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Chapter 10

LAWS, RULES AND OTHER THINGS

10.1 More About Ultrawords.

Previously, we slightly investigated the composition of an ultra-
word w ∈ ∗Md−d. Using the idea of the minimum informal language
P0 ⊂ P, where d is denumerable and P is a propositional language,
our interest now lies in completely determining the composition of
∗S({w}). [Note: since our language is informal axiom (3) and (4) are
redundant in that superfluous parentheses have been removed.] First,
two defined sets.

A = {x | x ∈ P0 is an instance of an axiom for S} (10.1.1)

C = {x | x ∈ P0 is a finite (≥ 1) conjunction of members of d}(10.1.2)

Notice that it is also possible to refine the set C by considering
C to be an ordered conjunction with respect to the ordering of the
indexing set used to index members of d. Further, as usual, we have
that A, C, d are mutually disjoint.

Theorem 10.1.1 Let w ∈ ∗Md− ∗d be an ultraword for infinite
d ⊂ ∗S({w}). Then ∗S({w}) = ∗A ∪ Q1 ∪ d′

1, where for internal *-
finite d′

1, d ⊂ d′
1 ⊂ ∗d and internal Q1 ⊂ ∗C is composed of *-finite

(≥ 1) conjunctions (i.e. i(|||and|||)) of distinct members of d′
1 and

w ∈ Q1. Further, each member of d′
1 and no other *-proposition is

used to form the *-finite conjunctions in Q1, the only *-propositions
in ∗S({w}) are those in w, and ∗A, Q1 and d′

1 are mutually disjoint.

Proof. The intent is to show that if w ∈ Md − d, then S({w}) =
A ∪ Q ∪ d′, where Q ⊂ C, finite d′ ⊂ d and Q is composed of finite
(≥ 1) conjunctions of members of d′, each member of d′ is used to
form these conjunctions and no other propositions.

Let J be the set of propositional atoms in the composite w. (0)
Then J ⊂ S({w}). If K is the set of all propositional atoms in S({w}),
then J ⊂ K. Let b ∈ K− J. It is obvious that b /∈ S({w}) since other-
wise {w,b} ⊂ S0({w}) but 6|=S0

w → b. Thus, J = K. Consequently,
J ⊂ S({w}), J ⊂ d and there does not exists an F ∈ d − J, such that
F ∈ S({w}). (1) Let J = d′. The only propositional atoms in S({w})
are those in w. Obviously A ⊂ S({∅}).

Assume the language P0 is inductively defined from the set of
atoms d. Recall that for our axioms X = D → F , the strongest
connective in X is → . While in D, or F when applicable, the strongest
connective is ∧. Since ∅ ⊂ {w}, it follows that S({w}) = S(∅)∪S({w}).
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Let b ∈ S(∅). The only steps in the formal proof for b contain axioms
or follows from modus ponens. Suppose that step Bk = b is the
first modus ponens step obtained from steps Bi, Bj, i, j < k, where
Bi = A → b, Bj = A. The strongest connective for each axiom is → .
However, since A → b is an axiom, the strongest connective in A is
∧. This contradicts the requirement that A must also be an axiom
with strongest connect → . Thus no modus ponens step can occur in
a formal proof for b. Hence, (2) A = S(∅). (No modus ponens step
can occur using two axioms.)

Let Bk = b1 ∈ P0 and suppose (a) that b1 = w, or (b) b1 6= w and
is the first nonaxiom step that appears in a formal demonstration from
the hypothesis w. Assume (b). Then all steps Bi ∈ {w}∪A, 0 ≤ i < k.
Then the only way that b1 can be obtained is by means of modus
ponens. However, all other steps, not including that which is w, are
axioms. No modus ponens step can occur using two axioms. Thus
one of the steps used for modus ponens must not be an axiom. The
only nonaxiom that occurs prior to the step Bk is the step Bm = w.
Hence, one of the steps required for Bk must be Bm = w. The other
step must be an axiom of the form w → b1 and b1 6= w. Thus, from
the definition of the axioms (3) b1 is either a finite (≥ 1) conjunction
of atoms in d′, or a single member of d′. Assume strong induction.
Hence, for n > 1, statement (3) holds for all r, 1 ≤ r ≤ n. A similar
argument shows that (3) holds for the bn+1 nonaxiom step. Thus by
induction, (3) holds for all nonaxiom steps.

Hence, there exists a Q ⊂ C such that each member of Q is
composed of finitely many (≥ 1) distinct members of d′ and the set
G(Q) of all the proposition atoms that appear in any member of
Q = d′ = J since w ∈ Q. Moreover, (4) S({w}) = A ∪ d′ ∪ Q and (5)
A, d′, Q are mutually disjoint.

∀x(x ∈ Md − d → ∃y∃z((y ∈ F (d)) ∧ (z ⊂ C) ∧ (S({x}) =

A ∪ y ∪ z) ∧ (A ∩ y = ∅) ∧ (A ∩ z = ∅) ∧ (x ∈ z)∧

(10.1.3) (y ∩ z = ∅) ∧G(z) = y)).

holds in M, hence also in ∗M. So, let w be an ultraword. Then there
exists internal Q1 ⊂ ∗C, w ∈ Q1 and *- finite d′

1 ⊂ ∗d such that
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d ⊂ ∗S({w}) = ∗A ∪ d′
1 ∪ Q1;

∗A, d′
1, Q1 are mutually disjoint and

∗G(Q1) = d′
1 = ∗J. Hence, d ⊂ d′

1.

Now to analyze the objects in Q1. Let d = {Fi | i ∈ IN}. Consider
a bijection h: IN → d defined by h(n) = Fn = [f ], where f ∈ T 0 is the
special member of Fn such that f = {(0, f(0))}, f(0) = i(Fn) = qn ∈
i[d]. From the above analysis, (A) [g] ∈ S({w})−A−d, (w ∈ Md−d),
iff there exist k, j ∈ IN such that k < j and f ′

1 ∈ i[P0]
2(j−k) such that

[f ′
1] = [g], and this leads to (B) that for each even 2p, 0 ≤ 2p ≤

2(j − k); f ′
1(2p) = qk+p ∈ i[P0] ⊂ W, [(0, qk+p)] ∈ d′, all such qk+p

being distinct. For each odd 2p + 1 such that 0 ≤ 2p + 1 ≤ 2(j −
k), f ′

1(2p+1) = i(|||and|||). Also (C) h(p) ∈ h[[k, j]] iff there exists an
even 2p such that 0 ≤ 2p ≤ 2(j−k) and f ′

1(2p) = h(p) = qk+p ∈ i[P0].
[Note that 0 is considered to be an even number.]

By *-transfer of the above statements (A), (B) and (C), [g] ∈ Q1

iff there exists some j, k ∈ ∗
IN, k < j, and f ′ ∈ ∗(i[P0])

2(j−k) such
that [f ′] = [g] and ∗h[[k, j]] ⊂ ∗d. Moreover, each ∗h(r), r ∈ [k, j] is
a distinct member of ∗d. The conjunction “codes” for i(|||and|||) ∈ W
that are generated by each odd 2p+1 are all the same and there are *-
finitely many of them. Hence, Q1 is the *-finite (≥ 1) conjunctions of
distinct members of d′

1, no other *-propositions are utilized and since
∗G(Q1) = d′

1, all members of d′
1 are employed for these conjunctions.

This completes the proof.

Corollary 10.1.1.1 Let w ∈ ∗Md − ∗d be an ultraword for
denumerable d such that d ⊂ ∗S({w}). Then ∗S({w}) ∩ P0 = A ∪
Q ∪ d and A, Q, d are mutually disjoint. The set Q is composed of
finite ≥ 1 conjunctions of members of d and all of the members of d
are employed to obtain these conjunctions.

Proof. Recall that due to the finitary character of our standard
objects σA = A = ∗A ∩P0. In like manner, since d ⊂ d′

1, d′
1 ∩P0 =

d. Now P0 ∩ Q1 are all of the standard members of Q1. For each
k ∈ ∗

IN, ∗h(k) = Fk ∈ ∗d and conversely. Further, Fk ∈ d iff k ∈ IN.
Restricting k, j ∈ IN in the above theorem yields standard finite ≥ 1
conjunctions of standard members of d′

1; hence, members of d. Since
ultraword w ∈ Q1, we know that there exists some η ∈ ∗

IN − IN and
f ′
1 ∈ ∗(i[P0])

2η , where f ′
1 satisfies the *-transfer of the properties

listed in the above theorem . Since finite conjunctions of standard
members of d′

1 are *-finite conjunctions of members of d′
1 and d =

d∩ d′
1, it follows that all possible finite conjunctions of members of d

that are characterized by the function f ′
1 ∈ i[P0]

2(j−k) are members
of Q1 for each such j, k < η. Also for such j, k the values of f ′

1

are standard. On the other hand, any value of f ′
1 is nonstandard iff
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it corresponds to a member of d′
1 − d. Thus Q1 ∩ P0 = Q and this

completes the proof.

If it is assumed that each member of d describes a Natural event
(i.e. N-event) at times indicated by Xi, dropping the Xi may still yield
a denumerable developmental paradigm without specifically generated
symbols such as the “i.” Noting that d′

1 is *-finite and internal leads to
the conclusion that we can have little or no knowledge about the word-
like construction of each member of d′

1 − d. These pure nonstandard
objects can be considered as describing pure NSP-world events, as will
soon be demonstrated. Therefore, it is important to understand the
following interpretation scheme, where descriptions are corresponded
to events.

Standard or internal NSP-world events or sets of
events are interpreted as directly or indirectly influ-
encing N-world events. Certain external objects, such
as the standard part operator, among others, are also
interpreted as directly or indirectly influencing N-
world events.

Notice that standard events can directly or indirectly affect stan-
dard events. In the micro-world, the term indirect evidence or verifi-
cation is a different idea than indirect influences. You can have direct
or indirect evidence of direct or indirect influences when considered
within the N-world. An indirect influence occurs when there exists,
or there is assumed to exist, a mediating “something” between two
events. Of course, indirect evidence refers to behavior that can be
observed by normally accepted human sensors as such behavior is as-
sumed to be caused by unobserved events. However, the evidence for
pure NSP-world events that directly or indirectly influence N-world
events must be indirect evidence under the above interpretation.

In order to formally consider NSP-world events for the forma-
tion of objective standard reality, proceed as follows: let O be the
subset of W that describes those Natural events that are used to ob-
tain developmental or general paradigms and the like. Let Ej ∈ O.
Linguistically, assume that each Ej has the spacing symbol ||| imme-
diately to the right. Thus within each Ti, there is a finite symbol
string Fi = Ei ∈ O that can be joined by the justaposition (i.e. join)
operation to other event descriptions. Assume that W1 is the set of
nonempty symbol strings (with repetitions) formed from members of
O by the join operation. These finite strings of symbols generate the
basic elements for our partial sequences.

Obviously, W1 ⊂ W. Consider T′
i = {XWi | X ∈ W1} and
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note that in many applications the time indicator Wi need not be of
significance for a given Ej in some of the strings. Obviously, T′

i ⊂ Ti

for each i. For our isomorphism i, the following hold.

∀y(y ∈ E → (y ∈ T′
i ↔ ∃x∃f∃w((∅ 6= w ∈ F (i[O])) ∧ (x ∈ IN)∧

(f(0) = i[Wi]) ∧ (f ∈ P ) ∧ ∀z((z ∈ IN) ∧ (0 < z ≤ x) →

f(z) ∈ w) ∧ (f ∈ y)))). (10.1.4)

∀x(x ∈ IN → ∃f∃w((∅ 6= w ∈ F (i[O])) ∧ (f ∈ P )∧

∀z(z ∈ IN → (0 < z ≤ x ↔ f(z) ∈ w)))). (10.1.5)

∀w(∅ 6= w ∈ F (i[O]) → ∃x∃f∃y((f ∈ P ) ∧ (x ∈ IN) ∧ (y ∈ T′
i)∧

(f ∈ y) ∧ ∀z(z ∈ IN → (0 < z ≤ x ↔ f(z) ∈ w)))). (10.1.6)

Since each finite segment of a developmental pardigm corresponds
to a member of T′

i, each nonfinite hyperfinite segment should corre-
spond to a member of ∗(T′

i)−T′
i and it should be certain individual

segments of such members of ∗(T′
i)−T′

i that correspond to the ultra-
natural events produced by an ultraword; UN-events that cannot be
eliminated from an NSP-world developmental paradigms. [Note: for
a scientific language, 10.1.4 - 10.1.6 and other such statements would
correspond to a W ′ as generated by, at the least, a denumerable al-
phabet such as used in 9.2, 9.3.]

10.2 Laws and Rules.

One of the basic requirements of human mental activity is the
ability to recognize the symbolic differences between finitely long
strings of symbols as necessitated by our reading ability and to ap-
ply linguistic rules finitely many times. Gödel numberings specifically
utilize such recognitions and the rules for the generation of recursive
functions must be comprehended with respect to finitely many ap-
plications. Observe that Gödel number recognition is an “ordered”
process while some fixed intuitive order is not necessary for the ap-
plication of the rules that generate recursive functions.

In general, the simplest “rule” for ordered or unordered finite hu-
man choice, a rule that is assumed to be humanly comprehensible by
finite recognition, is to simply list the results of our choice (assuming
that they are symbolically representable in some fashion) as a partial
finite sequence for ordered choice or as a finite set of finitely long sym-
bol strings for an unordered choice. Hence, the end result for a finite
choice can itself be considered as an algorithm “for that choice only.”
The next application of such a finite choice rule would yield the exact
same partial sequence or choice set. Another more general rule would
be a statement which would say that you should “choose a specific
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number of objects” from a fixed set (of statements). Yet, a more gen-
eral rule would be that you simply are required to “choose a finite set
of all such objects,” where the term “finite” is intuitively known. Of
course, there are numerous specifically described algorithms that will
also yield finite choice sets.

From the symbol string viewpoint, there are trivial machine pro-
grammable algorithms that allow for the comparison of finitely long
symbols with each member of a finite set of symbol strings B that will
determine whether or not a specific symbol string is a member of B.
These programs duplicate the results of human symbol recognition.
As is well-known, there has not been an algorithm described that al-
lows us to determine whether or not a given finite symbol string is a
member of the set of all theorems of such theories as formal Peano
Arithmetic. If one accepts Church’s Thesis, then no such algorithm
will ever be described.

Define the general finite human choice relation on a set A as
H0(A) = {(A, x) | x ∈ F0(A)}, where F0 is the finite power set
operator (including the empty set = no choice is made). Obviously,
the inverse H−1

0 is a function from F (A) onto {A}. There are choice
operators that produce sets with a specific number of elements that
can be easily defined. Let F1(A) be the set of all singleton subsets
of A. The axioms of set theory state that such a set of singleton sets
exists. Define H1(A) = {(A, x) | x ∈ F1(A)}, etc. Considering such
functions as defined on sets X that are members of a superstructure,
then these relations are subsets of P(X)×P(X) and as such are also
members of the superstructure.

Let A = P0. Observe that σH0(A) = {( ∗A, x) | x ∈ F0(A)}
and ∗Hi(A) = {( ∗A, x) | x ∈ ∗(Fi(A))} (i ≥ 0). Now ∗(F0(A)) =
∗F0(

∗A) is the set of all *-finite subsets of ∗A. On the other hand,
for the i > 0 cardinal subsets, ∗(Fi(A)) = Fi(

∗A) for each i ≥ 1.
With respect to an ultraword w that generates the general and de-
velopmental paradigms, we know that w ∈ ∗P0 − P0 and that
( ∗P0, {x}) ∈ ∗H1(P0). The actual finite choice operators are charac-
terized by th set-theoretic second projector operator P2 as it is defined
on Hi(A). This operator embedded by the injection θ is the same as
P2 as it is defined on Hi(A). Thus, when h = (A, x) ∈ Hi(A), then
we can define x = P2(h) = Ci(h) = Ci(h). The maps Ci and Ci,
formally defined below, are the specific finite choice operators. For
consistency, we let Ci and Ci denote the appropriate finite choice
operators for Hi(A) and Hi(A), respectively.

Since the ∗P 2 defined on say Hi(A) is the same as the set-
theoretic second projection operator P2, it would be possible to de-
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note ∗Ci as Ci on internal objects. For consistency, the notation
∗Ci for these special finite choice operators is retained. Formally, let
Ci:Hi(A) → Fi(A). Observe that σCi = { ∗(a, b) | (a, b) ∈ Ci} =
{(( ∗A, b), b) | b ∈ Fi(A)} ⊂ ∗Ci; and, for b ∈ Fi(A), Ci((A, b)) = b
implies that σ(Ci((A, b))) = { ∗a | a ∈ b} = b from the construc-
tion of E. Thus in contradistinction to the consequence operator,
for each ( ∗A, b) ∈ σHi, the image (σCi)((

∗A, b)) = σ(Ci((A, b))) =
( ∗Ci)((

∗A, b)) = b. Consequently, the set map σCi:
σHi → Fi(A) =

σ(Fi(A)) and ∗Ci | σHi = σCi. Finally, it is not difficult to extend
these finite choice results to general internal sets.

In the proofs of such theorems as 7.2.1, finite and other choice
sets are selected due to their set-theoretic existence. The finite choice
operators Ci are not specifically applied since these operators are only
intended as a mathematical model for apparently effective human pro-
cesses — procedures that generate acceptable algorithms. As is well-
known, there are other describable rules that also lead to finite or
infinite collections of statements. Of course, with respect to a Gödel
encoding i for the set of all words W the finite choice of readable sen-
tences in E is one-to-one and effectively related to a finite and, hence,
recursive subset of IN.

From this discussion, the descriptions of the finite choice oper-
ators would determine a subset of the set of all algorithms (“rules”
written in the language W) that allow for the selection of readable
sentences. Notice that before algorithms are applied there may be
yet another set of readable sentences that yields conditions that must
exist prior to an application of such an algorithm and that these ap-
plication rules can be modeled by members of E.

In order to be as unbiased as possible, it has been required for N-
world applications that the set of all frozen segments be infinite. Thus,
within the proof of Theorem 7.2.1, every N-world developmental, as
well as a general paradigm, is a proper subset of a *-finite NSP-world
paradigm, and the *-finite paradigm is obtained by application of
the *-finite choice operator ∗C0. As has been shown, such *-finite
paradigms contain pure unreadable (subtle) sentences that may be
interpreted for developmental paradigms as pure refined NSP-world
behavior and for general paradigms as specific pure NSP-world ultra-
natural events or objects.

Letting Γ correspond to the formal theory of Peano Arithmetic,
then assuming Church’s Thesis, there would not exist a N-world algo-
rithm (in any human language) that allows for the determination of
whether or not a statement F in the formal language used to express
Γ is a member of Γ. By application of the *-finite choice operator
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∗C0, however, there does exist a *-finite Γ′ such that σΓ = Γ ⊂ Γ′

and, hence, within the NSP-world a “rule” that allows the determi-
nation of whether or not F ∈ Γ′. If such internal processes mirror the
only allowable procedures in the NSP-world for such a “rule,” then it
might be argued that we do not have an effective NSP-world process
that determines whether or not F is a member of Γ for Γ is external.

As previously alluded to at the beginning of this section, when
a Gödel encoding i is utilized with the N-world, the injection i is not
a surjection. When such Gödel encodings are studied, it is usually
assumed, without any further discussion, that there is some human
mental process that allows us to recognize that one natural number
representation (whether in prime factored form or not) is or is not
distinct from another such representation. It is not an unreasonable
assumption to assume that the same effective (but external) process
exists within the NSP-world. Thus within the NSP- world there is a
“process” that determines whether or not an object is a member of
∗
IN − IN = IN∞ or IN. Indeed, from the ultraproduct construction of

our nonstandard model, a few differences can be detected by the hu-
man mathematician. Consequently, this assumed NSP-world effective
process would allow a determination of whether or not F = [fm] is a
member of Γ by recalling that fm ∈ Pm signifies that [fm] ∈ ∗Γ − Γ
implies m ∈ IN∞ ≃ ∗(i[W]) − i[W].

The above NSP-world recognition process is equivalent, as de-
fined in Theorem 7.2.1, to various applications of a single (external)
set-theoretic intersection. Therefore, there are internal processes, such
as ∗C0, that yield pure NSP-world developmental paradigms and a
second (external) but acceptable NSP-world effective process that pro-
duces specific N-world objects. Relative to our modeling procedures,
it can be concluded that both of these processes are intrinsic ultra-
natural processes.

With respect to Theorem 10.1.1, the NSP-world developmental
or general paradigm generated by an ultraword is *-finite and, hence,
specifically NSP- world obtainable prior to application of ∗S through
application of ∗C0 to ∗d. However, this composition can be reversed.
The NSP-world (IUN) process ∗C1 can be applied to the appropriate
∗Md type set and an appropriate ultraword w ∈ ∗Md obtained.
Composing ∗C1 with ∗S would yield d′

1 in a slightly less conspicuous
manner. Obviously, different ultrawords generate different standard
and nonstandard developmental or general paradigms.

To complete the actual mental-type processes that lead to the
proper ordered event sequences, the above discussion for the finite
choice operators is extended to the human mental ability of ordering
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a finite set in terms of rational number subscripts. New choice op-
erators are defined that model not just the selection of a specific set
of elements that is of a fixed finite cardinality but also choosing the
elements in the required rational number ordering. The ultrawords
w that exist are *-finite in length. By application of the inverses of
the f and τ functions of section 7.1, where they may be considered as
extended standard functions ∗f and ∗τ , there would be from analysis
of extended theorem 7.3.2 a hyperfinite set composed of standard or
nonstandard frozen segments contained in an ultraword. Further, in
theorem 7.3.2, the chosen function f does not specifically differenti-
ate each standard or nonstandard frozen segment with respect to its
“time” stamp subscript. There does exist, however, another function
in the *-equivalence class [g] = w that will make this differentia-
tion. It should not be difficult to establish that after application of
the ultralogic ∗S, there is applied an appropriate mental-like hyperfi-
nite ordered choice operator (an IUN-selection process) and that this
would yield that various types of event sequences. Please note that
each event sequence has a beginning point of observation. This point
of observation need not indicate the actual moment when a specific
Natural system began its development.

Various subdevelopmental (or subgeneral) paradigms di are ob-
tained by considering the actual descriptive content (i.e. events) of
specific theories Γi that are deduced from hypotheses ηi, usually, by
finitary consequence operators Si (the inner logics) that are compat-
ible with S. In this case, di ⊂ Si(ηi). It is also possible to include
within {di} and {ηi} the assumed descriptive chaotic behavior that
seems to have no apparent set of hypotheses except for that particular
developmental paradigm itself and no apparent deductive process ex-
cept for the identity consequence operator. In this way, such scientific
nontheories can still be considered as a formal theory produced by a
finitary consequence operator applied to an hypothesis. Many of these
hypotheses ηi contain the so-called natural laws (or first-principles)
peculiar to the formal theories Γi and the theories language, where it
is assume that such languages are at least closed under the informal
conjunction and conditional.

Consider each ηi to be a general paradigm. For the appropriate M
type set constructed from the denumerable set B = {

⋃
{di}∪(

⋃
{ηi}),

redefine MB to be the smallest subset of P0 containing B and closed
under finite (≥ 0) conjunction. (The usual type of inductively defined
MB.) Then there exist ultrawords wi ∈ ∗MB − ∗B such that ηi ⊂
∗S({wi}) (where due to parameters usually ultranatural laws exist in
∗S({wi}) − ηi) and di ⊂ ∗S({wi}). Using methods such as those in
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Theorem 7.3.4, it follows that there exists some w” ∈ ∗MB − MB

such that wi ∈ ∗S({w”}) and, consequently, ηi ∪ di ⊂ ∗S({w”}).
Linguistically, it is hard to describe the ultraword w”. Such a w”
might be called an ultimate ultranatural hypothesis or the ultimate
building plain.

Remark. It is not required that the so-called Natural laws that
appear in some of the ηi be either cosmic time or universally applica-
ble. They could refer only to local first-principles. It is not assumed
that those first-principles that display themselves in our local envi-
ronment are universally space-time valid.

Since the consequence operator S is compatible with each Si,
it is useful to proceed in the following manner. First, apply the
IUN-process ∗S to {w”}. Then di ∪ ηi ⊂ ∗S({w”}). It now follows
that di ∪ ηi ⊂ ∗S({wi}) ⊂ ∗Si(

∗S({wi})) ⊂ ∗Si(
∗Si({wi})) =

∗Si({wi}). Observe that for each a ∈ Γi there exists some finite
Fi ⊂ ηi such that a ∈ Si(Fi). However, Fi ⊂ ηi for each member
of F (ηi) implies that a ∈ ∗Si(Fi) ⊂ ∗Si(

∗S({wi})). Consequently,
Γi ⊂ ∗Si(

∗S({wi})). The ultimate ultraword suffices for the descrip-
tive content and inner logics associated with each theory Γi.

We now make the following observations relative to “rules” and
deductive logic. It has been said that science is a combination of
empirical data, induction and deduction, and that you can have the
first two without the last. That this belief is totally false should be
self-evident since the philosophy of science requires its own general
rules for observation, induction, data collection, proper experimenta-
tion and the like. All of these general rules require logical deduction
for their application to specific cases — the metalogic. Further, there
are specific rules for linguistics that also must be properly applied
prior to scientific communication. Indeed, we cannot even open the
laboratory door — or at least describe the process — without appli-
cation of deductive logic. The concept of deductive logic as being the
patterns our “minds” follow and its use exterior to the inner logic of
some theory should not be dismissed for even the (assumed?) mental
methods of human choice that occur prior to communicating various
scientific statements and descriptions.

Finally, with respect to the hypothesis rule in [9], it might be
argued that we can easily analyze the specific composition of all sig-
nificant ultrawords, as has been previously done, and the composition
of the nonstandard extension of the general paradigm. Using this
assumed analysis and an additional alphabet, one might obtain spe-
cific information about pure NSP-world ultranatural laws or refined
behavior. Such an argument would seem to invalidate the cautious
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hypothesis rule and lead to appropriate speculation. However, such
an argument would itself be invalid.

Let W1 be an infinite set of meaningful readable sentences for
some description and assume that W1 does not contain any infinite
subset of readable sentences each one of which contains a mathe-
matically interpreted entry such as a real number or the like. Since
W1 ⊂ W and the totality Ti = {XWi | X ∈ W} is denumerable, the
subtotality T′

i = {XWi | X ∈ W1} is also denumerable. Hence, the
external cardinality of ∗T′

i
≥ 2|M|.

Consider the following sentence

∀z(z ∈ i[W1] → ∃y∃x((y ∈ W [0,1]) ∧ (x ∈ T′
i
) ∧ (y ∈ x)∧

((0, i(Wi)) ∈ y) ∧ ((1, z) ∈ y)))). (10.2.1)

By *-transfer and letting “z” be an element in ∗(i[W1]) − i[W1]
it follows that we can have little knowledge about the remaining and
what must be unreadable portions that take the “X” position. If one
assumes that members of W1 are possible descriptions for possible
NSP-world behavior at the time ti, then it may be assumed that at
the time ti the members of ∗T′

i
− Ti describe NSP-world behavior

at NSP- world (and N-world) time ti. Now as i varies over ∗
IN, pure

nonstandard subdevelopmental paradigms (with or without the time
index statement Wi) exist with members in ∗T and may be considered
as descriptions for time refined NSP-world behavior, especially for a
NSP-world time index i ∈ IN∞.
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Chapter 11

Propertons (Subparticles)

11.1 Propertons.

What is a propertons? Or, what is an infant, or subparticle, I first
used the name infant for these strange objects. I then coined the term
subparticle. Since these names lead to incorrect images, the name
properton is employed. This gives a more intuitive meaning in that it
carries, in coded form, physical or physical-like properties. As stated
in [9], these objects are not to be described in terms of any geometric
configuration. These multifaceted things, these propertons, are not
to be construed as either particles nor waves nor quanta nor anything
that can be represented by some fixed imagery. Propertons are to
be viewed only operationally. Propertons are only to be considered
as represented by a *-finite sequence {ai}n

i=1, n ∈ ∗
IN, of hyperreal

numbers. Indeed, the idea of the n-tuple (a1, a2, . . . , ai, . . .) notation is
useful and we assume that n is a fixed member of IN∞. The language of
coordinates for this notation is used, where the i’th coordinate means
the i’th value of the sequence. Obviously, 0 is not a domain member
for our sequential representation.

The first coordinate a1 is a “naming” coordinate. The remain-
ing coordinates are used to represent various real numbers, complex
numbers, vectors, and the like physical qualities needed for different
physical theories. For example, a2 = 1 might be a counting coor-
dinate. Then ai, 3 ≤ i ≤ 6 are hyperreal numbers that represent
NSP-world coordinate locations of the properton named by a1 —
a7, a8 represent the positive or negative charges that can be assigned
to every properton — a9, a11, a13, . . . hyperreal representations for
the inertial, gravitational and intrinsic (rest) mass, etc. For vector
quantities, continue this coordinate assignment and assign specific co-
ordinate locations for the vector components. So as not to be biased,
include as other coordinates hyperreal measures for qualities such as
energy, apparent momentum, and all other physical qualities required
within theories that must be combined in order to produce a reason-
able description for N-world behavior. For the same reason, we do
not assume that such N-world properties as the uncertainty principle
hold for the NSP-world. (See note (2) on page 128.)

It is purposely assumed that the qualities represented by the co-
ordinate ai, i ≥ 3 are not inner-related, in their basic construction,
by any mathematical relation since it is such inner-relations that are
assumed to mirror the N-world laws that govern the development of
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not only our present universe but previous as well as future devel-
opmental alterations. The same remarks apply to any possible and
distinctly different universes that may or not occur. Thus, for these
reasons, we view the properton as being totally characterized by such
a sequence {ai} and always proceed cautiously when any attempt is
made to describe all but the most general properton behavior. Why
have we chosen to presuppose that propertons are characterized by
sequences, where the coordinates are hyperreal numbers?

Let r be a positive real number. The number r can be represented
by a decimal-styled number, where for uniqueness, the repeated 0s
case is used for all terminating decimals. From this, it is seen that
there is a sequence Si of natural numbers such that Si/10i → r.
Consequently, for any ω ∈ IN∞ = ∗

IN−IN, it follows that ± ∗Sω/10ω ∈
µ(±r), where ∗Sω ∈ ∗

IN and µ(±r) is the monad about ±r. In [9],
it is assumed that each coordinate ai, i ≥ 3 is characterized by the
numerical quantity ±10−ω, ω ∈ IN∞. Obviously, we need not confine
ourselves to the number 10−ω.

Theorem 11.1.1 For each 0 < i ∈ IN, let 0 < mi ∈ IN and
mi → ∞. Let any ω, λ ∈ IN∞. Then, for each r ∈ IR, there exists a
b/ ∗mω ∈ {x/ ∗mω | (x ∈ ∗Z) ∧ (|x| < λ ∗mω}, where ∗mω ∈ IN∞, and
b/ ∗mω ≈ r (i.e. b/ ∗mω ∈ µ(r)). If r 6= 0, then |b| ∈ IN∞.

Proof. For r ∈ IR, there exists a unique integer n ∈ Z such that
n ≤ r < n + 1. Partition [n, n + 1) as follows: for each 0 < i ∈ IN,
and 0 < mi ∈ IN, consider [n, n + 1/mi), . . . , [n + (mi − 1)/mi, n + 1).
Then there exists a unique ci ∈ {0, 1, . . . ,mi − 1} such that r ∈
[n + ci/mi, n + (ci + 1)/mi). Let Si = (min + ci)/mi = fi/mi. Since
0 ≤ r − Si < 1/mi and mi → ∞, then Si → r. This yields two
sequences S: IN → Q and f : IN → Z, where, for each ω ∈ IN∞, ∗Sω =
∗fω/ ∗mω ≈ r and ∗fω ∈ ∗Z. Observe that ∗fω/ ∗mω is a finite (i.e.
limited) number and ∗mω ∈ IN∞. Hence, | ∗fω/ ∗mω| < λ entails that
| ∗fω | < λ ∗mω. Therefore, ∗fω/ ∗mω ∈ {x/ ∗mω | (x ∈ ∗Z) ∧ (|x| <
λ ∗mω}. If ∗fω ∈ Z, then ∗fω/ ∗mω ≈ 0.

Corollary 11.1.1.1 For each 0 < i ∈ IN, let 0 < mi ∈ IN and
mi → ∞. Let any ω, λ ∈ IN∞. Then, for each r ∈ IR, there is a
sequence f : IN → Z such that ∗fω/ ∗mω ∈ µ(r). There are unique n ∈
Z, cω = 0 or cω ∈ IN∞ such that cω ≤ ∗mω − 1 and ∗fω = ∗mωn+ cω.

For the ultra-properton, each coordinate ai = 1/10ω i ≥ 3 and
odd, ai = −1/10ω i ≥ 4 and even, ω ∈ IN∞. From the above theorem,
the choice of 10−ω as the basic numerical quantity is for convenience
only and is not unique accept in its infinitesimal character. Of course,
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the sequences chosen to represent the ultra-properton are pure inter-
nal objects and as such are considered to directly or indirectly affect
the N-world. Why might the *-finite “length” of such propertons (here
is where we have replaced the NSP-world entity by its corresponding
sequence) be of significance?

First, since our N-world languages are formed from a finite set
of alphabets, it is not unreasonable to assume that NSP-world “lan-
guages” are composed from a *-finite set of alphabets. Indeed, since it
should not be presupposed that there is an upper limit to the N-world
alphabets, it would follow that the basic NSP-world set of alphabets
is an infinite *-finite set. Although the interpretation method that
has been chosen does not require such a restriction to be placed upon
NSP-world alphabets, it is useful, for consistency, to assume that de-
scriptions for substratum processes that affect, in either a directly or
indirectly detectable manner, N-world events be so restricted. For the
external NSP-world viewpoint, all such infinite *-finite objects have
a very significant common property. Note: in what follows M is the
standard superstructure constructed on page 76 and not the object
defined on page 57.

Theorem 11.1.2 All infinite *-finite members of our (ultralimit)
model ∗M have the same external cardinality which is ≥ |M|.

Proof. Hanson [8] and Zakon [16] have done all of the difficult
work for this result to hold. First, one of the results shown by Hen-
son is that all infinite *-finite members of our ultralimit model have
the same external cardinality. Since our model is a comprehensive
enlargement, Zakon’s theorem 3.8 in [16] applies. Zakon shows that
there exists a *-finite set, A, such that |A| ≥ |M| = |R|. Since A is
infinite, Hanson’s result now implies that all infinite *-finite members
of our model satisfy this inequality.

For an infinite standard set A, it is well-known that | ∗A| ≥ |M|.
One may use these various results and establish easily that there exist
more than enough propertons to obtain all of the cardinality state-
ments relative to the three substratum levels that appear in [9] even
if we assume that there are a continuum of finitely many properton
qualities that are needed to create all of the N-world.

Consider the following infinite set of statements expressed in an
extended alphabet.

GA = {An|||elementary|||particle|||k′(i′, j′)|||with|||

total|||energy|||c′+1/(n′). | ((i, j, n) ∈

IN
+ × IN

+ × IN
+) ∧ (1 ≤ k ≤ m)}, (11.1.1)
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where IN
+ is the set of all nonzero natural numbers and m ∈

IN
+. Applying the same procedure that appears in the proof of

Theorem 9.3.1 and with a NSP-world alphabet W ′, we obtain
G′

A = {An|||elementary|||particle|||k′(i′, j′)|||with|||

total|||energy|||c′+1/(n′). | ((i, j, n) ∈

(11.1.2) ∗
IN

+ × ∗
IN

+ × ∗
IN

+) ∧ (1 ≤ k ≤ m)},

Assume that there is at least one type of elementary particle with
the properties stated in the set GA. It will be shown in the next section
that within the NSP-world there may be simple properties that lead
to N-world energy being a manifestation of mass. For c = 0, we have
another internal set of descriptions that forms a subset of G′

A.

{An|||elementary|||particle|||k′(i′, j′)|||with|||

total|||energy|||c′+1/(10γ′

). | ((i, j, γ) ∈

(11.1.3) ∗
IN

+ × ∗
IN

+ × ∗
IN

+) ∧ (1 ≤ k ≤ m)},

For our purposes, (11.1.3) leads immediately to the not ad hoc
concept of propertons with infinitesimal proper mass. As will be
shown, such infinitesimal proper mass can be assumed to character-
ize any possible zero proper mass N-world entity. The set G′

A has
meaning if there exists at least one natural entity that can possess
the energy expressed by GA, where this energy is measured in some
private unit of measure.

Human beings combine together finitely many sentences to pro-
duce comprehensible descriptions. Moreover, all N-world human con-
struction requires the composition of objectively real N-world objects.
We model the idea of finite composition or finite combination by an
N-world process. This produces a corresponding NSP-world intrinsic
ultranatural process ultrafinite composition or ultrafinite combination
that can either directly or indirectly affect the N-world, where its
effect is indirectly inferred.

Let the index j vary over a hyperfinite interval and fix the other
indices. Then the set of sentences

G′′
A = {An|||elementary|||particle|||k′(i′, j′)|||with|||

total|||energy|||c′+1/(n′). | (j ∈ ∗
IN

+)

(11.1.4) ∧(1 ≤ j ≤ λ)},

where λ ∈ ∗
IN

+, 3 ≤ i ∈ ∗
IN, n ∈ IN∞ and 1 ≤ k ≤ m, forms an in-

ternal linguistic object that can be assumed to describe a hyperfinite
collection of ultranatural entities. Each member of G′′

A has the i’th
coordinate that measures the proper mass and is infinitesimal (with
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respect to NSP-world private units of measure). In the N-world, fi-
nite combinations yield an event. Thus, with respect to such sets
as G′′

A, one can say that there are such N-world events iff there are
ultrafinite combinations of NSP-world entities. And such ultrafinite
combinations yield a NSP-world event that is an ultranatural entity.

Associated with such ultrafinite combinations for the entities de-
scribed in G′′

A there is a very significant procedure that yields the i’th
coordinate value for the entity obtained by such ultrafinite combina-
tions. Such entities are called intermediate propertons. Let m0 ≥ 0 be
the N-world proper mass for an assumed elementary particle denoted
by k′. If m0 = 0, then let λ = 1. Otherwise, from Theorem 11.1.1,
we know that there is a λ ∈ ∗

IN such that λ/(10ω) ∈ µ(m0), where
ω ∈ IN∞ and since m0 6= 0, λ ∈ IN∞. Consequently, for bn = 10−ω,
the *-finite sum

λ∑

n=1

bn =

λ∑

n=1

1

10ω
=

λ

10ω
(11.1.5)

has the property that st(
∑λ

n=1 1/(10ω)) = m0. (Note the special
summation notation for a constant summand.) The standard part
operator st is an important external operator that is a continuous
[11] NSP-world process that yields N-world effects. The appropriate
interpretation is that

ultrafinite combinations of ultra-propertons yield an
intermediate properton that, after application of the
standard part operator, has the same effect as an el-
ementary particle with proper mass m0.

An additional relevant idea deals with the interpretation that the
*-finite set G′′

A exists at, say, nonstandard time, and that such a set
is manifested at standard time when the operator st is applied. The
standard part operator is one of those external operators that can
be indirectly detected by the presence of elementary particles with
proper mass m0.

The above discussion of the creation of intermediate proper-
tons yields a possible manner in which ultra-propertons are combined
within the NSP-world to yield appropriate energy or mass coordi-
nates for the multifaceted propertons. But is there an indication that
all standard world physical qualities that are denoted by qualitative
measures begin as infinitesimals?

Consider the infinitesimal methods used to obtain such things as
the charge on a sphere, charge density and the like. In all such cases,
it is assumed that charge can be infinitesimalized. In 1972, it was
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shown how a classical theory for the electron, when infinitesimalized,
leads to the point charge concept of quantum field theory and then
how the *-finite many body problem produced the quasi-particle. [15]
Although this method is not the same as the more general and less
ad hoc properton approach, it does present a procedure that leads to
an infinitesimal charge density and then, in a very ad hoc manner,
it is assumed that there are objects that when *-finitely combined
together entail a real charge and charge density. Further, it is the
highly successful use of the modeling methods of infinitesimal calculus
over hundreds of years that has lead to our additional presumption
that all coordinates of the basic sequential properton representation
are a ± fixed infinitesimal.

In order to retain the general independence of the coordinate
representation, independent *-finite coordinate summation is allowed,
recalling that such objects are to be utilized to construct many pos-
sible universes. [This is the same idea as *-finitely repeated simple
affine or linear transformations.] Thus, distinct from coordinatewise
addition, *-finitely many such sequences can be added together by
means of a fixed coordinate operation in the following sense. Let {ai}
represent an ultra-properton. Fix the coordinate j, then the sequence
{ci}, ci = ai, i 6= j and cj = 2aj forms an intermediate properton.
As will be shown, it is only after the formation of such intermedi-
ate propertons that the customary coordinatewise addition is allowed
and this yields, after the standard part operator is applied, represen-
tations for elementary particles. Hence, from our previous example,
we have that ultrafinite combinations of ultra-propertons yield prop-
ertons with “proper mass” λ/(10ω) ≈ m0 while all other coordinates
remain as ±10ω. This physical-like process is not a speculative ad
hoc construct, but, rather, it is modeled after what occurs in our ob-
servable natural world. Intuitively, this type of summation is modeled
after the process of inserting finitely many pieces of information (mail)
into a single “postal box,” where these boxes are found in rectangular
arrays in post offices throughout the world.

Now other ultra-propertons are ultrafinitely combined and yield
for a specific coordinate the ± unite charge or, if quarks exist, other
N-world charges, while all other coordinates remain fixed as ±1/(10ω),
etc. Rationally, how can one conceive of a combination of these in-
termediate propertons, a combination that will produce entities that
can be characterized in a standard particle or wave language?

Recall that a finite summation is a *-finite summation within
the NSP-world. Therefore, a finite combination of intermediate prop-
ertons is an allowed internal process. [Note that external processes
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are always allowed but with respect to our interpretation procedures
we always have direct or indirect knowledge relative to application
of internal processes. Only for very special and reasonable external
processes do we have direct or indirect knowledge that they have been
applied.] Let γi ∈ µ(0), i = 1, . . . , n. Then γ1 + · · · γn ∈ µ(0). The
final stage in properton formation for our universe — the final stage
in particle or wave substratum formation — would be finite coordi-
natewise summation of finitely many intermediate propertons. This
presupposes that the N-world environment is characterized by but
finitely many qualities that can be numerically characterized. This
produces the following type of coordinate representation for a specific
coordinate j after n summations with n other intermediate propertons
that have only infinitesimals in the j coordinate position.

λ∑

i=1

(1/(10ω) +
n∑

i=1

γi. (11.1.6)

Assuming λ is one of those members of IN∞ or equal to 1 as used
in (11.1.5), then the standard part operator can now be applied to

(11.1.6) and the result is the same as st(
∑λ

i=1(1/(10ω)).

The process outlined in (11.1.6) is then applied to finitely many
distinct intermediate propertons — those that characterize an ele-
mentary particle. The result is a properton each coordinate of which
is infinitely close to the value of a numerical characterization or an
infinitesimal. When the standard part operator is applied under the
usual coordinatewise procedure, the coordinates are either the specific
real coordinatewise characterizations or zero. Therefore, N-world for-
mation of particles, the dense substratum field, or even gross matter
may be accomplished by a ultrafinite combination of ultra-propertons
that leads to the intermediate properton; followed by finite combina-
tions of intermediate propertons that produce the N-world objects.
Please note, however, that prior to application of the standard part
operator such propertons retain infinitesimal nonzero coordinate char-
acterizations in other noncharacterizing positions. (See note (1) on
128.)

We must always keep in mind the hypothesis law [9] and avoid
unwarranted speculation. We do not speculate whether or not the
formed particles have point-like or “spread out” properties within
our space-time environment. These additional concepts may be pure
catalyst type statements within some standard N-world theory and
could have no significance for either the N-world or NSP-world.
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With respect to field effects, the cardinality of the set of all ultra-
propertons clearly implies that there can be ultrafinite combinations
of ultra-propertons “located” at every “point” of any finite dimen-
sional continuum. Thus the field effects yielded by propertons may
present a completely dense continuum type of pattern within the N-
world environment although from the monadic viewpoint this is not
necessarily how they “appear” within the NSP-world.

There are many scenarios for quantum transitions if such occur
in objective reality. The simplest is a re-ultrafinite combination of
the ultra-propertons present within the different objects. However,
it is also possible that this is not the case and, depending upon the
preparation or scenario, the so-called “conservation” laws do not hold
in the N-world.

As an example, the neutrino could be a complete fiction, only
endorsed as a type of catalyst to force certain laws to hold under a
particular scenario. Consider the set of sentences

GB = {An|||elementary|||particle|||k′(i′, j′)|||with|||

total|||energy|||c′+n′. | ((i, j, n) ∈

(11.1.7) IN
+ × IN

+ × IN
+) ∧ (1 ≤ k ≤ m)}.

It is claimed by many individuals that such objects as being de-
scribed in GB exist in objective reality. Indeed, certain well-known
scenarios for a possible cosmology require, at least, one “particle” to
be characterized by such a collection GB. By the usual method, these
statements are *- transferred to

G′
B = {An|||elementary|||particle|||k′(i′, j′)|||with|||

total|||energy|||c′+n′. | ((i, j, n) ∈

(11.1.8) ∗
IN

+ × ∗
IN

+ × ∗
IN

+) ∧ (1 ≤ k ≤ m)}.

Hence, letting n ∈ IN∞ then various “infinite” NSP-world energie
emerge from our procedures. With respect to the total energy
coordinate(s), ultra-propertons may also be ultrafinitely combined to
produce such possibilities. Let λ = 102ω [ resp. λ = ω2] and ω ∈ IN∞.
Then

(11.1.9)
λ∑

n=1

1

10ω
= 10ω [resp.

λ∑

n=1

1

ω
= ω] ∈ IN∞.

Of course, these numerical characterizations are external to the
N-world. Various distinct “infinite” qualities can exist rationally in
the NSP-world without altering our interpretation techniques. The
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behavior of the infinite hypernatural numbers is very interesting when
considered as a model for NSP-world behavior. A transfer of fi-
nite energy, momentum and, indeed, all other N-world characterizing
quantities, back and forth, between these two worlds is clearly possible
without destroying NSP-world infinite conservation concepts.

Further, observe that various intermediate propertons carrying
nearstandard coordinate values could be present at nearstandard
space-time coordinates, and application of the continuous and exter-
nal standard part operator would produce an apparent not conserved
N-world effect. These concepts will be considered anew when we dis-
cuss the Bell inequality.

Previously, ultrawords were obtained by application of certain
concurrent relations. Actually, basic ultrawords exist in any elemen-
tary nonstandard superstructure model, as will now be established for
the general paradigm.

Referring back to GA equation (11.1.1), for some fixed k, 1 ≤ k ≤
m, let hk: IN+ × IN

+ × IN
+ → GA be defined as follows: hk(i, j, n) =

An|||elementary|||particle|||k′(i′, j′)|||with|||total|||energy|||c′+
1/(n′). Since the set F (IN+ × IN

+ × IN
+) is denumerable, there ex-

ists a bijection H: IN → F (IN+ × IN
+ × IN

+). For each 1 ≤ λ ∈ IN and
fixed i, n ∈ IN

+, let GA(λ) = {An|||elementary|||particle|||k′(i′, j′)
|||with|||total|||energy|||c′+1/(n′). | (1 ≤ j ≤ λ) ∧ (j ∈ IN

+)}.
Let p ∈ IN. If |H(p)| ≥ 2, define finite M(hk[H(p)]) =
{A1|||and|||A2|||and||| · · · |||and|||Am}, where Aj ∈ hk[H(p)],m =
|H(p)|. If |H(p)| ≤ 1, then define M(hk[H(p)]) = ∅. Let M0 =⋃
{M(hk[H(p)]) | p ∈ IN}. Please note that the k′ represents the “type”

or name of the elementary particle, assuming that only finitely many
different types exist, i′ is reserved for other purposes, and the j′ the
number of such elementary particles of type k′.

Theorem 11.1.3 For any i, n, λ ∈ ∗
IN

+, such that 2 ≤ λ, there
exists w ∈ ∗M0 − GA, ∗GA(λ) ⊂ ∗S({w}) and if A ∈ ∗GA −
∗GA(λ), then A /∈ ∗S({w}).

Proof. Let i, j, λ ∈ IN
+ and 2 ≤ λ. Then there ex-

ists some r ∈ IN such that hk[H(r)] = GA(λ). From the con-
struction of M0, there exists some r′ ∈ IN such that w(r′) =
An|||elementary|||particle|||k′(i′, 1′)|||with|||total|||energy|||c′+1/(n′).
|||and|||An|||elementary|||particle|||k′(i′, 2′)|||with|||total|||energy|||
c′+1/(n′).|||and||| · · · |||and|||An|||elementary|||particle|||k′(i′, λ′)|||
with|||total|||energy|||c′+1/(n′). ∈ M[hk[H(r′)]. Note that w(r′) /∈
GA, hk[H(r′)] ⊂ S({w(r′)}) and if A ∈ GA − hk[H(r)], then A /∈
S({w(r′)}). The result follow by our embedding and *-transfer.
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The ultrawords utilized to describe various propertons, whether
obtained as in Theorem 11.1.3 or by concurrent relations, are called ul-
tramixtures due to their applications. The ultrafinite choice operator
C1 can select them, prior to application of ∗S. Moreover, application
of the ultrafinite combination operator entails a specific intermediate
properton with the appropriate nearstandard coordinate characteri-
zations. Please notice that the same type of sentence collections may
be employed to infinitesimalize all other quantities, although the sen-
tences need not have meaning for certain popular N-world theories.
Simply because substitution of the word “charge” for “energy” in
the above sentences GA does not yield a particular modern theory
description, it does yield the infinitesimal charge concept prevalent in
many older classical theories.

Using such altered GA statements, one shows that there does exist
ultramixtures wi for each intermediate properton and, thus, a single
ultimate ultramixture w such that ∗S({wi}) ⊂ ∗S({w}). Each ele-
mentary particle may, thus, be assumed to originate from w through
application of the ultralogic ∗S.

Recall that if a standard A ⊂ IR is infinite, then it is external,
and if B is internal, A ⊂ B, then B 6= A. Therefore, there exists
some η ∈ B such that η /∈ A. This simple fact yields many significant
nonstandard results. For example, as the next theorem shows, if η ∈
IN∞, then there exists some λ ∈ IN∞ such that 102λ < η.

Theorem 11.1.4 Let f : IN → IN and f [IN] be infinite. If η ∈ IN∞,
then there exists some λ ∈ IN∞ such that ∗f(λ) < η.

Proof. For η ∈ IN∞, consider the nonempty internal set B =
{ ∗f(x) | ( ∗f(x) < η)∧(x ∈ ∗

IN)} ⊂ ∗f [∗IN]. Let n ∈ IN. Then f(n) ∈ IN

and f(n) < η imply that (σf)[IN] = σ(f [IN]) = f [IN] ⊂ B. Since f [IN]
is infinite, it is external. Thus ∗f : ∗IN → ∗

IN implies that there exists
some λ ∈ ∗

IN such that ∗f(λ) ∈ B − f [IN]. However, ∗f is a function.
Hence, λ ∈ IN∞ and ∗f(λ) < η.

Theorem 11.1.4 has many applications and can be extended to
other functions not just those with domain and codomain IN, and
other B type relations.

11.2 Ultraenergetic Propertons.

There is a possibility that propertons can have additional and
unusual properties when they are generated by statements such as
GB. With respect to the translated G′

B statements, we have coined
the term ultraenergetic to discuss propertons that have various infinite
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energies. I again note that such ultraenergetic propertons may be
considered as under the control of our previously discussed ultralogics
and ultranatural choice operators (i.e. hyperfinite choice). Further,
it is possible to place these ultraenergetic propertons into pools of
infinite energy that are mathematically termed as “galaxies” and that
have interesting mathematical properties. However, these properties
will not be discussed in this present book.

If our universe or any portion of it began or exists at this present
epoch in a state of “infinite” energy, then the ultraenergetic proper-
tons could play a critical role. [I point out that general developmental
paradigms indicate, as will be shown, that the actual state of affairs for
any beginnings of our universe cannot be known by the present meth-
ods of the scientific method.] Now, any such singularity that might
exist cosmologically, even in our local environment, may owe its ex-
istence to various ultralogically generated ultraenergetic propertons.
Of course, this is pure speculation, but these NSP-world alternative
explanations for assumed quantum physical phenomena yield indirect
evidence for the acceptance of the NSP-world model.

Quantum mechanics has now become highly positivistic in char-
acter although certain previous states of affairs have been partially ac-
cepted. This important possibility was stated by Bernard d’Espagnet
with respect to one of our preliminary investigations — the experi-
mental disproof of the Bell inequality and the local variable concept
[17] — that “seems to imply that in some sense all of the objects [par-
ticles or aggregates] constitute an indivisible whole” [2]. One aspect
of the MA-model, (11.4.5) of section 11.4, can be used as an aid to
model this statement.

The ideas developed within our theory of developmental
paradigms do not contradict d’Espagnet’s (weak) definition of real-
ism. He simply requires that if we can describe a relation between
physical entities produced by some experimental process, a relation
that is not observed and, thus, not described prior to the experiment,
then their must be a cause that has produced this new relation. I
don’t believe that it is necessary, under his definition, that this cause
be describable.

In May 1984, this author became aware of the Bell inequality
and d’Espagnat’s discussion of local realism [3]. In particular, we
discovered that d’Espagnat may, to some degree, embraced our the
statements that appear in (11.4.5) section 11.4 as an explanation for
this experimental disproof. “Perhaps in such a world the concept of
an independent existing reality can retain some meaning, but it will
be altered and one remote from everyday experience” [4]. But is there
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a NSP-world cause, indeed, a mechanism that for such behavior?

There are many scenarios as to how “instantaneous” informa-
tional signals may be transmitted within the NSP-world without vi-
olating Einstein separability in the N-world (i.e. no influence of any
kind within the N-world can propagate faster than the speed of light
[5].) The basic N-world interpretation for any verified effect of the
Special Theory would imply that the only reason for Einstein separa-
bility is a relation between those propertons that create the N-world
and the NSEM field propertons [20]. But ultraenergetic propertons
are not of either of these types and need not interact with the NSEM
field for many reasons. The most obvious is that the NSEM field is not
dense from the NSP-world viewpoint but is scattered. Obviously ul-
traenergetic propertons may be used for this purpose. Recall that we
should be very careful when speculating about the NSP-world due to
the difficulty of describing refined behavior. However, this should not
completely restrain us, especially when the general paradigm method
states that such things as these exist logically.

It is possible to describe a mechanism and a possible new type of
properton that can send N-world instantaneous informational signals
between all standard material particles, field objects or aggregates and
not violate N-world Einstein separability. One possibility is that these
influences would be imparted by means of independent coordinate
summation to the propertons that comprise these objects and yet
in doing so these new entities could not be humanly detected, not
detectable except as far as the instantaneous state change indicates,
since the total energy (in this case classical kinetic) utilized by this
NSP-world mechanism would be infinitesimal. If it is an instantaneous
energy change, then, as will be shown, only that specific energy change
would appear in the N-world.

From the methods employed to construct propertons, it is imme-
diately clear that there exists a very “large” quantity of propertons
that are not used for standard particle and field effect construction.
This can be seen by allowing the i’th symbol is such statements as G′

A

to vary from 1 to some value in IN∞. The cardinality of such collections
of statements would be great than or equal to 2|M|. We simply pass
this external cardinality statement to the propertons being described.

It is a basic tenet of infinitesimal reasoning that without fur-
ther justification the only properties that we should associate with
such unutilized objects are of the simplest classical type. The logic
of particle physics allows us to logically accept the existence of such
propertons without any additional justification. Let λ ∈ IN∞. Then
(1/λ)4 ∈ µ(0). Let a pure NSP-world properton, not one used to con-
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struct a universe, have mass coordinate of the value m = (1/λ)4. Call
this properton P and have P increase its velocity over a finite NSP-
time interval from zero to λ. Propertons that attain such velocities
are called ultrafast propertons.

Extending the classical idea of kinetic energy to the NSP-world
it follows that the (kinetic) energy attained by this properton, when
it reaches its final velocity, is (1/2)(1/λ)2 ∈ µ(0). Suppose that there
is a continuum or less of positions within our universe. Since c < λ,
the kinetic energy used to accelerate enough of these propertons to
the λ velocity so that they could effect every position in our universe
would be less than (1/2)(1/λ) ∈ µ(0), assuming the energy is additive
in the NSP-world.

Each of these ultrafast propertons besides altering some other
specific coordinate would also add its total kinetic energy to the in-
termediate properton since the new intermediate properton simply in-
cludes this new one. But then suppose that our universe has existed
for less than or equal to a continuum of time. Then since 2c < λ,
once again the amount of energy that would be added to our universe
over such a time period, if each of these informational propertons
combined with one member of an intermediate, would be infinitesi-
mal. All the state alterations give the N-world appearance of being
instantaneously obtained although the existence of the G function of
Theorem 7.5.1 clearly states that in the NSP-world such alterations
are actually hypercontinuous and hypersmooth.

What if the state change itself depends upon the velocity of such
an ultrafast properton? We use kinetic energy as an example. Say
the change is in the kinetic energy coordinate in the standard amount
of h. Then all one needs to consider is an ultrafast properton with
infinitesimal mass m = 2h(1/λ)2. Moving with a velocity of λ, such an
ultrafast properton has the requisite kinetic energy. Things can clearly
be arranged so that all other coordinates of such ultrafast propertons
are infinitesimal. Independent coordinate summation for any finite
number of alterations will leave all other nonaltered coordinates of
the intermediate properton infinitely close to the original values for
the alteration is but obtained by the addition of a finite number of
new propertons to the collection.

We acknowledge that the N-world inner coordinate relations have
been used to obtain these alterations. This need not be the way it
could be done. Can we describe the method of capture and other sorts
of behavior? Probably too much has already been described in the
language of this book. One should not forget that descriptions may
exist for such NSP-world behavior but not in a readable language.
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The state of affairs described above lends credence to
d’Espagnate’s explanation of why the Bell inequality is violated and
gives further evidence for the acceptance of the NSP-world model.
“The basic law that signals cannot travel faster than light is demoted
from a property of external [N-world] reality to a feature of mere com-
municatable human experience. ....the concept of an independent or
external reality can still be retained as a possible explanation of ob-
served regularities in experiments. It is necessary, however, that the
violation of Einstein separability be included as a property, albeit a
well-hidden and counterintuitive property....”[6]

11.3 More on Propertons.

See the material on properton generation in
http://vixra.org/abs/1308.0125

11.4 MA-Model. (1993)

In this section, we look back and gather together various ob-
servations relative to formal theorems that yield the concept I have
described as the Metaphoric-Anamorphosis (i.e. MA) model. The
MA-model is a specific application of the General Grand Unification
Model. The different types of developmental paradigms that can be
selected by ultrafinite (i.e. ultranatural) choice and a few of our pre-
vious results leads immediately to the following logically acceptable
possibilities. [Of course, as is the case with all mathematical modeling,
simply because a possibility exists it need not be utilized to describe
an actual scenario and if it is used, then it need not be an objectively
real description.]

(11.4.1) Entire microscopic, macroscopic or large
scale natural systems can apparently appear or dis-
appear or be physically altered suddenly.

(11.4.2) Theorem 7.3.1 shows clearly that the sud-
denly concept in (11.4.1) is justifiable. Ultralogics,
ultrawords, the intermediate properton and the ultra-
fast properton concept are possible mechanisms that
can yield the behavior described in (11.4.1).

(11.4.3) All such alterations may occur in an ultra-
continuous manner.

(11.4.4) None of these NSP-world concepts are related
to the notion of hidden variables.



121

(11.4.5) Any numerical quantity associated with any
elementary particle, field effect or aggregate is asso-
ciable with every numerical quantity associated with
every other elementary particle or aggregate by means
of hypercontinuous, hyperuniform and hypersmooth
pure NSP-world functions. These functions may be
interpreted as representing the IUN-altering process
of utilizing ultrafinite composition (i.e. ultranatural
composition) in order to “change” any elementary
particle, field effect or aggregate into any type of ele-
mentary particle, field effect or aggregate.

Statement (11.4.5) is particular significant in that it may be cou-
pled with ultralogics and ultrafinite choice operators and entails an
additional manifestation for the possibility that there is no N-world
independent existing objective reality. Further, notice that de-
pending upon the space-time neighborhood, statements such
as (11.4.1) need not be humanly verifiable (i.e. they may be
undetectable).
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deletion of the H symbols from
subscripts, 4.

Descartes, 2.
describing sets, 3.
detectable, not 118.
developmental paradigm:

general, 88.
set of all, 70.

differentiable-C, 76.
direct affects, 98.
discrete neutron altering process,

83.

effects:
direct, 98.
indirect, 98.

EGS, 87, 88.
Einstein:

separability, 117.
empty word, 1.
energy:

infinite, 92.
to alter all of the universe,
119.

Engel’s biological sequence of
evolutionary causes and
effects, 93.

enlargement, 20.
equal words, 1.
equivalence classes, set of all

generated by ∼ on P , 6.
event, 67.
evidence for NSP-world model,

119.
evidence, indirect, 98.
existence of a *-finite superset,

28.
extended, 88.
Extended Grundlegend

Structure, 76.
extended language, 89, 90.
extended standard entity, 22.
external, 22.

final stage in properton
formation, 112.

finitary in character, 5, 20.
finite:

choice rule, 99.
composition, 110.
consequence operator, 6, 47.
energy, transfer of, 114.
human choice, 99.
human choice vers. denumer-
able choice, 66.
recognizability, 16.

first-order language, 22.
generalized, 88.

fixed injection, 2.
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formal expressions, equivalent to
the informal one, 18.

formal:
human reasoning processes,
18.
language, 1.
modified behavior patterns,
24.

font, Roman, 22.
formula, simplification of, 30.
free:

(will) choice set, 3.
in space, 89.

frozen segment, 65.

G-structure, 21.
galaxies, 116.
general:

developmental paradigm, 88.
paradigm, 88.
subperception, 55.

generalized first-order theories,
88.

Gödel numbering, 4, 16.
Grundlegend Structure, 21.

H symbol, deletion of, 4.
Hilbert, 2.
human:

deduction, and
communication, 1.
mind, a strange property, 93.
objects, 22.

hyperfinite superset, existence of,
28.

hyperlength of the proof, 36.
hyperreal:

numbers, positive infinite, 92.
representations, 107.

hypothesis rule, 104.

identification of σE with E, 28.

identity operator, 27.

identity, abstraction of, 1.

increasing saturation, 87.
independent:

coordinate summation, 118.

independent:

*-finite coordinate
summation, 112.

indirect:

behavior in the Natural world,
90.

evidence, 98.

indirectly inferred, 110.
individuals, 2.

infant, properton, 107.

inference, rule Modus Ponens, 35.

inferred, indirectly, 110.

infinite:
energies, 92.

energy, state of, 116.

NSP-world energies, 114.

objects, basic cardinalities,
28.
qualities can exist in NSP-
world, 114.

time intervals, 67.

infinitesimal proper mass, 110.

informational signals,

instantaneous, 118.
initial singularity, 91.

inner-relations, 107.

insertion and removal of

parentheses, 33.

insertion procedure, 33.
instantaneous informational

signals, 118.

instantaneously altered, 119.

intermediate propertons, 111.
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internal:
entity, 22.
n-ary relation, 59.
object or set, 30, 59.
pure nonstandard object, 49.
standard entity, 22.

interpretation:
for a class [f ], 6.
intuitive, 6.
missing symbols in, 89.
procedure, required, 32.
symbol, 55.

intrinsic ultranatural processes,
102.

intuitive, 1.
for this research, 2.
human reasoning processes,
18.
naive interpretation, 6.
mapping, 2.
sets, cardinality of, 5.

join, 1.
joining words by

juxtapositioning, 5.
justaposition, join operator, 1, 5.

κ-adequate, 19.
Kleene, 5.

language:
extended, 89, 90.
first-order, 22.
formal, 1.
NSP-world, 91.
observe, 3.

length:
of a formal proof, 36.
of a properton, 108.

lower units, 48.

MA-model, 91, 123.
mass:

propertons infinitesimal, 110.
meaningful sentences, 1, 24.
measure of the strength of various

behavioral properties, 33.
meet operator, 48.
metamorphic, MA-model, 91

125.
missing:

bounding objects, 31.
symbols in a interpretation,
89.

Mittelstaedt conditional, 71.
modified behavior patterns, 24.
Modus Ponens, 35.

applied to BP0, 35.
restricted, 52.

monad, 108.
motion picture film, 1.
multifaceted things, 107.

n-atomic, 13.
N-world:

Einstein separability, not
violated, 118.
finite combinations yield an
event, 110.

naive readable sentence, 1.
naive, interpretation, 6.
neutrino:

complete fiction, 114.
neutron:

discrete altering process, 83.
nonbounded formulas, correcting,

31.
nonstandard:
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entity, 59.
objects, affecting standard
world ones, 98.
object or entity, 59.

nonstandard physical world
model, NSP-world model,
66.

not detectable, 118.
NSP-world model, 80.

behavior, pure refined, 101.
energy, infinite, 114.
evidence for, 119.
infinite conservation concepts,
114.
its physical-type language, 91.
nonstandard physical world,
67.
process that determines
whether or not an object is a
member of, 102.

observer language, 3.
operator:

deductive, 7.
identity, 27.

order:
≤B, 45.
induced by f, 5.
indicated, 5.
stronger than, 47.

ordinary, 7.

parentheses:
insertion and removal, 33.
the use of, 33.

partial:
realism, 90.
sequence, 4, 5.

Peano arithmetic, 100.
perception, subliminal, 55.

perfect, reasoning from, 37.

philosophy of realism, 91.

point-like, 113.

positivism, 117.

pregeometry, 91.

proof:

hyperlength, 36.

length of, 36.

steps in, requires n or more,
35.

properton:

defined, 107

final stage, 112.

length of, 108.

multifaceted, 107.

ultrafast, 119.

propositional deduction:

axiomatically presented sub-
system of, 33.

consequence operator, 33.

variations of, 34.

psychology, 23.

pure refined NSP-world behavior,

101.

pure subtle alphabet symbol, 73,

88.

pure subtle object, 22, 49.

qualified theorems, 88.

quantum logic, Mittelstaedt

conditional, 72.

quantum transitions, 114.

readable sentences, formal, 6.

readable sentences, naive, 1.
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realism, 90.
absolute, 91.
partial, 90.
philosophy of, 91.
relation, 56.
weak, 117.

reasoning from the perfect,
strong 39.

reasoning from the perfect,
type W, 37.

reasoning processes, formal
human, 18.

reasoning, very, 23, 24.
recognize the symbolic

differences, 99.
recognizing distinct:

representations, 102.
symbol strings, 102.

removal of parentheses, 33.
resolving process, 84.
Roman font, 22.
rule of deduction, MPn, 52.
rules of correspondence, 18.

S-system, axioms for, 70.
saturation, increasing, 87.
science, must use deduction, 104.
separability, Einstein, 117.
sequence, partial, 4, 5.
set map transfer statements, 28.
set-theoretic *-transfer

statements, 29.
signals, instantaneous

informational, 118.
simplification of formulas, 30.
singleton set, 30.
singular, 8.
singularity, 117.
size(A), 95.
sound:

consequence operator, 53.

special isomorphism, 13.
special deductive processes, 27.
speculation, unwarranted, 113.
spread out appearance, 113.
standard:

entity, 22.
standard object, 59.

standard part operator, a
continuous NSP-world
process yielding the N-world,
111.

standard restriction, 85.
standard time fracture, 81.
*-finite NSP-world paradigm,

101.
*-special partition, 83.
state of infinite energy, 116.
steps, in proof, requires n or

more, 35.
stimulus, visual or audio, 1.
strange property of the human

mind, 93.
strong reasoning from the perfect,

39.
stronger than order, 47.
subconscious objects, 55.
subdividing a time interval into

denumerably many finite
subintervals, 65.

subliminal perception, 55.
subperception and the better

than ordering, 55.
subperception, general 55.
substratum, 79.
subsystem, propositional

deduction, 33.
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subtle alphabet symbol: 72.
pure, 88.

subtle:
concept of proof length, 36.
consequence operator, 27.
object, 22.
pure, 22, 49.
reasoning process, 27.

superstructure, 13, 19.
superstructure operator, 56.
superstructure over X0, 13.
symbolic differences, recognized,

99.

Tarski, 6, 47.
Tarski, type deductive processes,

27.
theorems:

qualified, 88.
unquantified, 88.

time:
cosmic zero, 91.
moment of, 66.

time fracture, 81.
time interval:

the basic one to be discussed,
66.
tracing back descriptions to
the appropriate one, 66.

time intervals, infinite, 66.
time line, 65.
topology on the set of all

nonempty subsets, 75.
total, deductive process, 7.
totality, 65.
transfer of finite energy, 114.
transitive closure operator, 56.
TV tape, 1.
two types of chains, 49.
type face, bold, 18.
type W reasoning from the

perfect, 37.

ultimate building plain,
103.

ultimate ultranatural hypothesis,
103.

ultimate ultraword, 103.
ultracontinuity, 75.
ultraenergetic, 116.
ultrafast propertons, 118.
ultrafilter, 19.
ultrafinite combination, 110.
ultrafinite composition, 110.
ultralogic ∗S, 72.
ultramixtures, 115.
ultranatural:

choice operators, 116.
composition, 110, 120.
hypothesis, ultimate, 103.
process, intrinsic, 102.

ultrapower, 19.
ultra-propertons, 108.
ultrauniform continuity, 76.
ultraword, 72, 88.

ultimate, 74, 104.
unconscious objects, 55.
undetectable, 90.

pure NSP-world objects, 90.
unit, upper, lower, 48.
universal free (will) choice set, 3.
universe:

creation of, 91.
energy need to alter the entire,
119.

unqualified theorems, 88.
unwarranted speculation, avoid,

113.
upper unit, 48.
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upper [resp. lower] bound to
such concepts as “stronger”
[resp. “weaker”], 37.

urelements or individuals, 2.

very, reasoning, 23, 24.
visual stimulus, 1.

weak realism, 117.
Wheeler, 91.
word, 1.

empty, 1.
theory, 1.

words:
behave like atoms, 16.
join operator, 1, 5.

Zermelo-Fraenkel axioms, 2.
ZF, 2.
ZFA, 2.
ZFC, 2.
ZFH, 2.
ZFH, model for, 2.


