculated, but the same Force Equation from which it was 
derived also applies to electromagnetism and the strong force - unifying these forces together as one.  In addition, 
the same energy wave equations and constants used to calculate these fundamental physical constants were found to 
calculate particle mass, photon energy, photon wavelengths and atomic orbitals.  These are found in Particle Energy 
and Interactions and Forces papers.   

Some of the fundamental physical constants such as Coulomb’s constant (k) and the gravitational constant (G) are 
representations of non-variable components in the force equations, now represented by wave constants.  They are 
no longer needed in equations when using the energy wave equations.  Other physical constants such as the Planck 
mass and the fine structure constant have significant meaning, and although they can be derived using wave 
constants, they warrant further review to understand their meaning and their implications in the universe.   
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Appendix  

Fine Structure Constant 

The fine structure constant is found in many of the interaction equations for energy and forces and is perhaps the 
most important of the constants in this paper.  Therefore, its meaning is essential to understanding the particle 
world and this section is dedicated to describing some of the findings related to the fine structure constant.  The 
equations describing the fine structure constant are supported by data matching many of the fundamental physical 
constants in this paper and experimental data found in the Particle Energy and Interaction and Forces papers.  However, 
despite matching data and connecting it to several known constants, its meaning is still speculative.  Thus, this 
section proposes one possible explanation to match the derivation of the fine structure constant.  For this reason, it 
has been placed into the Appendix because it requires further work on this important constant.  

Perhaps the best explanation of the fine structure constant is that it is found in the energy wave equations when 
potential energy converts to kinetic energy and vice versa.  It was found in the Particle Energy and Interaction paper as 
the ratio of volumes between the spherical particle (mass or stored energy) and the cylindrical photon (kinetic 
energy).  The relationship of the fine structure constant and this volume ratio is shown in Eq. A.1.   

 

(A.1) 

Fine Structure Constant - Calculated Value: 0.00730 
 
 
When the fine structure constant was later derived in Section 2.18, it was found to be related to mass.  Unlike Eq. 
A.1, its value matches the CODATA value precisely.   The derived value is shown again in Eq. A.2, and then 
compared as a ratio to the electron’s mass, derived in Section 2.1.   
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(A.4) 

 
Fine Structure Constant - Calculated Value: 0.0072974 
 
 

Resonance 

The similarities with the fine structure constant with potential and kinetic energy resemble equations for wave 
resonance.  Resonance is described as a force that drives a system to oscillate with greater amplitude at a specific, 
preferential frequency.  It is therefore proposed that the fine structure constant is resonance associated with the 
fundamental frequency for the electron. 
 
From the energy wave equations, the universe has a fundamental longitudinal frequency (c/λ).  It generates standing 
waves in the electron that is its mass (me).  Mass is stored or potential energy.  Resonance occurs when potential 
energy (mass) converts to kinetic energy (photon), or from kinetic to potential.  Resonance is also seen in 
mechanical systems (e.g. springs) and electrical systems (capacitance and inductance), which also occurs when 
potential energy is converted to kinetic energy or vice versa.   
 
The fine structure constant is the natural frequency of the electron, responding to universal, longitudinal waves.  In 
a modified form of Eq. A.4, it can also take the following form on the left side of the figure below.  On the right 
side of the figure is a representation of the key components of the equation in graphical form. 
 

 
Fig A.1 – Fine Structure Constant Equation in Graphical Form 

The inverse of the fine structure constant is ~137.  When dissecting the above equation, it is a ratio of transverse 
(kinetic) energy converting to longitudinal, standing (mass) energy for the electron.  It means that ~137 fundamental 
photons (fundamental volume and amplitude), converting from cylindrical volume form to spherical volume form, 
would contain the same energy or mass as a single electron.  Breaking down each part of the above equation: 

me

αe
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=
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• 137 to 1 is the ratio between transverse energy (photons) and electron mass. 
• 4/3 is the conversion ratio between a spherical volume (4/3 π r3) and cylindrical volume (π h r2) when 

height (h) is equal to radius (r).  When a particle’s energy is converted to kinetic energy, or vice versa, it goes 
through this volume change. 

• K is the fundamental particle count for the electron since the fine structure constant represents the electron 
but the photon amplitude factor is represented as the fundamental amplitude. 

• Density is illustrated in graphical form.  It can be thought of as the number of energy granules in a defined 
volume (illustrated as dots). 

• The photon is illustrated in graphical form as cylindrical volume.  It has transverse amplitude.  
• The electron mass is illustrated in graphical form as a spherical particle.   

 
In Fig A.2, ~137 photons with a fundamental amplitude factor (δe) are illustrated passing through space with the 
density calculated in this paper.  This matches Eq. A.4 in visual form.  Density is illustrated as the number of aether 
granules (represented as dots) in space that pass wave energy.  The electron is a darker shade, representing a greater 
number of granules or energy, as it is stored energy from longitudinal standing waves.   
 

 
Fig A.2 – Electron Mass and Photon Energy 

 
If photons have the fundamental amplitude, then it resonates with the universal frequency of the electron.  Kinetic 
energy equals potential energy.  This is illustrated in Fig. A.3.    
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Fig A.3 – Resonance – Kinetic Energy (Photons) Match Stored Energy (Mass) 

 
A change to the amplitude, again represented by a simplified amplitude factor (δe), is a mismatch of energy in the 
photons relative to the electron.  In Fig A.4, the top figure is an example of 137 photons with amplitude greater 
than the fundamental amplitude.  For the purpose of illustration only, amplitude is represented by a taller photon, 
and the electron is shaded darker to represent more energy granules (represented as dots) in the defined space of the 
electron.  In Fig. A.4, the bottom figure is an example of 137 photons with amplitude less than the fundamental 
amplitude (represented as shorter photons).   
 
In both cases, the energy does not match the fundamental rest energy of the electron.  Either too much energy is 
supplied to the electron in the case of greater amplitude, or not enough energy in the case of lower amplitude.  The 
electron will shed energy, or may require more energy, to bring it to equilibrium.   
  

 

 
Fig A.4 – Resonance – Kinetic Energy (Photons) Do Not Match Stored Energy (Mass) 

 
Given the derivation of the fine structure constant and its relationship to electron mass, and the fact that the fine 
structure constant appears in the equations where longitudinal energy (spherical form) is transferred to transverse 
energy (cylindrical form) or vice versa, it is therefore proposed that the fine structure constant is resonance. 
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Relation to Strong and Electromagnetic Forces 

In the energy wave equations, the fine structure constant appears in the strong force and again in orbitals for 
electrons.  In each case, they are positions where the electron is stable.  In the strong force, the electrons are 
modeled at one electron wavelength from each other in the proton (See Section 3.2).  In atomic orbitals, they are 
modeled as wavelength counts from the proton’s core where the electron is stable.   
 
The first location of the electron is found in the strong force at one electron wavelength.  The remaining locations 
of the electron are then found as squares of the fine structure constant as it was found in the Orbital Equation in 
the Particle Energy and Interaction paper.  The Orbital Equation is used to calculate the atomic orbitals of the hydrogen 
atom where n is the shell measured in fundamental wavelengths, and N is the traditional orbital number in integers 
(1, 2, 3, etc).  The relationship to the fine structure constant and the equations where the electron is found to be in a 
stable position is summarized in Fig A.5.     
   
 

 

 
Fig A.5 – Relationship of Fine Structure Constant to Strong Force and Electromagnetism Orbitals 

 
The strong force is a reciprocal of the fine structure constant.  It is roughly 137 times stronger than 
electromagnetism.  Electromagnetism is also based on the inverse of the fine structure constant, but it is based on a 
harmonic pattern (1/n, 2/n, 3/n, etc.) and curiously it is the square of this pattern for electron orbitals.   
 
If the fine structure constant is resonance based on the fundamental frequency of the electron, the strong force 
would also need to account for a transition between stored and kinetic energy.  One potential explanation is that 
two electrons are forced to a separation distance of one electron wavelength, which significantly modifies 
amplitude.  Of course, this would require incredibly high energies to do so, but once separated at this distance, the 
transition from spherical mass to the cylindrical photon (gluon in this case) would be across one electron 
wavelength.  To compensate for all of the energy of the electron, the amplitude factor would be increased 
proportionally by ~137 times.  A visual representation of this hypothesis is in Fig A.6.   
  
 

 



 

 46 

 
Fig A.6 – Strong Force 

 
The electromagnetic force is similar, but instead of one wavelength at an increased amplitude factor equal to the 
fine structure constant, it is one amplitude factor across a wavelength equal to the fine structure constant.  An 
attempt to illustrate the electromagnetic force and the relation to the fine structure constant is in Fig. A.7. 

 

 
Fig A.7 – Electromagnetic Force 

 
Another clue that the fine structure constant is resonance is that it follows a harmonic series.  In the case of 
hydrogen’s orbitals, it was calculated to be the square of the harmonic series of the fine structure constant, as seen 
in Fig. A.8.  This is the basis of the Orbital Equation in the Particle Energy and Interaction paper that models the orbits 
and uses the wavelength distance accurately in the calculation of hydrogen shell energy transitions. 
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Fig A.8 - Orbitals 

 
If the fine structure constant is resonance, then this fundamental frequency may ultimately be derived into other 
resonance equations found in electronics, springs and others and provide an explanation of why they occur at the 
particle and atomic level.   
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