The reration of recurring decimal and primitive root

T.Nakashima
E-mail address
tainakashima@mbr.nifty.com

June 28, 2016

1

We begin

$$
\frac{1}{7}=0.14285714857 \cdots
$$

$10=3+7$ is devided by 7 as 1 and the rest is 3.30 is devided by 7 as 4 and the rest is 2.20 is devided by 7 as 2 and the rest is 6 . This is correspond to $3 \rightarrow 2 \rightarrow 6$.So,that 3 is the primitive root of 7 equals to recurring decimal of $\frac{1}{7}$.General case is not so easy.

$$
\frac{1}{13}=0.076923076923 \cdots
$$

case is just about $\frac{1}{13}$ in 100 numeration. We can not understand this case. $17+7=24$ case,we calculate 24 numeration. 24 is devided by 17 as 1 and the rest is $7.7 \times 24=168.168$ is devided by 7 as 9 and the rest is 15 .

$$
\begin{aligned}
7 \rightarrow 15 \rightarrow & 3 \rightarrow 4 \rightarrow 11 \rightarrow 9 \rightarrow 12 \rightarrow 16 \rightarrow 10 \rightarrow 2 \rightarrow 14 \rightarrow 13 \rightarrow 6 \\
& \rightarrow 8 \rightarrow 5 \rightarrow 1 \cdots
\end{aligned}
$$

In this case, 7 is primitive root of 17 .So recurring decimal in 24 numeration is repeat 16 .

