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Abstract. This work continues our previous works on electron deep orbits of the hydrogen atom. An 
introduction shows the importance of the deep orbits of hydrogen (H or D) for research in the LENR domain, and 
gives some general considerations on the Electron Deep Orbits (EDOs). In a first part we quickly recall the 
known criticism against the EDO and how we face it. In particular, a solution to fix all problems is to consider a 
modified Coulomb potential with finite value inside the nucleus. For this reason, we deeply analyzed the specific 
work of Maly and Va’vra on deep orbits as solutions of the Dirac equation, with such a modified Coulomb 
potential without singular point. Then, by using a more complete ansatz, we made numerous computations on the 
wavefunctions of these EDOs, allowing to confirm the approximate size of the mean radii <r> of orbits and to 
find further properties. Moreover, we observed that the essential element for obtaining deep orbits solutions is 
special relativity. At a first glance, this fact results from an obvious algebraic property of the expression of 
energy levels obtained by the relativistic equations. Now, a comparative analysis of the relativistic and of the 
non-relativistic Schrödinger equation allows us to affirm that Special Relativity leads to the existence of EDOs 
because of the non-linear form of the relativistic expression for the total energy, which implies a relativistic non-
linear correction to the Coulomb potential 
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1. Introduction  
 
With the quantum equations habitually used in the literature for computing the bound states of the H 
atom, we note that there is, in the relativistic form, a crossroad with a choice of value or a choice of sign 
for a square root in a parameter. According to which path is chosen, the resolution process leads either 
to the usual “regular” solution or to an unusual one called an "anomalous" solution. This latter is 
rejected in the Quantum Mechanics Textbooks because of its singularity at r = 0.  
 
Why do we emphasize here the use of relativistic quantum equations?   
For (at least) two reasons: 
 - 1. The relativistic equations can predict EDOs with a mean radius of order femto-meter; 
whereas the normal non-relativistic equations do not. We give a simple mathematical reason for this 
fact. 
 - 2. With an EDO having a mean radius of order femto-meter, the Coulomb potential energy is 
high enough that the electron, so bound, is necessarily relativistic. 
 
For many decades, the question of the existence of electron deep levels or EDOs for the hydrogen atom 
has led to a number of works and debates. The issue was raised early in the solutions to the Klein-
Gordon and Dirac equations, which became the basis of modern quantum mechanics. Therefore, it 
could have been given a high degree of credence as the field developed to become the mainstream of 
modern physics.  However, without experimental evidence to support the unusual claims, this issue 
could not be resolved and the deep-orbit solutions are still considered to be ‘anomalous’. With the 
advent of low-energy-nuclear reactions, LENR, such evidence (albeit indirect) may now be available. 
What are these orbits and why are they suddenly more important now? 
 - EDOs, predicted in the ‘anomalous’ solutions of relativistic quantum equations, have mean 
radii of their orbitals of order femto-meter. This is five orders of magnitude smaller than the known 
atomic orbitals. 
 - So, hydrogen atoms (including deuterium) with an electron in a deep orbit (femto-atoms) can 
facilitate processes of LENR inside condensed matter. This occurs by ready penetration of atomic 
electron clouds and nuclear Coulomb barriers, by the avoidance of nuclear fragmentation in D-D => 
4He fusion reactions, and by a means of increasing the rate of energy transfer between an excited 
nucleus and the surrounding lattice 
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 - Moreover, femto-atoms can create femto-molecules and both can combine with lattice nuclei 
for transmutation without the normal resultant energetic radiations. This is not possible by other 
mechanisms. 
 - Mathematical arguments against the anomalous solutions of the relativistic equations have 
dominated the discussion of this issue for over 50 years. However, by acceptance of the physical reality 
of a non-singular central potential within a nuclear region, these objections no longer pertain. 
 - Numerical methods, available now with modern computers, readily allow prediction of 
properties and features of the EDOs from the exact equations that are not possible with the 
approximations made to keep the relativistic equations in the form of analytic functions. 
 
Possibly the first application for the deep-electron orbits was in an early explanation of the nature of the 
neutron as a proton with a tightly bound electron. This particular concept was rejected nearly a century 
ago on theoretical physics grounds for several reasons [1]. This rejection would have been much more 
difficult to accept had the charge density distribution of the neutron that is available today been known 
at the time [2]. The negative outer edge, presently attributed to a negative pion cloud, certainly looks 
like a deep-orbiting electron. 
 
Since the late 1950s, whenever the deep-orbit solution was ‘rediscovered’ (every decade), it was 
immediately rejected based on mathematical, rather than on physical, reasons. Therefore, because the 
issue was never resolved and the importance of these unobserved orbits was so questionable, the 
difficult (perhaps impossible at the time) experiments to verify their existence were never even 
attempted and the issue never became general knowledge in the profession. Decades later, when 
experimental evidence for halo nuclei was obtained, rather than use the known, but largely forgotten, 
deep-orbit solutions that would introduce the beginning of a whole new nuclear chemistry and physics, 
physicists just ‘stretched’ the strong nuclear potential beyond all expectations to explain the 
phenomenon. 
 
With the advent of LENR phenomena and subsequent research, recognition that electron proximity 
between the hydrogen nuclei was necessary to overcome the Coulomb barrier again brought the deep-
orbit solutions to the relativistic quantum-mechanical equations into focus [3], [4]. However the concept 
was unknown within the field and therefore almost ignored. By 2005, it was not even possible to 
publish papers in favor of the concept. (At that time, it was still possible to get a paper on the subject 
into the arXiv, [5]) On the other hand, papers showing that such deep orbits were mathematically 
forbidden could still be published in physics journals. The present authors have spent the last year 
proving, in several papers [6], [7], [8], that the singular Coulomb potential (V = k/r = - ∞ at r = 0) used 
to reject the deep-orbit solution, can be replaced by a more realistic one (in several versions) and can 
lead to a valid, non-singular solution for the deep orbits. 
 
It was recognized early in the CF development that the best (perhaps the only) means of fusion at low 
temperatures and energies was to increase the time that negative charge spends between fusing nuclei. 
This means of overcoming the Coulomb barrier between nuclei is a continuing theme and is addressed 
in most models of LENR (see for example, [9]). The other side of the problem was emphasized in 2013  
(by Akito Takahashi at ICCF-15): “even if the Coulomb barrier were to be lowered to zero, D+D fusion 
would still lead to 4He-fragmentation products, not to the observed atomic 4He and heat of CF.” This 
problem is perhaps best addressed by the means and consequences of electron decay to the deep orbits 
[10], [11].  
 
With the recognition that deep-orbit electrons can explain some of the fundamental problems of cold 
fusion, a more complete study of the nature and effects of these relativistic electrons was begun [12]. 
An important side issue of this study was the nature of electromagnetic radiation from the deep-orbit 
electrons and the ability of deep-orbit electrons to transfer energy between an excited nucleus and the 
lattice [13]. As confidence grew in the CF results for transmutation in both the PdD and NiH systems, 
the concept of longer-lived ‘femto-atoms’, their nature and their consequences, became the subject of 
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analysis [14], [15]. These studies led to an understanding of 3-body fusion processes (femto-atom + 
nucleus) to explain both transmutation without hard radiation and selective radio-isotope remediation.  
 
The most-often-challenged portion of the deep-orbit electron scenario is why the deep levels are not 
immediately filled from atomic orbitals and why are they not readily observed? While there are several 
reasons, a straight-forward reason involves the lack of overlap of all atomic orbitals, except for the l = 
0, s-orbits, with the deep-electron orbits. The normal electro-magnetic transition (via photons) between 
two l = 0 levels is highly forbidden. If the deep levels are not able to be populated in the natural 
environment and in the normal manner, then how are we to get electrons into these levels? This latter 
question has been addressed in part by [16], [17], and [18]. 
 
Since the deep-orbit model can explain all of the observed CF results that we have addressed and is 
based on the fundamental equations of relativistic quantum mechanics, it should be readily accepted. It 
is hoped that, with the cooperation of a mathematician and a physicist in the present authors, the non-
physical reasons for rejecting the concept can be eliminated and a firm mathematical base can be laid 
that would lead to acceptance of both the deep orbits and a theory for cold fusion. 
 
2. Arguments against the EDO states and possible solutions. 
 
The most known arguments against the EDO states, while assuming a singular 1/r Coulomb potential, 
have been already exposed in [6] and in a more developed way in [7], as well as the possible solutions 
to resolve these questions. They concern only the radial solutions of the quantum equations. We quickly 
recall these arguments and some counter-arguments. 
  
2.1.The wavefunction has a singular point at the origin 
For the solutions called “anomalous”, the radial function |R(r)| −> ∞  when r −> 0 and the wavefunction 
ψ(r,θ,φ) does not obey a boundary condition. In fact, this problem comes from the expression of the 
Coulomb potential in 1/r. So, some authors of EDO solutions remove this trouble by saying that the 
classical expression of the central potential is a good approximation for the bound state of a single 
electron atom, but considering the nucleus as a mathematical point is an unphysical abstraction. Also, 
one can argue against this problem by saying that the nucleus is not a point, but its charge is "smeared" 
over a distance of about 1fm. Solving the equation with a smeared out Coulomb potential would 
produce a solution not diverging at the origin, but with certain minor changes on the EDO state. We 
indicate such solutions below, in 2.2. 
We can add that, in the case of heavy nuclei, the accepted regular solutions of the relativistic 
Schrödinger equation also have a singular point at the origin, because the square of the coupling 
parameter (Ζα)2 is not “small”; e.g. for atomic Cs, it is equal to ~ 0.16, that gives s ~ - 0.2 for l = 0 (for 
the parameter s, see in 3.1.1)    
 
2.2. The wavefunction is not ‘square integrable’. 
It is a serious problem, because in this case the wavefunction cannot be normalized in the entire space. 
As in 2.1., it results essentially from the behavior of the wavefunction ψ at the origin and not for r 
−> +∞. Indeed, to define the norm of a wavefunction ψ(r,θ,φ) given in spherical coordinates, one has to 
compute ∫|ψ|2sinθ  r2dθ dφ dr = (∫|Y(θ, φ)|2 sinθ dθ dφ) (∫|R(r)|2 r2dr), where Y(θ, φ) are the so-called 
‘spherical harmonics’, depending on quantum numbers l and m not indicated here. One knows the left 
integral is finite, while the right one depends on the behavior of |R(r)|2r2 at the origin.  
Here we can cite the work of Naudts [5], where an EDO state for Hydrogen atom is found by using a 
Klein-Gordon equation, starting from a time-dependent relativistic Schrödinger equation. Because of 
chosen conditions on the parameters of the equation, the obtained solution is square integrable, thus 
normalizable. We have particularly developed explanations on this interesting result in [7], where the 
electron binding energy (BE) is very high in absolute value, with BE ~507 keV. We note the author only looks 
for solutions corresponding to spherically symmetric states, i.e. with angular quantum number (usually noted l) 
equal to 0.  
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Other works exist on ‘singular’ states of the hydrogen atom, as e.g. in [19], where the author considers a 
‘compressed’ atom in a confinement potential described by a finite potential step at some given radius Rw taken 
at ~2.5 Angström. A singular solution with deep orbits is obtained from a non-relativistic Schrödinger equation, 
by considering only the case l = 0, while using specific ansatz and approximation methods. But, because of 
the method used, the binding energy is not computed; neither is the mean radius. In fact, we think these 
levels could correspond to what we call ‘pseudo-regular’ solutions [7] .  
Finally, we note most works on EDOs show that it is not possible to obtain square-integrable EDO 
solutions by means of the Dirac equations if keeping a Coulomb potential that is singular at the origin. 
 
2.3. The ‘orthogonality criterion’ cannot be satisfied 
This mathematical condition, defined in a rather subtle way, corresponds to the fact the Hamiltonian, 
representing the total energy, must be a Hermitian operator, in order for its eigenvalues to be real, since 
they represent energy values of solutions. So, eigenfunctions corresponding to distinct values have to be 
orthogonal.  
We can find in [20] the author examines the asymptotical behavior of the solutions of the non-
relativistic Schrödinger, of the Klein-Gordon, and of the Dirac equations, as functions of formal 
variations of the coupling constant α, and looks for conditions to satisfy known orthogonality criterion 
for the equation solutions.  In particular the author eliminates the ‘EDO’ solutions. Nevertheless, one 
can find in works on self-adjoint extension of operators for potentials with a singularity, e.g. in [21], a 
mathematical proof that singular solutions of the Klein-Gordon equation satisfy orthogonality for at 
least an angular momentum l = 0. However, no positive result can be proved for the EDO solutions of 
the Dirac equations. 
 
2.4. The strength of the binding seems to increase when the coupling strength decreases 
In [22], the author imagines variations of the coupling constant α and observes consequences on 
eigenfunctions of a Klein-Gordon equation and of a 2-D Dirac equation.. Doing this, he points to a very 
strange phenomenon concerning the algebraic expressions of the EDO solutions: when α decreases and 
tends towards 0, the binding energy of the electron increases in absolute value.  
                         
We think this result is obtained in the context of an ill-defined system and is done so, uniquely, on a 
pure mathematical basis. Indeed, the coupling constant α can be expressed by α = e/cħ. So, from a 
physical point of view, we can see α is actually entangled with several fundamental constants, in 
particular the Planck constant, the velocity of the light, and the elementary electric charge. So, 
modifying α without caution can certainly lead to paradoxical physical results (e.g., letting α go to zero 
means that the charge does also; thus, there are no bound states and no binding energy). 
 
2.5. Conclusion 
As a quick conclusion of this section, we observed the following facts: 
 - The three first arguments against EDO automatically disappear if we consider the nucleus not 
to be a point, i.e. the Coulomb potential is corrected in order to have finite value inside the nucleus. 
 - Such a corrected Coulomb potential without singular point at the origin is necessary to accept 
EDO solutions of Dirac equation. Moreover, considering a nucleus with finite dimension has real 
physical meaning, especially if we look for deep orbit solutions, for which the mean radius is close to 
nuclear dimensions. 
 
3. The deep orbits obtained as solutions of relativistic equations 
First, we quickly recall a specific work [3] on deep orbits, named Dirac Deep Levels (DDLs), as 
solutions of the relativistic Schrödinger and of the Dirac equations, which presented the most complete 
solution until recently. These solutions include an infinite family of DDL solutions for hydrogen-like 
atoms. Moreover, as these solutions were obtained by full analytic methods, the algebraic expressions 
of the energy levels point out an important fact: Special Relativity is essential to actually obtain deep 
orbits with high binding energy (in absolute value). This point is developed in section 4. Next, we recall 
a second work [4] of the same authors, on solutions of Dirac equation for hydrogen-like atoms with a 
corrected potential near the nucleus. Then we report the results of a recent and complete analysis of this 
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second work, with further developments and open questions. This analysis was required because of 
some criticism about the method used. 
 
3.1. First results of Maly and Va’vra on “DDLs” 
3.1.1. EDO obtained by using the relativistic Schrödinger equation 
Maly and Va’vra consider the radial equation in the form given in [23, 51.15]: 
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𝑅 = 0     1) 

 
They introduce an ansatz 𝑅 𝜌 =   𝜌!𝑒!

!
!𝐿(𝜌) in the radial equation, where 𝐿(𝜌) is a series of powers of 

ρ , s is a real parameter, and ρ is a real numerical parameter, without physical dimension but 
proportional to the radius r. Then, one can show that the eigenvalue energy E of the Hamiltonian is 
defined by the following expression, which is in fact the Sommerfeld relation: 

𝐸 = 𝑚𝑐! 1 + (!")!

!!

!!!       2) 

where we recognize parameters λ and α of the prior equation. They are without dimension, but we have 
to note that α (~1/137) is the coupling constant; for the hydrogen atom, we have Z = 1, that we consider 
hereafter. 
 
Two conditions must be satisfied for obtaining convergence of the series L(ρ): s(s+1) + α2 − l(l+1) = 0, 
where l is the angular momentum quantum number, and λ = n'+s+1, where n' is an integer number ≥ 0. 
The first condition, a quadratic equation, has two roots:  s = -½ ± [(l+½)2 - α2 ] ½. 
The usual “regular” solution for electronic energy levels is obtained by taking a positive sign in the 
expression for the root s, while a negative sign yields the so-called “anomalous” solution, giving the 
following expression for the energy levels: 

𝐸 = 𝑚𝑐! 1 + !!

!!!!!! !!!!
!
!!!

!
!

!!!

     3) 

 
where n’ is the radial quantum number and l is the angular momentum quantum number. 
The values represented by E are the total energy of the electronic orbitals. The corresponding binding 
energies BE are defined as BE = E-mc2, which values have the usual negative sign. 
In previous works, we showed that all energy values given by the expression of E do not correspond to 
deep orbits, but only the ones satisfying the relation n’= l, i.e. equality between the radial quantum 
number and the angular quantum number. Indeed, this condition allows one to drastically reduce the 
expression for λ: 
 From λ = n'+s+1, s = -½ -[(l+½)2-α2 ] ½ and n’= l , we can deduce λ ~ α2/(2l+1), as α << 1 
Next, by carrying this into the expression of E, one can deduce E ~ mc2α / (2l+1). So, for all values of l, 
including the case l = 0, we have E << mc2. Under these conditions, the binding energy |BE| is very high 
and that means the orbit is very deep. There is an infinite family of these very deep energy levels with 
|BE| > 507keV. Moreover, when the condition n’= l is satisfied, we can note the following fact: if l (and 
thus also n’) increases, then E decreases, which implies |BE| increases. 
So, when the radial number increases, the electron is more strongly bound to the nucleus, which is the 
opposite behavior of the atomic orbitals. 
As noted in section 5.1, the coupling constant α exists in only the relativistic equations. 
 
3.1.2. EDO obtained by using the Dirac equation 
Maly and Va’vra refer to and use the method developed in [23], by starting with the system of radial 
equations obtained after separating the variables in spherical coordinates. We recall the Dirac equation, 
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essentially relativistic since built from the relativistic expression of the total energy, has the following 
form in a central Coulomb potential: 

𝑖ℏ𝜕! + 𝑖ℏ𝑐  𝛂  .𝛁− β  𝑚𝑐! − 𝑉 Ψ 𝑡, 𝐱 , 
where 𝛂 and β  represent the Dirac matrices, and 𝛂 is in fact a 3-vector of 4X4 matrices built from the 
Pauli matrices. Here, V is the Coulomb potential, defined by – e2/r. 
During the solution process of the system of radial equations by using an ansatz, a condition on a 
parameter s occurs as an exponent. This condition in the ansatz, like the one appearing in the 
Schrödinger equation, as seen above, is the following:  s = ± (k2 - α2)1/2, where the scalar α again 
represents the coupling constant (do not confuse ‘alpha’ with the Dirac matrices representation above). 
And, as in 3.2.1, if taking the positive sign in the expression of s, one has the usual “regular” solutions 
for energy levels, then with the negative sign, one has the so-called “anomalous” solutions. 
 
The expression obtained for the energy levels is the following: 

𝐸 = 𝑚𝑐! 1 + !!

!!!! !

!!!
     4) 

 
We note this expression again has a form equivalent to the Sommerfeld relation, but where the 
parameter s has an expression slightly different from the one in the previous sub-section. It contains the 
specific Dirac angular quantum number k instead of the ‘usual’ orbital quantum number l. 
 
If we consider the “anomalous” solutions, by choosing the negative sign s in the expression of E, this 
one reads:   

𝐸 = 𝑚𝑐! 1 + !!

!!! !!!!!
!

!!!
.      5) 

 
In this expression, n' is again the radial number, while k is the Dirac angular number which can take any 
integer value ≠ 0. As in the case of the relativistic Schrödinger equation, all solutions do not correspond 
to deep orbits, but only the ones satisfying the relation n’ = k, i.e. equality between the radial quantum 
number and the Dirac angular quantum number. Indeed, we can see that if n’= k, the sub-expression D 
of the total energy E, D = n’- (k2 - α2)1/2 becomes D = k - (k2 - α2)1/2, which is very small since D ~ 
α2/2k, and E ~ mc2α/2k. Then |BE| ~ mc2 (1−α/2k) and |BE| is close to the rest mass energy of the 
electron, 511 keV. Note that since k cannot = 0, then neither can n’. 
 
From the expression of |BE|, we can deduce a result similar to the binding energies of the EDOs 
solutions of the relativistic Schrödinger equation. Under the condition n’= k (necessary condition for 
EDOs), when k increases, the absolute value |BE| of the binding energy increases. This means that, as 
the angular momentum k increases, the electron is more strongly bound to the nucleus. So, a natural 
question arose: what about the mean radius? Or more precisely, how does the mean value of the orbit 
radius progress as n’ increases and tends to infinity? One could guess a partial answer to this question, 
while reading between the lines of the second work of Maly and Va’vra, which we recall in the next 
subsection. 
  
3.2. Deep orbits obtained as solutions of the Dirac equation with a corrected potential near the 
nucleus 
In their second work [4], the authors determine the wavefunctions of EDOs, so-called ‘DDLs,’ for 
hydrogen-like atom solutions of the Dirac equation. They considered the nucleus not to be point-like, 
and thus the potential inside the nucleus is finite at the origin r = 0. 
This requires one to carry out the following things: 
 - to choose a radius R0, so-called ‘matching radius’, delimiting two spatial domains: an ‘outside’ 
one, where the potential is correctly expressed by the usual Coulomb potential, an ‘inside’, where the 
potential cannot be expressed by the Coulomb potential and which no longer has a singular point at r = 
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0. Of course, this choice may seem arbitrary, but it takes physical meaning if one chooses a value R0 
close to the ‘charge radius’ Rc of the nucleus. For example, for hydrogen H atom, the nucleus is reduced 
to one proton and this one has Rc ~ 0.875 F from CODATA [24]. So one can reasonably choose 1F < R0 
< 1.3 F.  
 - to choose a ‘suitable’ expression for the ‘inside potential’. It is again an arbitrary point, but we 
observed (see further in section 4.2.2.) that this choice has weak influence on the numerical results that 
interest us, especially the value of mean radius as function of k. 
 - to satisfy continuity conditions at the matching radius R0 for connecting the inside and outside 
potentials 
 - solve the system of radial equations for the ‘outside potential’, i.e. Coulomb potential, that 
gives the outside solution composed of two components: functions fo and go 
 - solve the system for the chosen inside potential, that gives the ‘inside solution’ composed of 
two components: functions fi and gi  
 - to satisfy continuity conditions while connecting the respective components of inside and 
outside solutions. 
 
In their work, the authors made the following choices and processes: 
 - for the matching radius, the value is not explicitly given in their paper, but from a figure, it 
seems R0 ~ 1.2 F, but perhaps slightly smaller than this value. 
 - the chosen inside potential V(r) has the following expression: 

𝑉 𝑟 =   − !
!
− !

!
!!

!!!
!!!

!!
+   𝛽!     6) 

 
One can be surprised by the presence of the additive constant 𝛽!; if it is not null, the continuity 
condition is not satisfied by the inside and outside potentials. Nevertheless, potential is relative and we 
will see further a possible usefulness of this constant. For the time being, we shall consider it is null. 
 - for finding the outside solutions fo and go, they use the computation method of [25], a 
completely analytic method, where both components of the radial wavefunction respectively include 
functions F1 and G1, expressed by means of confluent  hyper-geometrical series. 
 - for the inside solutions, they choose an ansatz with two components, having the following 
form: 

𝑔! = 𝐴𝑟!!!!  𝐺! 𝑟        7a) 
𝑓! = i𝐵𝑟!!!!  𝐹!(𝑟)      7b) 

 
where 𝐺! 𝑟  and 𝐹!(𝑟) are power series. However, one may consider approximations by polynomials, 
by taking into account the following facts: 
 - fi and gi must be defined for r <  R0 
 - for r < R0, very small,  the power terms vanish when the degree increases. 
The classical method used, after inserting the ansatz into the equations, allows one to determine the 
exponent si and the polynomial coefficients in order to obtain the solutions. 
 
Nevertheless, it seems the cited paper was incomplete and useful information was in another paper of 
the same authors, referenced as “to be published” but never published. Indeed, the chosen ansatz does 
not allow one to connect both respective components of inside and outside solution, while respecting 
continuity conditions. A complete analysis of this problem, and the way we resolve it, is developed in 
[8]. Here, we simply recall the problem was resolved by taking a more complex ansatz including an 
additional real parameter λ necessary to connect in a suitable manner the inside and outside functions. In 
our ansatz, the series/polynomials have the following form: 

  𝐺! 𝑟   = a1 (λ r) + a2 (λ r)2+ a3 (λ r) 3 + …   and  F2(r) = b1 (λ r) + b2 (r)2 +  b3 (λ r) 3 + … 8) 
 

The matching process leads to solving a system of two linear equations with two unknown variables, λ, 
involved in the inside solutions, and a multiplicative coefficient involved in the outside solutions; we 
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showed the system always has solutions for any value of k, which determines energy levels. Moreover 
we verified that the orthogonality criterion and boundary conditions are satisfied by each “global 
solution” formed by the respective outside and the inside solutions. 
 
4. Results obtained by computations of the DDL wavefunctions for modified potentials, further 
developments and discussion 
 
4.1. Computation process for orbit mean radii  
The value of the mean radius is an essential parameter for the LENR, since the range of the strong 
nuclear force is on the order of femto-meters (fm or F) and quickly decreases at distances > ~3 to 5 F. 
The mean radius of its electron orbitals determines the “size” of the atom and the value of the repulsive 
radius of an atom. This radius can be estimated approximately [4] to be the value where the electron 
probability density drops to 1/10 of its peak value. 
 
Summarily, the computation process for mean orbit radius for a given value of k includes the following 
steps: 
 - To determine both couples (fo ,go) and (fi, gi) of respective outside and inside solutions. At this 
step, the four functions fo, go, fi, and gi include parameters still to be determined 
  - To connect them in suitable manner and by satisfying the continuity conditions, in order to 
obtain a couple of “global” wavefunction solutions (F,G). During this step, the unknown parameters 
included in the initial functions fo, go, fi, and gi are fixed. The functions thereby completely defined can 
be noted Fo, Go, Fi, and Gi 
 - To compute the normalization constant N by using the following formula: 

1/N = [ 𝐸𝑙𝐷𝑖  𝑑𝑟 + 𝐸𝑙𝐷𝑜  𝑑𝑟!!
!!   !!

!      9) 

where ElDi represents the Electron probability Density corresponding to the couple of inside functions 
(Fi, Gi): 

     ElDi = 4π r2(|Fi|2+|Gi|2)      10) 
 

and likewise ElDo for the outside functions 
 

     ElDo = 4π r2(|Fo|2+|Go|2)      11) 
 

 - Finally, to compute the mean radius <r> by using the following formula: 
 

<r> = 𝑁  [ 𝑟  𝐸𝑙𝐷𝑖  𝑑𝑟 + 𝑟  𝐸𝑙𝐷𝑜!!
!!   𝑑𝑟  !!

! ]    12) 
 
Now we have to note that, in principle, the numerical results of <r> should depend on the following 
preliminary choices: 
 - The choice of the matching radius R0: even if its value is ‘reasonably' chosen to fit physical 
data, such as the charge radius of the considered nucleus, it is rather fuzzy. 
 - The choice of the inside (nuclear) potential: apart from a common condition requiring it be 
finite at r = 0, there are multiple possibilities, each depending on modeling and approximations for the 
nuclear structure. Two of the most used examples are the following:  
  - a simple constant potential equal to the value of the Coulomb potential at the surface of 
the nucleus and corresponding to an uniformly charged empty spherical shell 
  - the potential function defined by the expression written in the previous sub-section and 
corresponding to a uniformly charged solid sphere. 
Nevertheless, one can consider more complex potentials, or intermediate forms of both previous ones. 
 - A more subtle choice, related to the precision of the inside functions, and depending on the 
approximation degree chosen for the polynomials of the ansatz, i.e. the power degrees of these 
polynomials. 
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 - Of course, the choice of the considered hydrogen-like atom 
 
4.2. Numerical results  
We carried out several series of computations for different choices listed in the previous sub-section. 
 
4.2.1 Results obtained from parameters near those of Maly and Va’vra 
Here we first give the values of <r> computed for hydrogen atom H, while following approximately the 
choices of Maly and Va’vra: 
 - R0 = 1.2 F,  
 - A nuclear potential defined by the expression given in the subsection 4.1 but assuming 𝛽! = 0. 
It approximates the proton by a uniformly charged solid sphere.  
 - The polynomials of our ansatz have degree 6, while the ones of M&V, for a simpler ansatz, 
have degree 5. 
Under these conditions, we have the following values <r> for the mean orbit radii for different k values: 

• k = 1,   <r> ~ 6.62 F 
• k = 2,   <r> ~ 1.65 F 
• k = 3,   <r> ~ 1.39 F 
• k = 10,  <r> ~ 1.22 F 
• k = 20,  <r> ~ 1.20 F 

The computed values are given with only three digits for high values of k, on account of uncertainties 
on the considered method. 
 
We can note the following facts deduced from these computation: 
 - We obtain values of the same size order as that in [4], while we used a method which is likely 
different. So, we have a good confirmation of the prior results. Those authors indicate explicitly the 
value 5.2 F for the DDL atom H for k = 1, and they give only this case for atomic H. 
 - The mean radius decreases when k increases, which is consistent with the fact that the binding 
energy in absolute value |BE| increases when k increases, as expected in [6] 
 - After an abrupt fall between the value for k = 1 and the one for k = 2, the value of the radius 
asymptotically tends to the value of the matching radius 1.2 F.  One can think there is an actual 
“accumulation sphere” at r ~ R0, for the DDL orbits corresponding to k ≥ 20, and these are 
indistinguishable. 
 
In Fig.1, we plot the near-nucleus normalized electron probability density functions (NEPD) for k=1, 2, 
and 3. 
 

 
  Fig.1  NEPD, for k=1 (blue), k=2 (red); k=3 (green). The radius ρ is in F 
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4.2.2. Varying the parameters 
Here we only report conclusions about results described in detail in [8]. 
 - With different values for R0, we obtain the same kind of progression when k increases, i.e. <r> 
decreases when k increases and <r> still asymptotically tends to R0. 
We also note a near-linear shift of the values of <r> in the same direction as the shift of R0. This effect 
is most important for the first values of k. For example, with R0 = 0.78 F (not a reasonable value for 
atom H but only a style exercise) we obtain <r> ~ 4.6 F for k = 1; and with R0 = 2.8 F, which is 
reasonable for Li6 atom (it has charge radius Rc ~2.59 with Z = 3), we have <r> ~ 13.4 F for k = 1. 
 - When taking polynomials of higher degree, we have still the same progression, but with 
slightly smaller values of <r> for the smallest values of k and then there is convergence. 
 - Surprisingly, a change of the nuclear potential has almost no influence on the results. Of 
course, we tested “reasonable” changes, i.e. such that the potential does not increase (in absolute value) 
for r < R0. More precisely, we defined a parameterized potential, which can be fixed in intermediate 
forms between the potential previously tested and a constant potential for r < R0, by the following 
expression: 
 

 V(r) = e2(− β1 + β2 r2), with β1 = (2+ ε) /2R0 and  β2 = ε /2R0
3  13) 

 
In fact, one can think the “inside” (i.e. nuclear) potential has only a very weak influence on the results, 
because the electron probability density inside the nucleus has a weak weight.  
 
In conclusion: 
 - The values of the mean radius <r> are dependent on the angular number k  
 - For any considered changes of the parameters, the progression of the values when k increases 
is always the same : the values of <r> decrease and tend to the value of the matching radius. 
 - The values of <r>, globally, are nearly independent of the parameters except for the value of 
the matching radius R0 . This seems logical from a physical point of view, when recognizing the charge 
radius of the nucleus. Nevertheless, the mathematical method introduces an intrinsic degree of 
arbitrariness in the choice of R0 that cannot be eliminated. 
 
4.3. Discussion on some criticisms about the considered method, and attempts to correct 
discrepancies 
Here we consider two questions which arose about the method of corrected potential. 
 
4.3.1. Question about the dependence of the inside solutions on the nuclear charge potential, and 
the coherence of the values of energies 
On the one hand, we note a subtle criticism [26] about some lack of dependence of the solutions on the 
nuclear potential. By computation, we verified this lack of dependence (as indicated previously). On the 
other hand, if we compute, in an approximate manner, the value of binding energies BE corresponding 
to the computed values of the mean radius, we find some discrepancy. 
For this question, we consider as test values, the values of mean radii <r> given at the beginning of the 
section 4.2.1. for k=1,2,3 and 10. Effectively, if we compute binding energies corresponding to these 
radius values, while considering the simplified hypothesis where the electron orbits are quasi-circular, 
we obtain the following values of BE: - 97 keV, - 275 keV, -301 keV, -320 keV, respectively 
corresponding to radius values 6.62 F, 1.65 F, 1.39 F, 1.22 F. 
These values have been computed by using the relativistic virial theorem [27] [28], with the following 
relations: 

PE = -γmv2 = - e2/r ,  KE = mc2(γ-1),  BE = KE +PE, Total energy E = mc2+BE. 
 
Of course, these calculations are carried out in a relativistic semi-classical way, but they give size orders 
having important shifts with respect to the starting values of BE for DDLs orbits, which are the 
following:  - 509 keV, - 510 keV, -510.4 keV, -510.8 keV with the same sequence. A possible reason is 
related to method of corrected potential. On the one hand, the inside functions are directly dependent on 
the nuclear potential V(r), because this potential is inserted into the Dirac equation system to be solved. 
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On the other hand, they involve DDL original energy values E (i.e. the ones indicated just above) 
inserted into the equation system, and so they indirectly depend on the Coulomb potential. 
To correct this discrepancy, we use a method of iterative computation with convergence, which is 
precisely described in [8]. Summarily, at each computation cycle, one inserts energies, computed from 
previously computed radii, into the equations, until they reach a fixed point. We carry out this whole 
process for each k = 1,2,3,10 with the following results: 
 - for k = 2, 3,10, the process reaches a fixed value at the first computation cycle, and we obtain 
the values of BE - 275 keV, -301 keV, -320 keV respectively for radii 1.65 F, 1.39 F, 1.22 F. 
 - for k =1, as the successive values approximately behave as geometrical series; one can say 
there is convergence at radius value  ~  12 F, that would give BE ~  - 56 keV. 
 
In conclusion, we tend to think the actual DDLs for a modified potential will correspond to the results 
of this convergence process, which provides energy coherence and improved dependence of the inside 
functions on nuclear potential. 
 
4.3.2. Question about a discontinuity of the derivative of solutions 
A recent criticism was reported by a colleague, concerning the discontinuity of the derivative of the 
wave functions at the matching radius. Indeed, in the method for connecting the inside and outside 
functions at R0, for Dirac equation, one satisfies continuity only for the functions, but not for their 
derivatives. This seems to be a common practice, as the Dirac equation is a first-order differential 
equation. We can observe, in figure 1, that the electron probability functions also have discontinuities of 
the derivative at ρ = 1.2 F, as a consequence of the derivative discontinuity of the wavefunctions. 
 
The criticism about this fact is the following: as the left-derivative and the right-derivative of the 
solutions are not equal at R0, one can deduce, in reporting their values into the radial equations, that the 
potential seems discontinuous at R0 . This is equivalent to supposing an additional virtual potential ΔP at 
R0, creating a well or a barrier according the sign of ΔP. The author of this criticism claimed that the 
discontinuity and the virtual potential ΔP are needed for the existence of EDO. 
One may ask why this happens, because if the inside and outside functions are solutions of the 
equations, the continuity of the derivatives should be automatically satisfied. Nevertheless, we must not 
forget that the inside solutions are obtained by polynomial approximations, which are less and less good 
when r increases and tends to R0. So the discontinuity, as well as the ‘ghost’ potential, is actually a 
simple artifact due to technical imperfections of the method of corrected potential: 
 - There are not enough free parameters in the inside/outside solutions to satisfy in the same time 
(needed since the components f and g are coupled in the radial equation system) the continuity of both 
components f, g and the continuity of their derivative. The used ansatz (section 3.2) allows us to satisfy 
only two equations, but not four equations required for continuity and derivatives. 
         - The polynomials approximations do not allow us to obtain the continuity of the derivatives at R0. 
 
We can say the discontinuity of the wavefunctions has no relation with the existence of EDOs, since it 
was obtained as solutions of the Dirac equation with pure Coulomb potential. Wavefunctions with 
modified finite potential are needed only to satisfy mathematical properties (see section 2) and to 
compute the mean radii <r> of orbits in a more realistic context (i.e., where the nucleus has dimension 
and the potential is finite). Nevertheless, we wanted to look for possible ways to study/correct this 
imperfection, while observing in all our computations of normalization constants and <r> (see the 
previous section) that the components of g, both the inside function gi and the outside one go, dominate. 
This dominance of g over f can even reach several orders of magnitude for the outside functions when k 
increases.  
 
So, to compute the mean radius <r> with the only largest component yields results close to the results 
with both components. Then we carried out numerous computations in various ways: e.g. to use the 
additive parameter β0 (indicated in 3.2) as an additive potential to balance the virtual potential ΔP for 
the largest component, or to satisfy continuity and derivative continuity for this component. These  
computations always give results close to the ones indicated in the previous section. 
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As an example, in Fig. 2, we plotted a zoom of the large component of the wavefunction, satisfying 
both continuity and derivative continuity, with k = 2. 
For this one, we obtained 1.36 F instead of 1.6 F for the 
‘original’ solution. Of course, it is an approximation 
since the computation was made only by using the 
component g. 

  Fig.2 Large component g of the ‘adjusted’ wavefunction 
for k = 2 and Ro = 1.2 F. 

As a conclusion, we think it is not useful to look for a 
more complex method to resolve this question. 
 
5. Why special relativity is needed to obtain EDOs with high binding energy 
In previous works, we observe that non-relativistic equations give singular solutions, but these do not 
correspond to orbits with high binding energy (in absolute value). A physical reason is that an electron 
in a deep orbit is necessarily relativistic. So, it is more logical to use relativistic equations to find EDOs. 
We also observed a pure mathematical reason which allows us to sort the EDO among the singular 
solutions of a relativistic equation, when we have analytic solutions at our disposal with energy levels E 
determined by an algebraic expression. Under these conditions, we can clearly see EDOs are obtained 
when a sub-expression, easily identifiable (see section 3.), can be drastically reduced. We saw such 
reductions are obtained by equating the radial number n’ with the involved angular number (l or k). One 
can wonder if there is not a deeper reason behind this pure algebraic fact, in particular a reason having 
more physical meaning. 
 
We have found such a deeper reason, first by comparing the relativistic version of the Schrödinger 
equation with its classical non-relativistic version and then by recognizing a relativistic correction to the  
potential, which is not taken into account for the usual atomic orbits because it is too weak at these 
energy levels. We have developed a complete analysis of this question in a paper [29] not yet published. 
Here we report only some essential elements and conclusion of this analysis. 
 
5.1. Role and meaning of a relativistic parameter in the relativistic Schrödinger equation  
The Dirac equation is essentially relativistic. On the other hand, as the Schrödinger equation has two 
versions, relativistic and non-relativistic, it is very easy to find parameters that make a difference. We 
can see that there is one parameter, which addresses our question and gives actual meaning to the 
involvement of relativity in EDOs. 
 
We give both following versions of Schrödinger equations for the hydrogen atom, as extracted from 
[23]: 
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The former is the relativistic one, already indicated in section 3.1.1, while the latter is the non-
relativistic one. They are expressed in terms of the dimensionless variable ρ for the radius, and R is the 
radial function, depending on ρ. We can observe that they are almost the same expression, except for 
the occurrence of an additional parameter, the coupling constant α, in the relativistic version. In [23] the 
equation contains the symbol γ instead of α, for a possible generalization at any atom with γ = Zα . Of 
course, λ ≠ λ' and the transformation of the initial radius r into the dimensionless variable is not the 
same for both equations 
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5.1. The term α2 is the source of EDO solutions 
We already saw, in section 3.1.1, that the energy levels are given by the following expression  

 E = mc2(1 + α 2/λ2)-½                            16) 

We also noted the EDO solutions are given by inserting s = -½ -[(l+½)2-α2 ] ½ in the ansatz used for 
finding the solutions, since it provides a total energy of E ~ mc2α/(2l+1), when n’ = l, and then a very 
high binding energy |BE| = mc2 [1- α/(2l+1) ],  where the second term is << 1. The term α2 occurring in 
the expression of E above directly comes from the one occurring in the relativistic equation. 
 
It is not possible to set n' = l in the case of the non-relativistic equation, where we recall that the 
singular solutions are obtained when taking s = − (l+1). Here, the parameter λ' has to satisfy the 
condition λ' = n'+s+1, for all types of solutions, which gives λ' = n'- l for the singular ones. As the 
energy levels are given by E = − mc2α2/2λ'2, one cannot reduce the expression for E by making n' = l, 
which would lead to λ' = 0 and thus to a singularity in the non-relativistic E.  
 
5.2. What does the occurrence of α2 mean? 
The key to the answer is the fact the relativistic equation is built from the relativistic expression of total 
energy in free space E2 = c2p2 + m2c4, where p is the momentum vector. Next one introduces an 
electromagnetic field in covariant form into the expression of E, and finally, since the nuclear Coulomb 
potential has spherical symmetry, one can write (E – V)2 = c2p2 + m2c4 , where V is the Coulomb 
potential depending on the radius r.  Afterwards, the expression (E –V)2 – m2c4, developed into E2− m2c4 

− 2VE +V2, gives rise to several ‘energy factors’ during the process of the Schrödinger building. 
For example, the term λ/ρ occurring in the equation, and proportional to the Coulomb potential energy 
V, comes from 2VE.  However, it is the term γ2/ρ2, distinctive in the relativistic equation, which interests 
us.  It comes from and is proportional to V2. Moreover the parameter λ, used while building the 
dimensionless equation (14), is defined by λ = 2Eα /ħcε  with ε = 4(m2c4 - E2)/ħ2c2; so, one has λ > 0. 
By looking at this equation, one can observe the term α2/ρ2, greater than zero and proportional V2, is 
added to the term λ/ρ, which is greater than zero and proportional to |V|. 
 
So, we find the real meaning of the occurrence of α2 in the equation (14) as cause of the existence of 
EDOs. It corresponds to a dynamic relativistic correction to the Coulomb potential energy V in the form 
of a term proportional to V2, which strengthens the static potential energy V. 
 
Of course, the Dirac equation leads also to the same relativistic quadratic correction of the static 
potential V, but less directly visible than for the Klein-Gordon (or relativistic Schrödinger) equation. 
The general form of this correction (see e.g. [30] [31]), but neglecting the centrifugal barrier paper, 
leads to the following effective “dynamic” potential:    

Veff  = V (E/mc2) − V2/2mc2     17) 

Note that in the case of a relativistic electron, one can show Veff  = γV+V2/2mc2, where γ denotes the 
well-known relativistic coefficient, i.e. γ = (1−v2/c2)-1/2. 

Note also that, while looking at both expressions of Veff given above, it is not clearly visible that one 
always has |Veff| > |V|, i.e. a strengthening of the “normal” Coulomb potential. However, physically, 
since potential is an integral of the Coulomb force that increases as the electric-field lines of both the 
electron and central potential are relativistically compressed (strengthened), one would expect it to 
increase. Where the (effective) energy of the increased potential comes from and how it can exceed the 
static potential energy (normally) used to determine the ‘invariant’ total system energy is another 
discussion. 

Nevertheless, we showed in [29] that, at least in the case of quasi-circular orbits, we have the following 
result: 

 - One always has |Veff| > |V| and Veff is attractive (a negative value) 



14 

 - |Veff| quickly increases as a function of |V|, with a parabolic behavior in |V|2 when |V| --> +∞. 

 
5.3. Computation of Veff  in the case of EDOs 
Again with the quasi-circular orbits hypothesis, we computed the values of Veff for the values of mean 
radii <r> given in 4.2.1. for EDOs orbits with k = 1, 2, 3, 10 and assuming Ro = 1.2F.  

We have the following results for Veff, where we indicate, at the same time, the values of <r>, V, γ, ΔV= 
|Veff –V|, and the kinetic energy KE: 

 • k = 1,  <r>~ 6.6 F, γ ~ 1.2, V ~  -218 keV,  Veff ~  -222 keV,   ΔV ~ 5 keV,     KE ~ 120 keV 
 • k = 2,  <r>~ 1.7 F, γ  ~ 2.2, V ~  -873 keV,  Veff ~ -1.15 MeV, ΔV ~ 273 keV, KE ~ 597 keV 
 • k = 3,  <r>~ 1.4 F, γ ~ 2.4, V ~ -1.04 MeV, Veff ~ -1.47 MeV, ΔV ~ 437 keV, KE ~ 734 keV 
 • k =10, <r>~1.2 F, γ ~ 2.7, V ~ -1.17 MeV, Veff ~ -1.79 MeV, ΔV ~ 612 keV, KE ~ 854 keV 
 
Of course, value uncertainties are great, therefore the numbers are rounded for clarity.  
From the results above, we can see that, when k increases and as <r> decreases, γ and Veff increase 
because of relativistic effects and V increases because the circularization of the orbits allows a lower 
average radius in the potential minimum. We also note that the ratio ΔV/KE increases with these 
changes because of the non-linear relativistic effects. 
So, from a physical point of view, we can think the relativistic motion of the electron strengthens its 
effective potential energy in the Coulomb field, and even an increasing part of the kinetic energy seems 
“to act” on the strengthening ΔV of the potential energy, when the velocity of the electron increases. 
However, the effective potential used above does not include the centrifugal barrier that also increases 
with both k and γ. 

 

6. Conclusion, open questions, future works      
- At this point, we have reviewed the method of corrected nuclear potential applied to the deep-orbit 
solutions of Maly and Va’vra, we extended the results found by those authors and we found new results 
concerning the general properties of the deep orbits. Indeed, on the one hand, we have confirmed the 
order of values of mean radii <r> given by the authors. On the other hand, while varying the 
computational parameters, we observed that changes of values for <r> depend on few, other than the 
matching radius R0. Even if the choice of R0 is a little arbitrary, this dependence is logical from a 
physical point of view when taking into account the charge radius of the nucleus (itself essentially 
related to the atomic number Z and the mass number A of the atom). We observed, in particular, a weak 
dependence of <r> on the ‘inside’ functions, i.e. the solution inside the nucleus. In fact, the ‘weight’ of 
the inside functions is about one half that of the outside functions.  
- Concerning the general properties of the deep orbits, we had previously shown that the mean radii <r> 
decrease asymptotically to R0 as the angular number k increases. This leads to the binding energy (in 
absolute value) increasing with k.  

- Considering the weak dependence of results on our parametric variations, we can say the method is 
rather robust, a strength of this method of corrected potential. 

- We also analyzed possible weaknesses of the method, identified in some criticism and in our own 
observations about the energy levels corresponding to the values of <r>. The question of consistent 
energies for the values of <r> led us to a modified computation process assuming almost circular orbits. 
This gives the same values of <r> for k > 1, but almost doubles the radius for k = 1. The principal 
changes in the results concern new values of binding energy, which are significantly smaller (in 
absolute value) than those for the original EDOs. We think these values, from 275 keV (for k = 2) to 
320 keV (for k = 10), with a limit ~ 320 keV as k --> infinity, could be the actual values for EDOs. But 
this is still conjecture, because computations were made only with the simplified hypothesis of almost 
circular orbits. Anyway, we can note such modifications have no implication for the existence of EDOs 
in the LENR process. Nevertheless, the lower binding energies of this computation greatly enhance the 
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probability of populating the deep levels by near-field electromagnetic coupling of electrons in atomic 
orbitals with adjacent lattice nucleons and raising them to low-lying nuclear excited states. 
- Another question is based on a discontinuity of the wavefunction derivatives at their matching point 
that leads to a virtual additive potential at R0. Nevertheless, while attempting to correct possible 
unwanted influence of this potential on the results, we observed by computation that there are no 
significant effects. 
- Most importantly, we reveal the essential role of Special Relativity for the existence of EDOs with 
high binding energy due to the quadratic expression of the relativistic total energy. This leads to a 
dynamic correction to the original Coulomb potential and yields a noteworthy strengthening of the 
potential under some hypotheses. A more detailed analysis of the role of Special Relativity can be found 
in [29]. 

- Concerning open questions, the following is not yet resolved: the equality condition for radial number 
and angular number allows one to “discriminate” the true EDOs, characterized by strong binding 
energy, amongst the set of other singular solutions of equations, which have almost the same binding 
energies as the classical “regular” ones. In previous papers, we called these special non-EDO solutions, 
“pseudo-regular solutions.” In the same vein, we have not yet interpreted the meaning of these pseudo-
regular solutions. 

- Finally, a serious problem is still hanging over the existence of EDOs: do they respect the Heisenberg 
relation?  Recent, but approximate, computations tend to answer yes to this question.  Indeed, a first 
solution came from the spin-orbit interaction, which generates a very high attractive potential at the 
very small EDO radii. This potential exceeds that needed to provide the very high “Heisenberg kinetic 
energy” corresponding to electrons at these radii.  
- To study the stability of EDOs, we still have to work more deeply on the properties of magnetic 
interactions and other possible effects near the nucleus, in order to evaluate the possible combinations 
of potential energies. In particular, the ones involved in the works of Vigier [32], Barut et al [33] and 
Samsonenko et al [34], and the correction to the Dirac operator due to the anomalous magnetic moment 
of the electron [35] might pertain. 
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