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Abstract

In the Einstein field equations the geometry or the curvature of space-time defined as depended
on the distribution of mass and energy principally resides on the left-hand side is set identical to a
nongeometrical tensorial representation of matter on the right-hand side. In one or another form,
general relativity accords a direct geometrical significance only to the gravitational field while the
other physical fields are not of spacetime, they reside only in spacetime. Less well known, though
of comparable importance is Einstein's dissatisfaction with the fundamental asymmetry between
gravitational and non-gravitational fields and his contributions to develop a completely relativ-
istic geometrical field theory of all fundamental interactions, a unified field theory. Of special note
in this context and equally significant is Einstein’s demand to replace the symmetrical tensor field
by a non-symmetrical one and to drop the condition g = g for the field components. Historically,
many other attempts were made too, to extend the general theory of relativity's geometrization of
gravitation to non-gravitational interactions, in particular, to electromagnetism. Still, progress has
been very slow. It is the purpose of this publication to provide a unified field theory in which the
gravitational field, the electromagnetic field and other fields are only different components or
manifestations of the same unified field by mathematizing the relationship between cause and ef-
fect under conditions of general theory of relativity.
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1. Introduction

The historical development of physics as such shbasformerly unrelated and separated parts o$ipkycan

be fused into one single conceptual formalism. MalKevtheory unified the magnetic field and theottizal
field once treated as fundamentally different. Eirss special relativity theory provided a unifican of the
laws of Newton’s mechanics and the laws of elecagmetism1]. Thus far, the electromagnetic and weak nu-
clear forces have been unified together as anrelgetk force. The unification with the strong ifmtetion
(chromodynamics) enabled the standard model of exdamy particle physics. Meanwhile, the unificatioh
gravitation with the other fundamental forces ofuna is in the focus of much present research tilinst in
sight, a unification of all four fundamental intetians within one conceptual and formal framewoalk not yet
met with success. Even Einstein himself spent yeéusis life on the unificatiori2] of the electromagnetic
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fields with the gravitational fields. In this comtgEinstein’s position concerning the unified figheory is strict
and clear.

“The theory we are looking for must therefore be a gdimation of the theory of the graviten-
al field. The first question is: What is the natigeneralization of the symmetrical tensor fieldhat
generalization of the field is going to provide thest natural theoretical system? The answer thais
the symmetrical tensor field must be replaced bprasymmetrical one. This means that the conditfon
Ok = gq for the field components must be droppef®]*

Figure 1.Einstein and the problem of the unified field theo

Despite of the many and different approaches ajribes worldwide spanning so many of years takedeteel-
op a unified field theory, to describe and to ustimd the nature at the most fundamental (quarneng) pro-
gress has been very slow. Thus far, a unificatfoalldour fundamental interactions within one ceptual and
formal framework has not yet met with success. Bseand very detailed reviews, some of them irhiyhly
and extraordinarysatisfying way3], of the various aspects of the conceptually véfferent approaches of the
unified field theories in the 20th century with aelb technical descriptions of the theories sugegstnd short
biographical notes are far beyond the scope ofatttisle and can be found in literature.

The main focus of this article lies on the concaeptievelopment of the geometrization of the elentignetic
field, by also paying attention to the unificatiohthe electromagnetic and gravitational fields #mel unified
field theory as such. While the task to “geometrine electromagnetic field is not an easy one,edhod how
electromagnetic fields and gravitational fields ¢&njoined intaa new hyper-field4], will be developed, a new
common representation of all four fundamental extéons will be presented. As will be seen, witham to
unified field theories, formerly unrelated partspifysics will be fused into one single conceptuahfalism
while following a deductive-hypothetical approadtie briefly define and describe the basic matherahtib-
jects and tensor calculus rules needed to achieiieation. In this context, the point of departdoe a unified
field theory will be in accordance with generalatelity theory from the beginning. Still, in ordey decrease
the amount of notation needed, we shall restricselues as much as possibletwvariantsecond rank tensors.

2. Material and Methods
2.1. Definitions

Definition: The Pythagorean Theorem

The Pythagorean (or Pythagoras') theorem is afefaching and fundamental importance in Euclideaontze

try and in science as such. In physics, the Pytteggo(or Pythagoras'’) theorem serves especialiybasis for
the definition of distance between two points. bligtally, it is difficult to claim with a great dege of credibil-

ity that Pythagoras (~560 - ~480 B.C.) or somedse fom his School was the first to discover thisorem.
There is some evidence, that the Pythagorean (iiaBgras’) theorem was discovered on a Babylomiblett

[5] circa 1900-1600 B.C. Meanwhile, there are morenth80 published approaches proving this theorem,
probably the most famous of all proofs of the Pgtiraan proposition is the first of Euclid's two @i® (1.47),
generally known as the Bride's Chair. The Pythagoer Pythagoras') theorem states that the syth®freas

of) the two small squares equals (the area ofpip@ne square. In algebraic terms we obtain

a+b=¢ @)
where c represents the length of the hypotenuseldthgest side within a right angled triangle) andnd b

represents the lengths of the triangle's other dides or legs (or catheti, singular: cathetus, Igreéthetos).
Following Euclid (Elements Book I, Proposition 4i)right-angled triangles the sum of the squarethersides
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containing the right angle equals the square omsitle opposite the right angle.
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Definition: The normalization of the Pythagorean theorem

The normalization of the Pythagorean theorem igddfas

¢ @)
=—=1

¢

where c represents the length of the hypotenuseldtigest side within a right angled triangle) anand b rep-
resents the lengths of the triangle's other twesgldgs.

+

I8L=e

Definition: The negation due to the Pythagorean theorem

We define the negation of x, denoted as n(x), as

b? a _ X
nx)s—=1-—== 3
®) c? ¢ ¢ (3)
We define the negation of anti x, denoted as &),
2
a v X
nx)=l-nx)s5=1-—5=1== ()
In general, it is c C c
2
a o
n(x)+nQ()E?+?E1 (5)
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Definition: The determination of the hypotenuse of a right angled triangle
In general, we define

X+X=C (6)

where x and x denotes the segments on the hypaenoka right angled triangle (c is the longedesiithin a
right angled triangle).

Scholium.
Form this follows that(CX X)+(C><l(): ¢ . Due to our definition above, it s’ =(C>< X) and

b* = (Cxl() . The Pythagorean theorem is valid even if x=1 amd+oo -1 while ¢ = +o. Under these as-
sumptions, the Pythagorean theorem is of use teeptte validity of the claim that +1 / +0 =c-

Definition: The Euclid's Theorem

According to Euclid's (ca. 360-280 BC) so calledmetric mean theorem oight triangle altitude theorenor
Euclid's theorem, published Euclid’s Elements goeollary to proposition 8 in Book VI, used in pagition 14
of Book Il [6] to square a rectangle too, it is

=47 %

whereA denotes the altitude in a right triangle and x arttknotes the segments on the hypotenuse c ghta ri
angled triangle.

A

: C: i

Scholium.

The variance of a right angled triangle, denoted(a¥, can be defined as

0( )2= XXX =a2Xb2=A_2
TPxP x2 @ ®
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whereA denotes the altitude in a right triangle and x armknotes the segments on the hypotenuse c gha ri
angled triangle.

Definition: The gradient

The gradient, denoted gsad(a,b) a measure of how steep a slope or a line ifisell by dividing the verti-
cal height a by the horizontal distance b of atragigled triangle. In other words, we obtain

a _ Rise
d(a,pg—=——
grad(a, b b Run ©)

Scholium.
The following picture of a right angled triangle yridustrate the background of a gradient

1>
>

b

whereb denotes the rurg denotes the rise amddenotes the slope length. The gradient has sem@aihings. In
mathematics, the gradient is more or less sometlkag generalization of a derivative of a funatio one di-
mension to a function in several dimensions. Carsidn-dimensional manifold with coordinaigs,x, X. The
gradient of a function K, -x, x) is defined as

(Of), = 3 % (10)

Due to our definition above it is equallyxeRx)=a2. In this case c2? is not identical to theexp of the light but
with the hypotenuse, the longest side within atragigled triangle. Equally, it isxA4(x)=b2. In general, it is true
that a2/b? = c?n(x)/ cxn(x) = n(x)/n(x). Theraise can be calculated asb = (n(x)/ n(x)) = ( n(x) / (1-n(x)) Jn
other words, it is a/b=y(x/c) or a/b= ((&x)/ (cxx))*? =((x)/(x))*>.

Einstein’s Special Theory Of Relativity

Definition: The relativistic energy rE (of a system)
In general, it is

s E =5 mxc? (11)

O,
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wheregE denotes the total (“relativistic”) energy of asm,rm denotes the “relativistic” mass and ¢ denotes
the speed of the light in vacuum.

Scholium.
Einsteindefined the matter/mass - energy equivalaséllows:

“Gibt ein Korper die Energie L in Form von Strah-
lung ab, SO verkleinert sich seine Masse um L/v2
Die Masse eines Korpers st ein Mafd far dessen

Energienhalt;” [7]

In other words, due to Einstein, energy and mas&quivalent.

“Eines der wichtigsten Resultate  der Relativitatstheorie ist die
Erkenntnis, daf jegliche Energie E eine ihr proportionale
Tragheit (E/c?) besitzt.8]

It was equally correct by Einstein to point outtthratter/mass and energye equivalent.

“Da Masse und Energie nach den Ergebnissen der spezi-
ellen Relativitatstheorie das Gleiche sind und die Energie
formal durch den symmetrischen  Energietensor ) beschrieben
wird, o) besagt dies, daB das G-Geld [gravitational fiel&uthof
durch den Energietensor der evat bedingt und bestimmt
ist.” [9]

The termrelativistic masgm was coined by Gilbert and TolmarD].

Definition: Einstein’s Mass-Energy Equivalence Relation

The Einsteiniarmatter/mass - energy equivaleri¢é lies at the core of today physics. In general, ugin-

stein’s special theory of relativity it is
V2
oMm=g Mx2 1—; 12)

or equally
oE =, mxc2=, Wc&i/:E B 2 %— (13)
or equally
oE _ om><c2:21_v_2 (14)
rE gmxc? c?

whereqE denotes the “rest” energyom denotes the “rest” mas& denotes the “relativistic” energymn de-
notes the “relativistic” mass, v denotes the retatrelocity between the two observers and c dertbeespeed
of light in vacuum.

©
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Definition: Normalized Relativistic Energy-Momentum Relation

The normalized relativistic energy momentum retafic)], a probability theory consistent formulation ohEi
stein’s energy momentum relation, is determined as

7+ =1 (15)
while the “particle-wave-dualism’10] is determined as

2 2 2
m°  v? m* X c2x c2 Vv2x, m" X C? E pzx Cc? E E
o | =0 | R o + R o FW = =1 (16)

——+t—= =
<M> ¢z _nfxcxc2 ckx, mxc2 . E _E _E _E

wherewE = (gp X ¢ )denoteghe energy of an electro-magnetic warelzp denotes the “relativistic’ momen-
tum while c is the speed of the light in vacuum.

Definition: The relativistic potential energy

Following Einstein in his path of thoughts, we defihe relativistic potential energye [10] as

2
PEE&E—EXOEE 2/1—V—><O E 17)
RE RE c
Scholium.

The definition of the relativistic potential energy is supported by Einstein's publication in 190#hsEein
himself demands that there is something like aivé$éic potential energy.

“Jeglicher Energie E kommt also im Gravitationsfelde eine
Energie der Lage Zu, die bereso grof3 ist, wie die
Energie der Lage einer '‘ponderablen’ Masse von der Grole
E/c2” [12]

Translated into English:

‘Thus, to each energy E in the gravitational Idfiethere corresponds an energy of positiont tha
equals the potential energy of a ‘ponderable’ nadssagnitude E/c2.’

The relativistic potential energ§e can be viewed as the energy which is determiyednbobserver P which is
at rest relative to the relativistic potential eperThe observer which is at rest relative to lativistic poten-
tial energy will measure its own time, the reladtié potential timet.

Definition: The relativistic kinetic energy (the ‘vis viva’)

The relativistic kinetic energyE is defined 10] in general as

E= wEXy E
K 2
<E rMXxC

O

MXVXC, X, MX VX C
R R R = = m VZ
=g PX V=g mX (18)
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wheregm denotes the ‘relativistic mass’ and v denoteg¢faive velocity. In general, it is
rE=Sf HE, E+, E=, H+ H (19)

where pE denotes the relativistic potential energi, denotes the relativistic kinetic energiy denotes the
Hamiltonian of the relativistic potential energyl denotes the Hamiltonian of the relativistic kinetnergy.
Multiplying this equation by the wave functig’, we obtain relativity consistent form of Schréding equa-
tion as

REXR LIJ ER HXRLIJE( PEXRLIJ)+( KEXRLIJ) E( PHX RLIJ)+( KHX RLIJ) (20)

Scholium.

The historical background dfie relativistic kinetic energyE is backgrounded by the long lasting and very fa-
mous dispute between Leibniz (1646-1716) and NeWi6d2-1726). In fact, the core of this controverss
the dispute about the question, what is presetwaaigh changes. Leibnitz himself claimed, thas vivd [13],

[14] or the relativistic kinetic energyE -rm x v x v was preserved through changes. In cantoakeibnitz,
Newton was of the opinion that the momentymzm x v was preserved through changes. The obsertviehw
is at rest relative to the relativistic kinetic egyewill measure its own time, the relativistic &iic time,t.

Definition: Einstein’s Relativistic Time Dilation Relation

An accurate clock in motion slow down with respadtationary observer (observer at rest). The pripe ot
of a clock moving at constant velocity v is relatech stationary observer's coordinate tighby Einstein’s rel-

ativistic time dilation15] and defined as
V2
Ot :R tx‘z}l_a (21)

wherect denotes the “proper” timgt denotes the “relativistic” (i. e. stationary avordinate) time, v denotes
the relative velocity and ¢ denotes the speedybt in vacuum.

Scholium.

Coordinate systems can be chosen freely, deepepioig circumstances. In many coordinate systemeyant
can be specified by one time coordinate and thpa&a coordinates. The time as specified by thretcoordi-
nate is denoted as coordinate time. Coordinate tnthstinguished from proper time. The conceppafper
time, introduced by Hermann Minkowski in 1908 arehoted ast, incorporates Einstein’s time dilation effect.
In principle, Einstein is defining time exclusivdly every place where a watch, measuring this timcated.

! Definition der Zeit far den Ort,
an welchem sich die Uhr ... befindet...” [15]

In general, a watch is treated as being at reativelto the place, where the same watch is located

“Es werde ferner mittels der im ruhenden System befindlichen
ruhenda Uhren die Zeit t [i. et, author] des ruhenden Systems
. bestimmt, ebenso werde die Zeit T [ot, author] des beweg-
ten System, in welchen sich relativ. zu letzterem ruhende
Uhren befinden, bestimmt [15]

Due to Einstein, it is necessary to distinguishiMeein clocks as such which are qualified to marktitte gt
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when at rest relatively to the stationary systemar] the timet when at rest relatively to the moving system O.

“Wir denken uns ferner eine r de Uhren, welche relativ
zum ruhenden System ruhend die Zeit t &k, author], relativ
zum bewegten System ruhend die Zeit T [ot, author] anzugeben
befahigt sind . "[15]

In other words, we have to take into account thuh kzlocks i.e. observers have at least one poiabmmon,
the stationary observer R and the moving observareCat rest, but at rest relative to what? Thiosiary ob-
server R is at rest relative to a stationary caratg system R, the moving observer O is at rdative to a
moving co-ordinate system O. Both co-ordinate systean but must not be at rest relative to eacéroirhe
time gt of the stationary system R is determined by cdoskich are at rest relatively to that stationarstem R.
Similarly, the timegt of the moving system O is determined by clockscitare at rest relatively to that the
moving system O. In last consequence, due to BEmsttheory of special relativity, a moving clockt) will
measure a smaller elapsed time between two eveasa non-moving (inertial) clockt] between the same
two events.

Definition: The Normalized Relativistic Time Dilation Relation

As defined above, due to Einstein’s special reigtivt is

Ot =R tx ‘2!1_5

wherect denotes the “proper” timgt denotes the “relativistic” (i. e. stationary avordinate) time, v denotes
the relative velocity and ¢ denotes the speedybt in vacuum. Equally, it is

t V2
O—t = ‘2/1—5 (23)
R

or
t c? v?
L x— = ‘2/1—— (24)
cz it c?
or
of Ly v 2
R t2 C2
The normalized relativistic time dilatiaa defined as
t2 v2
(6] —
et (@9)
R
In general, under conditions of the special thedmelativity, we define
RS=, B+t (27)
and
0C=, E+,t (28)
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and

0C =y E+ t=AE+At (29)

Scholium.
The following 2x2 table may illustrate the relatships beforeT{ablel).

Table 1The unified field under conditions of the specka@dry of relativity.

Curvature
yes no
Energy / yes 0 E OE =AE R E
momentum no Ot oI = At Rt
OC OQ RS

The special theory of relativity.

The causal relationship[k6] under conditions of special theory of relativity €i the particle-production appa-
ratus) follows as

(o) = (xS B (.0 )

(30)
(\Z/OC:>< ng R EX R t)
Under condition$17] where
REX ot=Hx W (31)
there is a relationship between the causal relghipnk the Schrédinger equation in the form
2
((-8%0E)~(sC* = B)
_ R 0 0 R
Hx W= (32)

(4CxoCxk(,C.xB)x K ,C. B)

Einstein’s general theory of relativity

Definition: The general Kronecker delta

The general Kronecker delg,,, named after Leopold Kronecker, is +1 if the vialés m and n are equal, and
+0 otherwise.

Scholium.
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For convenience, the restriction to positive intege common, but not necessary. The general Kianatelta,
running from 1 to 4, denoted &g, can be displayed in matrix form as

(33)

mn

o O O B+
o O+ O
o r O O
= O O O

The anti general Kronecker delta denoted.ass defined a®mnn, = 1nn — Om

Definition: The Special Kroneker Delta

The special Kronecker deltdi,j) ., named after Leopold Kronecker, is +1 if and dflp=i and if n=j and +0
otherwise.

Scholium.

Example. The special Kronecker deda=1, j=1),,, for m=i=1 and n=j=1, running from 1 to 4, can bgpthyed
in matrix form as

5(i=1,j=1) = (34)

o O O B+
o O O O
o O O O
o O O O

Theanti specialkronecker delta denoted &§,j) ., and defined a&(i,j) mn = Lnn — 0(i,j) mn for m=i=1 and n=j=1,
running from 1 to 4, can be displayed as

3(i=1j=1) = (35)

B P PO
e
e
[ el e

The special Kronecker delta is not grounded onetipgality thatm=n but on the fact, the m equal to a certain
value i and that n is equal to another certaine/alin other words, it imm=i andn=j.

Definition: The Metric Tensor gy,

In the following, let us define the following. Let

a®=d,xxd, x+ ..+ d, » d, > (36)
and

?=d,xxd, X (37)

®
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In Euclidean coordinates for an n-dimensional sgheeformula for the length ds2 of an infinitesinfiae seg-
ment due to the Pythagorean theorem follows as

c?=dsS=(dxxdX+(d % d x .+ ¢ x ¢ X (38)

C "x

X A

a= dzx

or

(39)

c=dé=) (43

i=1

In general, a coordinate system can be changedtfrerBuclidean X's to some coordinate system ofhén

0, X 40
d x= a"‘ xd,y (40)
and 2
0,X 41
d,x=-""xd,y o
S
The Pythagorean theorem is defined as
0,.X 0 X 42
CZEdSZEZZ qﬂqu])Q<6mnEzZ m Xdry< n dey(émn (42)
m n m n ary aSy
While using Einstein’s summation convention, a f@sition dependejinetric tensor g(x), is defined as
_ Jd X 0_X (43)
g(x)HV =9, % am X an
Y OgY
anda curved space compatible formulation of the Pytinagn theorenfollows as
0. X 0.X (44)
2 = =
c’=dg8 =8 x—mCxn%x d = X \
mn ary asy r y( ds y_ q >)|JV q’ y< q -

Scholium.

The metric tensor generalizés Pythagorean theorem of flat space in a maniveilth curvature The metric
tensor can be decomposed in many different wayisgl.e= n,, + n,, where g, is the metric tensor of general
relativity, n,, is the tensor of special relativity ang, is the anti tensor of general relativity. In gexleheory of
relativity, the scalar Newtonian gravitational patel is replaced by the metric tensor. “In pardeyuin general
realtivity, the gravitational potential is replacky the metric tensor,g” [18] In last consequence, the gravita-

®
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tional potential is something like a feature of thetric tensor. Following Renn et al, the metricstar is “... the
mathematical representation of the gravitationa¢ptial ...” [19] On this account it is necessary to make a dis-
tinction between a gravitational potential and avgational field. Due to Einstein, “... the intnaction of inde-
pendent gravitational fields is considered judtifeven though no masses generating the field dieede’ [2]

The question is, can a gravitational potential tei®n though no masses generating the gravitdgmantial

are defined?

Definition: The normalized metric tensor n(X),v

In the following, we define the normalized metensor p,, while using Einstein’s summation convention, as

0,S_0,X 45
n(x) =8, x-"x—" (43)
w 0,s 0.s
The line element follows in general as
amsxanx (46)

c’=ds=9, x
0s 0.s

r S

xdxds ) ds d

Scholium.
The normalized metric tensor is not based on tlaglignt. The metric tensor passes over into the alized
metric tensor and vice versa. We obtain

g(x),,xd,yxd,y=n(x) xd s d: (47)
or
_d yxdyy (48)
”(X)uv =derSs" Q(X)uv

Definition: Einstein’s field equations

Einstein field equations (EFE), originally0] published[21] without the extra ‘cosmological’ terixg,, [22]
may be written in the form

R R 4X 2X Xy
+ A X = —-—X + A X = - —x -NA\X =— —  ’x
Gu *AXGy =R, =X q +AX g, = R (2 9 g) xox o b @)

where G, is the Einsteinian tensor,Jis the stress-energy tensor of matter (still &lfaevoid of any geomet-
rical significance), R, denotes the Ricci tensor (the curvature of sp&e@enotes the Ricci scalar (the trace of
the Ricci tensor)/\ denotes the cosmological “constant” ang denotes the metric tensor (a 4x4 matrix) and
wherettis Archimedes' constarnitE 3.14159265358979323846264338327950288419716953938209...),
yis Newton'’s gravitational “constant” and the speétight in vacuum is ¢ = 299 792 458 [m/s] inl Sunits.

Scholium.

The stress-energy tensoy,.Tstill a tensor devoid of any geometrical sigrifice, contains all forms of energy
and momentum which includes all matter presentdfudourse any electromagnetic radiation too. O&lijn
Einstein’s universe was spatially closed and finite1917, Albert Einstein modified his own fieldjuations
and inserted the cosmological constaAnidenoted by the Greek capital letter lambda) hisotheory of general
relativity in order to force his field equationspcedict a stationary universe.

“Ich komme namlich zZu der Meinung, dafid die von
mir bisher vertretenen Feldgleichemg der Gravitation noch ei-
ner kleinen Modifikation bedurfen ...” [22]

®
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By the time, it became clear that the universe egmnding instead of being static and Einstein dbaed the
cosmological constank. “Historically the term containing the ‘cosmologicconstant’A was introduced into
the field equations in order to enable us to acttheoretically for the existence of a finite medansity in a
static universe. It now appears that in the dynahtase this end can be reached without the inttamuof A“
[23] But lately, Einstein's cosmological constant isived by scientists to explain a mysterious forcanter-
acting gravity called dark energy. In this contixs important to note that Newton’s gravitatiorfabnstant”
big G is not{24], [25] a constant.

Definition: General tensors

Independently of the tensors of the theory of galnelativity, we introduce by definition the folleng covari-
ant second rank tensors of yet unknown structureseitproperties we leave undetermined as well. Vilaede
the following covariant second rank tensors ofwm@tnown structure as

Apv' pr’ Cuv’ Dpv 'R qu 'RLJuv ’0\/\{1\) ’Olvuv 'RV\ﬁv (50)

Tensor can be decomposed (sometimes in many differays). In the following of this publication wefthe
the following relationships. It is

Ant By =rUy (51)
Cu* Dy =rU, (52)
A,t+ C, =W, (53)
By + D =W, (54)
Apt Byt Cu+ Dy =pUy, +rU, =W, + W, =W, (55)

Scholium
The following 2x2 table may illustrate the relatships aboveTable 2).

Table ZThe unified fieldgW .

Curvature
yes no
Energy / yes AHV BHV rU Hv
momentum no Cu\, Du\, . Qu\,
OWuv OV_Vuv RWuv

The unified field.

These tensors above may have different meaningsndém upon circumstances. The unified fighd,,, can be
decomposed into several (sub-) fieldgs,”B,., G Dy In order to achieve unification between geneesdtiv-
ity theory and quantum (field) theory the (subélds A, B.., C.., D,v can denotehe four basic fields of na-
ture. The idea of quantum field theory is describe iigla as a manifestation of an abstract fieldthiis context
the particle acan be associated with the fielg,Athe particle bcan be associated with the field,Bthe particle
¢ can be associated with the field,Che particle dcan be associated with the fielg,Din this context, we can
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something like A= a x (A, and B,= by x (B, and G,= G x C,, and D,,= d x (D, where the subscript
denotes the individual particle field. Under coiudis of general relativityEinstein field equatiortan be re-
written (using the tensors above) as

Ova +/\Xguv = R Upv (56)
R 2>< 4x Xy
here W, =G, =R ——X andzU,, =————xT,, . From an epistemological point
Wi 0" "pv uv Hv qu R ~ v CXCX CX C pi gl poi
of view g Uu is the tensor of the cause (in German: Ursache Ihjbewo v is the tensor of the effect (in

German: Wirkung W). As we will see, from the defiion U, + U, = Ova + oW, =W, follows

v
that Axg,, =g U, =W, = W, —rY,, =W, = W, — rY,, even if Einstein's cosmological

constant\ cannot{26] be treated as a constant.

Unified field theory
Definition: The tensor of Planck’s constant h

Planck defined in 1901 the constant of proportibypaP 7] as h. As long as Planck’s constant h is a conssant,
tensor form of this constant is not needed. Wendetlie co-variant second rank tensor of Planck'stmizh,,
as

he Ny, hy, N
h = he hy hy, hy (57)
R
hy, h,, h,, h
h, hy, h

h30

Definition: The tensor of Dirac’s constant

We define the co-variant second rank tensor of@sraonstant as

Rog Ty Mgy Mgy
hoo= hig hy hyp, B
e Ty Ty Tg By (58)
Scholium.
In general it is known that Ny Ty Ty Ny
thv = 2\.1v N RTEJV N thv (59)
Definition: The tensor of speed of the light rcyy
We define the co-variant second rank tensor oggied of the lighic,, , denoted by small letter c, as
Coo Cor Co2 Cos
_|Co Cu1 Cp GCga|_ 60
chv_ _Rfuvn R)\pv ( )
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wheregf,,, denotes the stress energy tensor of frequencyapdenotes the wave-length tensor.

Scholium.

Following Einstein’s own position, the constancytleé speed of the light ¢ is something relative aathing
absolute. Theoretically, circumstances are possillere the speed of the light not constant. Einshéinself
linked the constancy of the speed of the light a tmnstant gravitational potential.

“Dagegen bin ich der Ansicht, dai das Prinzip der
Konstanz der Lichtgeschwindigkeit sich nur insoweit aufrecht
erhalten lafnt, als man sich auf raum-zeitliche Gebiete von
konstantem Gravitationspotential beschrankt. Hier liegt nach  meiner
Meinung die Grenze der Gultigke des Prinzips der
Konstanz der Lichtgeschwindigkeit dun damit unserer heutigen
Relativitatstheorie.” [8]
Thus far a tensor of the speed of the light iss#f to face this theoretical possibilities.
Definition: The tensor of Newton'’s gravitational ‘constant’ ry,,
We define the co-variant second rank tensor of Naeigtgravitational constagt,, as

yOO yOl y02 y 03

Vo = Yo Y Yo Y3 (61)
RYpv —
y20 y21 y22 y 23
y30 y31 y32 y 33

Scholium.
Newton’s gravitational constant is not for sureoastant. Therefore, we prefer to use the sameeirichm of a
tensor.

Definition: The tensor of Archimedes ‘constant’ rTl.y

We define the co-variant second rank tensor of ineldes constamir,, as

Th Ty Tlo Tlgg

— T, T4, T, Tl (62)
R T Thy Ty Tl Tiy
Thy Ty Tlp Tlgg

Scholium.

Archimedes of Syracuse (ca. 287 BC — ca. 212 B@iséif was able to findt ,the circumference of a circle
with diameter 1 commonly approximated as 3.1416999.9% accuracy about 2000 years ago. Archimedes
constantrt is an irrational numbery never settles into a permanent repeating pattieerngecimal representation

of Archimedes constamt never ends.
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Definition: The tensor of imaginary number i,

We define the co-variant second rank tensor ofrtiaginary number,j, as

i Iy B, |
i = .10 _11 12 .13 (63)

Definition: The tensor of space

We define the second raténsor of spacef yet unknown structure as

R>~hv

Su=aW, =U, (g n ) e
Under conditions of general relativitit is

R%\) = vapv = RJV (65)

where R, denotes the Ricci tensor, the tensor of the cureadf spaceUnder conditions different form general
relativity, rS,v can be determined in a different way. It is impattto note theU,,, is not identical with L.

Definition: The tensor of energy

Similar to general theory of relativity, it is atgsent appropriate to introduce a correspondingerggn tensor,

a tensor which represents the amounts of rggnenomentum, pressure, stress et cetera in the

space, a tensor which describes the energt@fraomentum et cetera distribution (at each évient
space. The energy tensor expressed mathematigallysgmmetrical tensor of the second rank of yéhown
structure is defined as

<E. =rH, = ;U (66)

Ipso facto, the same tensor is determined by aften@resent but of course any electromagneticatih too.
Under conditions of general relativityve define

4 N n N
RE ERH ERU =__ W 2le RTw MRV nT 67)

T\ Hv
Rva quN anw r]R QN

To assure compatibility with quantum theory, weimkef

4 N N N
MRM(;] E‘wﬂahw”(a] = w0 Bl el g 2 g = H,=,U, ©8)
uv uv

at chvacpva q,lvnR (EN

Due to this definition we obtain

(ij = : 1 x 4X ZXR 7Z'XR y XTIJV E_ 1uv % 411\/ N %\) nR 77:“\/ ﬁR yl.lV m-]-p'v (69)
ot w INgh gCXpexpcxpc Iy NeAy RGNRGNRENR K

®
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The tensor of probability of energy follows as

4uv02uva7[uvnRyuv ﬂT
v
Gy MR Gy NGy Nr Gy

p(xEy)=p(xHy)=0(<Uy) - (70)

uv

General relativity’s geometry of space and timensg but not the only one geometry of space and. titepe-
cially general relativity’s stress - energy tenasrthe source - term of Einstein's field equatiarsill a field
devoid of any geometrical significance. A geometrtensorial representation of the stress enemgoteof en-
ergy is possible as

( 4pv N 2pv an-pv mRypv

ROy Nr Gy Nr Qv Nr Gu nTWJEp(REW)n R = F(R l_LV)n R Ep(RUu\))n R, (1)

Definition: The tensor of frequency
In general, we define the covariant second rankaeaof frequencyf,,, as

=mx'r = A N 2 VR N Ry nNT (72)

- T\ v
hxcxcx cx ¢ RN G NR GN RGN R Gy

To assure compatibility with quantum theory, weimkefthe inverse tensaqy,, of the covariant second rank
tensor of frequencyf,, as

R'pv

_ 1, =thxCxCxCxi=huvnRCuvnRCuvnRcuvn R Cuy

RTuv - - (73)
wa AX2X Xy Tuv 4uvn ZHVﬂRnwn Ryuvauv
Per definition it follows that
RTuv N Rfuv Eluv (74)
Definition: The tensor oWy
In general, we define the covariant second rankdej,, as
0%\) = va N R n-uv n prv (75)

Scholium.
The tensor of frequenagyf,, and thew,, tensor are related. Under circumstances of genelatlvity, there are
conditions where

oWy =2, Ny, N waz%n(Gw—/\x gw) (76)

R v
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Definition: The tensor of matter RM,v

The matter tensor expressed mathematically by arstrical tensor of the second rank of yet unknotmcs
ture is defined as

M = luv e (77)
R™ v — N R™=pv
ROy MR Qu
Under conditions of general relativity, we define
4 .n2,nN N
M., = luv A REW = ]'pv A RHW = ]pv —.C zpv RTw MRV ﬂTW (78)
RCanRqJV RQNnR(Elv Rgvagv Rg\)nR&/mR&)nR&
Scholium.

This definition is based athe equivalence of mass/matter and enehgy to Einstein’s special theory of relativ-
ity.

“Da Masse und Energie nach den Ergebnissen der ezisp
ellen Relativitatstheorie das Gleiche sind und die Energie
formal durch den symmetrischen Energietensor [0)] beschrie-
ben wird, SO besagt dies, daR das G-Geldréavitational
field, authot durch den Energietensor er d Materie bedingt
und bestimmt ist[9]

Definition: The tensor of ordinary energy oE,v

We define the second raténsor of ordinary energyE,, of yet unknown structure as
OEW = Auv (79)
Scholium.

Under some well defined circumstancgts,, can denote¢he unity of strong interaction and weak interantio
Under conditions of general relativity, it is

— _4X2X7Z'Xy 1|.1\) c 1 dv
o =B T0 B = oo e T [TN(FF )(axrore )| o

The associated probability tensor can be achiesed a

élxzxmxTw_[ L, Jx((acxv)—(lxgwxdexF““]]
(kE, —oE,) cxCxoxc 4x,, 4
= R

pv pv

p(OEuv) p(Auv) (81)

Definition: The tensor of ‘ordinary’ matter (M,

Thetensor of ordinary mateexpressed mathematically as a covariant secoridafayet unknown structure is
defined as

OM =¢m OE E#m OHuV (82)
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Definition: The anti tensor of ‘ordinary’ matter oE,,

We define the second raakti tensorE,, of the tensosE,, as

OEpv = Oﬂp\) = pr (83)
Under conditions of general relativity, whejfs,, is tensor of ordinary energy/matter, the electromedig field
is an anti tensor of ordinary energy/matter. Untierditions of general relativity, the tensor of #lectromag-
netic field is determined by an anti-symmetric setorder tensor known as the electromagnetic {ieddaday)
tensor F. In general, under conditions of genextivity, the second rank covariant tensor of ¢ékectromag-
netic field in the absence of ‘ordinary’ matter,iethis different from the electromagnetic field $enF, is de-

fined by
— — — luv c (1 dvj
E =H =B =|— |X|[F_xXF *)—-| =x xXF, xF
0=pv 0—pv pv [(4)(7[“\, ( i \Y ) 4 guv dv (84)

where F is the electromagnetic field tensor apndsgthe metric tensor.

Scholium.
The associated probability tensor is determined as

e )= ot.)= A 8.) [(4}‘“;%JX[(FchFvCF){_G"gw"':dv"':dvm o

i

The geometric formulation of the stress-energyden$the electromagnetic field follows as

4x T

Definition: The tensor oM,y

ThetensorgM,is defined as

. oEw _ oHy _ By = Lo Ly x xF ¢ —(Ex xF, x d"]
OMH‘)_RC“VORC“V_R(LVQRQN_R(avﬂRgv _{RE\}OR &}Jﬂ[(‘lwan_WJ ((Fuc F\; ) 4 guv de F (87)

Definition: The decomposition of the tensor of energy

A portion of the tensor of energy is due to thestarof theelectromagnetic fieldanother portion of the tensor
of energy is due to the tensoraflinary energyBefore going on to discuss this topic in moreadetve define
in general

REUVEOELN-'-O—EJVEO|_Lv+0—|_LVEAJ\)+Bp\) (88)
Under conditions of general relativity, we define

_Ax2xmxy

CXCXCXC

REuv = OEuv+0_Euv = Ol_Lv+O_|_Lv

w (89)
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Scholium.

The tensor of the electromagnetic field is equinalte the portion of the stress-energy tensor efgy due to
the electromagnetic field. In this approach, wefallewing Vranceanu in his position, that the emetensor
can be treated as the sum of two tensors one afvwhidue to the electromagnetic field.

“On peut aussi supposer que le tenseur d’énergie
Tu soit la somme de xdeu tenseurs dont un
da au champ électromagnétique ..." [28]

In English:

“One can also assume that the energy tengdoelthe sum of two tensors one of which is duehéoedlectro-
magnetic field”

Einstein himself demanded something similar.

“Wir unterscheiden im folgenden zwischen ‘Gravitationsfeld’
und ‘Materie’ in dem Sinne, daR alles aulRer
dem Gravitationsfeld als ‘Matérie bezeichnet wird, also
nicht nur die ‘Materie’ im Ublichen Sinne sondern
auch das elektromagnetische Feld.” [21]

Definition: The tensor of time gty

We define the second ratdnsor of timeof yet unknown structure as

Rtuv = REp\) = Rgp\; = R%\; R EIV (90)

Scholium.
All but energy is time, there is no third betweemm gy and time. Under conditions of general thexfrelativi-
ty, the associated probability tensor follows as

Ry~ rEy _ rl, (1)
= - - v R v — R
p(Rtuv)_p(R_Euv)_dR_L{w)_ R - R
v n
Definition: The tensor rgv
We define the second raténsorgg,, as
) _ Rtpv — REpv — Rguv _ RSJ\) R Epv (92)
Scholium. rR9w = = = =
The tensor RO N RGy R MrG r@MNr® rBMr K
Rgpv (93)

is not identical with the metric tensor of generdtivity, defined as

gw (94)

Still, circumstances may exist, where both tensarsbe treated as being identical.

®
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Definition: The tensor ot,v

We define the second ratdnsort,, as

ol =C, =rt, Wty =C— A (95)

Scholium.
Under conditions of general theory of relativityetassociated probability tensor follows as

1 c 1 v
( ¢ )= ( )= Rtuv - Wtuv _ OCW - Auv _ +(4x”jx((Fuchv )—(4xgw x de x F¢ jj_/\xguv (96)
Plotw/ =P CLN B Ruv B Ruv B Ruv

Definition: The tensor ogyuv

We define the second ratdnsoryg,, as

t t 97)

0 “pv _Rtuv_Wuv

RCuv n wa ) Rchv n RCEJV

ngv

Definition: The tensor wt,,

We define the second ratdnsoryt,, as

thv = Dpv = Rtpv - Otpv (98)
Scholium.
Under conditions of general theory of relativityetassociated probability tensor follows as
Bxguv - # x[(Fuc X FVC)—(lxgw xFy x Fd"D
p(wty)=p(D,) = ot = 2 WO 4 (99)
W *pv Hv Ru\, Ru\,
Definition: The tensor wg,,
We define the second ratdnsoryg,, as
- Wtuv - Rtuv - Otuv (100)
Wguv - -
Rcuvn chv RCLWO R%\)
Definition: The wave function tensor gWv
We define the covariant second rank wave funcemsar as
AW (101)

®
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Under conditions of general relativityve define
R R 1 R
rPw E(E n guv]—(/\ N gpv) E(E—/\j ng =¥n v N (—2—/\)0 g, =%¥ny,g (102

Definition: The complex conjugate wave function tensor "W,

We define the covariant second rank complex congugave function tensor of yet unknown structure as

AW, (103)

Definition: The decomposition of the tensor of space

A portion of the tensor of space is due to thedews$ time, another portion of the tensor of spacgetermined
by the tensor of energy. In general, we define

RSJV = R EJV + Rtuv = R |_Lv + RLIJpv (104)

The field equation of the unified field thedojlows in general as

RSuv TR tpv = R Euv (105)

wheregrS,, denotes the tensor of spagk,, denotes the tensor of energy ahd denotes the tensor of time.

Definition: The normalization of the tensor of space

LetrY,, denote a covariant second rank tensor of preliminaknown structure. In general, we define

RSuv N RYuv E]'uv (106)

Scholium.

In general, the properties of the tengd¥y,, are unknown. But one property of this tensor isvn and this
property assures the normalisation of the tens@pate agS,y, n  rY,w = 1. Under conditions of the gen-
eral theory of relativity, it is true that aS,, = R,, and we do obtain Rn grY,, = 1.

Definition: The probability tensor
Let

p(xX,) (107)

R Muv

denote a covariant second rank probability ten§gebunknown structure as associated with a tegsgy. The
probability tensor pl¥,,,) of yet unknown structure as associated with thgenfunction tensog¥,,, is defined
as

p( R l'IJpv ) (108)

Definition: General covariant form of Born’s rule

Under the assumption of the validity Bbrn’s rule even under conditions of accelerataahfes of referenge

®
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we define
P(rW,)= )Wy nr W, =W, 0 LY, (109)

where pgW,,) denotes the probability tensor as associatedvith.the wave function tensat,, and R*le is
the covariant second rank complex conjugate wawetion tensor anch denotes theommutativemultiplica-
tion of tensors.

Definition: The probability tensor Il

In general, we define
IO(RLIJ )E W, N &Y, (110)

where pgW¥,,) denotes the probability tensor as associatedvith.the wave function tens@t/,, andgY , de-
note a covariant second rank tensor of preliminarynown structure and denotes theommutativemultipli-
cation of tensors.

Scholium.

The properties of the tensgY,, , as mentioned already before, are still unkndstil, another second property
of this tensor is the special relationship with tive function tensog¥,,,. The interaction of the tensqY
with the wave function tensetV,,, yields the probability tensor g¢,,) as associated with the wave function
tensorrW,,. In general itis pW,) =rWw N RYu-

Definition: The tensor Uy

In general, we define the tensog,bf yet unknown structure as
T [ E ] [ ; ] [ : J ( . ]
U W A R Y _ _'"'RrR R n wa
T T e N E LS B T S M ey (1)

Definition: The decomposition of the tensor Uy,

In general, we decompose the tensgy

UWEU M +M .= Muv+MquFMuv+Fguv (112)
Scholium.

By this definition we are following Einstein in hitaim that something is determined by matter dedgravita-
tional field. In other wordghere is no third between matter and gravitatiofiald, i. e. all but matter is gravita-
tional field. To proceed further, in following Eieén, we make a strict distinction between mattet gravita-
tional field too.

“Wir unterscheiden im folgenden zwischen ‘Gravitationsfeld’
und ‘Materie’ in dem Sinne, daR alles aulRer
dem Gravitationsfeld als ‘Materie’ bezeichnet wird, also nicht
nur die ‘Materie’ im Ublieh Sinne, sondern auch
das elektromagnetische Fel®1]

The tensorU,, is not identical with the tensor,J In terms of set theory, we do obtain the follogvipicture
(Table 3).
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Table 3.The relationship between matter and gravitatidie&.

RM TRY] Rguv

Uy

Definition: The tensor of curvature (Cyy

In general, we define the tensor of curvaturgGas of yet unknown structure as

_ _ R
oCw =Gy =ALFCL =R, 5 % (113)

where G, is the Einsteinian tensor, Ris the Ricci tensor, R is the Ricci scalar apgdig the metric tensor of
general relativity. Under conditions of the theofygeneral relativity it i$C,, = G

Scholium.
Under conditions of general theory of relativitiyetassociated probability tensor follows as

R -Rx
— Apv +va — w 2 gpv
IO( GLV) S = " (114)

pv v

P(4C)

Definition: The tensor of anti-curvature (C,v

In general, we define the tensor of anti-curvaasgC,, of yet unknown structure as

oCw =R Sy 0 Gu (115)

wheregS,, is the tensor of spacgg,, is the tensor of curvature. Under conditions aiggal relativity, the ten-
sor of anti-curvature is equivalent with

= = = R _R (116)
oCw =By *D, =R, -G, =R, _( Ry _Ex g\’j=3x D

where G, is the Einsteinian tensor, Ris the Ricci tensor, R is the Ricci scalar apgdig the metric tensor of
general relativity.

Scholium.
Under conditions of general theory of relativityetassociated probability tensor follows as

R R
-G R _(Rw _quwj Exguv
p(Oqu) = = = (117)
va va Ruv I%.lv
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2.3. Tensor calculus.

Definition: The tensor of the unified field 1,

In general, we definthe tensor of the unified figlthe tensor of the unified field 1, as

1, (118)

Scholium.
Every component of a unity tensor is equal to té&.tensor of the unified field is of order twe @omponents
can be displayed in 4 x 4 matrix form as

+1 +1 +1 +1
+1 +1 +1 +1
= 119
+1, = (119)
+1 +1 +1 +1
+1 +1 +1 +1
Definition: The zero tensor 0y
In general, we define the zero tenspy &5
0] (120)

Hv
Scholium.
Every component of a zero tensor is equal to +@& Zéro tensor is of order two, its components caulib-
played in 4 x 4 matrix form too as
+0 +0 +0 +0
+0 +0 +0 +
+0 0 +0 +0 +0 (121)
W |+0 +0 +0 +0
+0 +0 +0 +0

Definition: The tensor of the number 2,

In general, we define tensor of any number, i.e.nthmber 2, as

2 (122)

v
Scholium.
Every component of a tensor of the number +2 isktu+2. The tensor of the number +2 can be dygglan 4
x 4 matrix form as
+2 +2 +2 +2
+2 42 42 +2 (123)
W42 42 42 42

+2 +2 +2 +2

+2
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Definition: The tensor of infinity co,,

In general, we define the tensor of infinity,, as

o, (124)

Scholium.
Every component of the tensor of infinity is eqt@hoo. The tensor of infinity is of order two, its compmts
can be displayed in 4 x 4 matrix form as

+00 +o00 +oo +oo

+00 +o00 +oo +oo (125)

+o00 v
H +00 +o00 +oo +oo

+00 +o00 +oo +oo

Definition: The symmetrical part of a tensor S( oX,v)

Let oX,, denote a second-tensor rank. The symmetric partefisogX,, is defined as

1 (126)
S(O xuv) :Ex(oxuv +O xvu)

and denoted using the capital letter S and theotdatself within the parentheses.

Definition: The anti- symmetrical part of a tensor S( 0Xuv)

Let (X, denote a second-tensor rank. The anti-symmetricopa tensogX,,, is defined as

1 (127)
§(0 xuv) :Ex(oxuv ) xvu)

and denoted using the capital letter S undersautdtee tensor itself within the parentheses.

Scholium.
In general, the tensgK, can be written as a sum of symmetric and antisytmengarts as

1 1 (128)
Oxuv :S(Oxuv) +§(Oxpv):§><( Oxpv +0Xv u) +EX( (?<uv - (P<v u)

Definition: Tensor ¢X,v and anti tensor ¢X,v

In general, let
Rva = Ova + 1va Tt Nva (129)
We definethe anti tensopX,,, of the tensogX,,, as

X ErCp =Xy E+ X, o+ (X, (130)

0 pv R™~pv

Scholium.
There is no third tensor between a tensor andvits anti tensora third is not givertertium non datui(Aristo-

®
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tle). An anti tensor is denoted by the name oftdresor with underscore. Theoretically, the digtorc be-
tween amanti-symmetrical tensasind ananti tensoris necessary. The simplest nontrivial antisymmeatink-2
tensor, written as a sum of symmetric and antisytrimparts, satisfies the equation

oxuv:_oxvuE%X(oxuv"'(?(vp)"'_;x(g(w_3<vu) (s
In general, the relationship betweenaami symmetrical tensaand aranti tensorfollows as
Oxuv ==X v = RCuv - o)ipv (132)
Only under conditions wherg,C,, =0 we obtain
~oXu = 7oXy (133)

but not in general. In this context it is

1,51, +0, =1, +L, =Q,+ Q (134)

The anti tensorg,,, of the Kronecker deltar Kronecker's delté,,, named after Leopold Kronecker (1823
—1891), follows as

§W =1, - 6W (135)

Definition: The addition of tensors

Tensors independent of any coordinate system orefraf reference as generalizations of scalars (el no
direction associated with a scalar) which have aeetno indices and other mathematical objects ¢gvecsin-
gle direction), matrices) to an arbitrary numberirafices may be operated on by tensor operatolsy ather
tensors. In general, tensors can be representegpmrcase Latin letters and the notation for adeisssimilar
to that of a matrix even if a tensor may be deteeaiiby an arbitrary number of indices. A distinatlmetween
covariant and contravariant indices is made. A comemt of a second-rank tensor is indicated by tweices.
Thus far, a component of any tensor of any teraok which vanishes in one particular coordinateesys will

vanish in all coordinate systems too. As is knotmm tensors X and X which have the same rank aad#me
covariant can be added and/or contravariant inditkes sum of two tensors of the same rank is alsmsor of
the same rank. In general, it is

RCW = oxuv + Olw (136)
or

RCuv - OXuv + Oluv (137)
or

RCHV = Oxuv + Oxuv (138)

Definition: The difference of tensors

The difference of two tensors of the same ranksis a tensor of the same rank. In general, it is

X = RCW - OXW (139)

0L pv

or
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oXpy = gC" = o X* (140)
or

+0va = RCHV - Ox“v (141)

Definition: The commutative multiplication of tensors

Let us display the individual components of a cdava rank two tensor X in matrix form as

><00 xOl ><02 X03

X = Xio Xy X Xgg (142)
" Xo Xau Xgp X o
X Xy Xgp X g

Let us display the individual components of a cdava rank two tensor X in matrix form as

Y00 YOl Y02 Y03

11 12 13 (143)

Y
2 Y 2
Y

< < <

Y
Yo Yo
Yo Y

31 32 33

The commutativemultiplication of tensors (i. e. matrices), whiishdifferent from the non-commutative multi-
plication (of matrices), is operation of multiplgrhe corresponding elements of both tensors bly eder. We
definethe commutative multiplication of tensansgeneral as

X 00 xY 00 X leY 01 X OZXY 0
XlO ><YlO X 1le 11 X 12><Y

X 20 xY 20 X ZIXY 21 X 22><Y 2
X 30 xY 30 X 3le 31 X 32XY 32

Oge{ 0.
Y (144)
232{ 2
332{ 3

while the signn denoteshe commutative multiplicationf tensors which is equally related to the Hadamar
[29] product. TheHadamard product(also known as the Schur product or the pointwiseduct), due to
Jacques Salomon Hadamard (1865 - 1963), is an tape@ two matrices of the same dimensions whih i
commutative, associative and distributive over tdali

N

XpnYy, =Y, nX,, =

uv

N

X X X X

Definition: The tensor raised to power n

Let us introduce the notation of a co-variant ramé tensor X, raised to powen as

"X =Xy N Xy N n Xy (145)

n-times

Each individual component of the tensqy, ¥ multiplied by itself n-times.
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Definition: The root of the tensor raised to power 1/n

Let us introduce the notation of a co-variant rawmé tensor X, raised to power 1/n as

n-times

Uny = 146
xw_Q/anan...nxw (146)
Each individual component of the tensqy, X6 raised to the power 1/n.

Definition: The commutative division of tensors

Let us once again display the individual componeiis co-variant rank two tensgX,e in matrix form as

Xoo Xor KXoz X g
X = Xio Xy X Xgg (147)
Hv
Xpo X Xgp X o
X Xa Xg X g
The commutative division of tensors is defined gy tivision of the corresponding elements of betisors by
each other and displayed in matrix form as

Xoo! Yoo Xod Yor X obY o X fY

xuv :Yuv — XlO/Ylo X 11/Y un X 14Y 2 X {3Y 1 (148)
Xool Yoo XY o X Y 5 X LY
Xaol Yoo Xgf Y5 X Y o X LY

while the sign : denotdhe commutative division of tensofhe commutative division of tensors is displagsd

Xoo! Yoo Xod Yoo X bY o X Y
X Y = Xio/Yio Xof Yy XY p XY :X v (149)
A Xaol Yoo Xof Yo X AY X LY va

XaolYao Xaf Y X fY 5 X LY

too.
Definition: The expectation value of a second rank tensor

Let E(X,,) denote the expectation value of the covarianbisécank tensor X. Let p(X,,) denote the probabil-
ity tensor of the second rank tensqyXn general, we define

E(Xw ) =p(X) 0 X, (150)
while the sigm denotes theommutativamultiplication of tensors.

Definition: The expectation value of a second rank tensor raised to power 2

Let E(ZXH\,) denote the expectation value of the covarianbsgaank tensor X raised to the power 2. Let
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p(X,.) denote the probability tensor of the second tankor X,,. In general, we define

2 = — 2
E(*X ) =P(X ) 0 X 01X, =P (X, ) 02X, sy
while the sigm denotes theommutativamultiplication of tensors.

Definition: The variance of a second rank tensor

Let o(X,)? denote the variance of the covariant second tamor X,,. Let E(X,,) denote the expectation value
of the covariant second rank tensqr.X et E(ZXHV) denote the expectation value of the covarianbisgagank
tensor X, raised to the power 2. Let p(J denote the probability tensor of the second iamisor X,,. In gen-
eral, we define

0(X,) =E(*X,)-(E(Xw) nE(X,)) (152)
which can be written as

0(X) =P (X ) 1 X, 01X =((p (X)X ) 0 (X ) X0 ) (153)

or as
O(Xw)2 Ep(xw) NX,yNX,, —(X w NX NP (X uv) np (X uv)) (154)

or as
0(X,) =X, 01X, 0 (o ()P (Xw) P (X)) (155)

or as
0(X) =X, 01Xy 0 (P (X, ) 0 1 P (X)) (156)

while the sigm denotes theommutativemultiplication of tensors and,lis the tensor of the unified field.

Definition: The standard deviation of a second rank tensor

Let o(X,,) denote the standard deviation of the covariacbisé rank tensor . Let E(X,,) denote the expecta-
tion value of the covariant second rank tensgy. Xet E(ZXHV) denote the expectation value of the covariant
second rank tensorXraised to the power 2. Let p(X denote the probability tensor of the second remisor
Xuv In general, we define

| | o(X,) =FE(*X,) - (E(X) nE(X,)) (157)
0(XW)EXM4(|0(><,N)-|0(><W)rwp(Xw)) (158)
6(X,) =X, 0 4(p (%) 0 (L =P (X)) (159)

®
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while the sigm denotes theommutativemultiplication of tensors and,lis the tensor of the unified field . The
covariant second rank tensogXollows as

¥ = o(X,) (160)

" lle(x) 0 (5. -p(x,)))

Definition: The co-variance of two second rank tensors

Let o(X, , Y.,) denote the co-variance of the two covariant sda@amk tensors X and Y. Let E(X,.,Y )
denote the expectation value of the two covariaebed rank tensorsXand Y,,. Let p(X,, ,Y,,) denote the
probability tensor of the two covariant second réatisors X, and Y,,. Let E(X,,) denote the expectation value
of the covariant second rank tensqy.X.et p(X,,) denote the probability tensor of the second ramisor X,.
Let E(Y,,) denote the expectation value of the covarianbiseécank tensor . Let p(Y,,) denote the probabil-
ity tensor of the second rank tensqy,Yin general, we define

0 (X Yo ) ZE (X Y0 )~ (E (X0 ) nE(Y,0)) (161)

which can be written as

JURE

p(xuv’Yuv) NX oy 0Y —(p (X uV) nX  NY NP (Y uV)) (162)
or as
0 (X Yo ) =X 1Yy 0 (0 (X Yo )P (X ) 0P (Y,0) (163)

while the sigm denotes theommutativemultiplication. In general it is

O(XHV'YHV) (164)
T (p(XW,YHV)—p(XW)ﬂp(YW))

Definition: Einstein’s Weltformel

Let o(rU, , 0W,.,) denote the co-variance of the two covariant ségank tensorgU,, andoW,,. Let a(gU,,,)
denote the standard deviation of the covariantrsgcank tensor of the cause. lofpW,,) denote the standard
deviation of the covariant second rank tensor ef gffect,w,,. Let kgU,.,, ¢W,,) denote the mathematical
formula of the causal relationship in a generalac@mnt form (i. e. Einstein’s Weltformel). In geagrwe define

rRUpwo Wy (165)

Scholium.
In this context, the above equation is able todwithe gap between classical field theory and quartheory
since the same enables the existence elementdigigmi. e. with unequal mass but with oppositeutih oth-

erwise equal electric charge.
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2.3. Axioms.

2.3.1. Axiom I. (Lex identitatis. Principium identitatis. The identity law)

The foundation of all what may follow is the followg axiom:
+1=+1. (166)

Scholium.
From the standpoint of tensor calculus, it is

]W = luv (167)

This article does not intend to give a review & thistory of the identity lawpfincipium identitati. In the fol-
lowing it is useful to sketch, more or less chragitally, and by trailing the path to mathematit® history of
attempts of mathematizing the identity law. Theniitg law was used iPlato's dialogue Theaetetus, in Aristo-
tle's Metaphysics (Book IV, Part 4) and by manyeothuthors too. Especially, Gottfried Wilhelm Leibn
(1646-1716) expressed the law of identityeasrything is that what it iSChaque chose est ce qu'elle. &5t
dans autant d'exemples qu'on voudra A est A, BBEsf30]. In The problems of philosophit912) Russell
himself is writingabout theédentity law too.

Lex identitatisor the identity law can be expressed mathemayidalthe very simple form asl = +1. Conse-
quently, +1 is only itself, simple equality witlsdf, it is only self-related and unrelated to &eof +1 is distinct
from any relation to another, +1 contains nothititgeo,no local hidden variablebut only itself, +1. In this way,
there does not appear to be any relation to anodimgr relation to another is removed, any relatmm@another
has vanished. Consequently, +1 is just itself &g somehow the absence of any other determinatibis in
its own self only itself and nothing else. In teense, +1 is identical only with itself, +1 is thust the 'pure’ +1
. Let us consider this in more detail, +1 is n@t ttansition into its opposite, the negative of ddnoted as -1, is
not as necessary as the +1 itself, +1 is not catdtbby its other, +1 is without any oppositioncontradiction,
is not against another, is not opposed to anottteiis identical only with itself and has passedrawo pure
equality with itself. But lastly, identity as diffent from difference, contains within itself theffdience itself.
Thus, it is the same +1 which equally negatesfjtsélin the same respect is in its self-samendferent from
itself and thus self-contradictory. It is true,tthd = +1, but it is equally true that -1 = -1idtthe same 1 which
is related to a +1 and a -1. It is the +1 whichledtes at the same time the other out of itself -theut of itself,
+1is +1 and nothing else, it is not -1, it is A@t it is not ... Especially +1 is at the same tino¢ 41 , +1 is thus
far determined as non being at least as non-bdiitg own other. In excluding its own other outitslelf, +1 is
excluding itself in its own self. By excluding itsvn other, +1 makes itself into the other of whadcludes
from itself, or +1 makes itself into its own oppesi+1 is thus simply the transition of itself irite opposite, +1
is therefore determined only in so far as it cargauch a contradiction within itself. The non-lgeof its other
(-1) is at the end the sublation of its other. Tinm-being is the non-being of itself, a non-beivigch has its
non-being in its own self and not in another, eaafitains thus far a reference to its other. Nofi+&. -1) is the
pure other of +1. But at the same time, not +1 @higws itself in order to vanish, the other of $hét. In this
context, +1 and not +1 are distinguished and at#ime time both are related to one and the samch,is that
what it is as distinct from its own other. Identiythus far to some extent at the same time théskiang of oth-
erness. +1 is itself and its other, +1 has its rd@teateness not in another, but in its own self.is-thus far
self-referred and the reference to its other iy @anself-reference. On closer examination +1 theeeeis, only in
so far as its Not +1 is, +1 has within itself aatign to its other. In other words, +1 is in itsrogelf at the same
time different from something else or +1 is someghilt is widely accepted that something is differbom
nothing, thus while +1 = +1 it is at the same tidikerent from nothing or from non - +1. From thids evi-
dent, that the other side of the identity +1 =+this fact, that +1 cannot at the same time be #1-amr not +1
. In fact, if +1 = +1 then +1 is not at the samedinot +1 . What emerges from this consideratipthierefore,

®



[lija Baruk¢ic¢

even if +1=+1 it is a self-contained opposition,isDnly in so far as +1 contains this contradictwathin it, +1

is inherently self-contradictory, +1 is thus onlythe other of the other. In so far, +1 includethiniits own self
its own non-being, a relation to something elséedint from its own self. Thus, +1 is at the saimetthe unity
of identity with difference. +1 is itself and attlsame time its other too, +1 is thus contradictidifference as
such it unites sides which are, only in so farheytare at the same time not the same. +1 is ardyp ifar as the
other of +1, the non +1 is. +1 is thus far that tnha& only through the other, through the non #tkpugh the
non-being of itself. From the identity +1=+1 follewhat +1 - 1 = 0. +1 and -1 are negatively relatedne an-
other and both are indifferent to one another,st4eparated in the same relation. +1 is itselfiendther, it is
self-referred, its reference to its other is thusfarence to itself, its non-being is thus onljament in it. +1 is
in its own self the opposite of itself, it has vithtself the relation to its other, it is a sim@ed self-related
negativity. Each of them are determined againsbther, the other is in and for itself and nottss dther of an-
other. +1 is in its own self the negativity of ifse-1 therefore is, only in so far as its non-lggia and vice ver-
sa. Non +1 therefore is, only in so far as its bemg is, both are through the non-being of iteeotloth as
opposites cancel one another in their combinatias,+1 - 1 = 0.

2.3.2. Axiom II. (Lex negationis)

+1=(+00) x(+0). (168)

Scholium.
From the standpoint of tensor calculus, it is

1,50,N Ouv (169)
2.3.3. Axiom III. (Lex contradictionis)
+ 170
_O =+1]. ( )
+0

Scholium.
From the standpoint of tensor calculus, it is

(171)

(+0,)=| T2 | (+0,)=(+1,) 0 (+0,)

v

The law of non-contradiction (LNC) is still one dfet foremost among the principles of science andlgga

fundamental principle of scientific inquiry too. Wout the principle of non-contradiction we coulot the able
to distinguish between something true and sometfzilsg. There are arguably many versions of thecjple of

non-contradiction which can be found in literatufée method ofeductio ad absurduntself is grounded on
the validity of the principle of non-contradictiolo be consistent, a claim / a theorem / a pritipos/ a

statement et cetera accepted as correct, cannbtdeslogical contradiction. In general, a claimtheorem / a
proposition / a statement et cetera which leadsdaonclusion that +1 = +0 is refuted.
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3. Results

3.1 Theorem. Einstein’s field equation

Einstein’s field equations can be derived from axio

Claim. (Theorem. Proposition. Statement.)
In general, Einstein’s field equations are deriasd

4x 2X TIX Y
Gpv + (/\ X gpv) = (TX Tpv] (172)

Direct proof.
In general, axiom | is determined as

+1=+1 (173)

Multiplying this equation by the stress-energy tarsf general relativity ((>42><n><y)/(c4))><Tw, itis

4% 2% TIX 4x 2X TIX
+1X(Tyx TuV] =+1x (Tyx 'ILV] (174)

wherey is Newton's gravitational ‘constafii5]|, [26], ¢ is the speed of light in vacuum and sometimes re-
ferred to as ‘Archimedes’ constant’, is the rafi@eircle's circumference to its diameter. Du&tostein’s gen-
eral relativity, the equation before is equivaletth

R 4AX 2% TIX
va _(EX gpv] + (/\ X gpv) = (Ty X Tpv) (175)

R, is the Ricci curvature tensor, R is the scalar durea g, is the metric tensov) is the cosmological con-
stant and T, is the stress—energy tensor. By defining the Eindgensor a&,~ Ry~ (R/2)q,, it is possible to
write the Einstein field equations in a more contzac

4x 2X TIX Y
Gpv + (/\ X gpv) = (TX Tpv] (176)

Quod erat demonstrandum.

3.2 Theorem. The relationship between the complex tensor rY,v and the tensor gSyv

Claim. (Theorem. Proposition. Statement.)
In general, it is

RYuv = i a77)
RS

®

uv
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Direct proof.
In general, axiom | is determined as

+1=+1 (178)
Multiplying by the tensor of the unified field,J we obtain

1,n1=1,n1 (179)

or
]uv = j_uv (180)

Multiplying this equation byS,,nrY .\, We obtain
RSN RYwN1,= Sun (Y01,

R™wv (181)

Due to our above definition the unknown teng¥y, assures thatS,, n rY . = 1. Consequently, equation
before reduces too

RSpv n Rva = 1pv (182)
A commutativadivision yields
Y = Lo (183)
R " pv S
R ~uv

Quod erat demonstrandum.

3.3 Theorem. The relationship between the complex conjugate tensor "W,y and the ten-
sor rY,y

Claim. (Theorem. Proposition. Statement.)
In general, it is

RYuv =R W pv (184)
Direct proof.
In general, axiom | is determined as
+1=+1 (185)
Multiplying by the tensor of the unified field,J we obtain
1,n1=1,n1 (186)

or
1,=1, (187)

Multiplying this equation byW,, n REUJ“V, we obtain



Ilija Baruk¢ic¢

YL NRW Nl = W nrW nl, (188)
Due to our above definition, it b, n REpr = gWwn RrY . Consequently, the equation before changes too

RLIJuvn RYqu rY uv N R W Hv (189)
At the end, after aommutativelivision, we obtain

Y SR W, (190)

Quod erat demonstrandum.

3.4 Theorem. The relationship between the complex conjugate tensor "W, and the Ricci
tensor Ry

Claim. (Theorem. Proposition. Statement.)
In general, it is

T 1. (191)
Hv R
Direct proof. Hv
In general, axiom | is determined as
+1=+1 (192)

Multiplying by the tensor of the unified field,J we obtain

1,n1=1,n1 (193)

or
]uv = j_uv (194)

Multiplying this equation byY .., we obtain

RYuv N 1pv = RY Hv n 1 Hv (195)

or
Rva = RY pv (196)

Due to the theorem before, itd¥ ., :R*Ww. Consequently, substituting this equation into éheation before
we obtain

*

R W, = /Y (197)

Due to another theorem before, ikM,, = 1,,: rS... Consequently, substituting this equation into ¢iguabe-
fore, we obtain

= e (198)

uv
RS

®

v
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Under conditions of general relativityis R,,= rS,, where R, denotes the Ricci tensor. In general, under con-
ditions of general relativity, we obtain

I 1. (199)

Quod erat demonstrandum.

3.5 Theorem. The probability tensor 1,,- p(rHw) as associated with the energy tensor
RHpv

Claim. (Theorem. Proposition. Statement.)
The probability 1,- p(rH,.)) as associated with the energy tengdy, is determined as

luv - p( R Hpv) = R Huva* W Hy (200)

Direct proof.
In general, axiom | is determined as

+1=+1 (201)
Multiplying by the tensor of the unified field,J we obtain

1,n1=1,n1 (202)

or
]w = luv (203)

A commutative multiplication of this equation byettensogS,, leads to

RSuv N ]'pv = ]'pv N R %v (204)

orto

RSuv - R %v (205)

Due to our definition above, we obtain

RHuv+ Rwuv: RSuv (206)

A commutative multiplication of the equation befdnethe complex conjugate wave function tenéé#uv ,itis
RHWﬁR LIJuv+ RLIJpvaLIJuv: RSHVORLP“, (207)

Due to the theorem before, itdS,, n R Y w=Lu. Thus far, equation before changes to
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RHUVOR LIJHV+ waﬂ R LP“V:].“\

Following Born’s rule, it is p{¥,,) =rWpy % RLIJ*HV. We obtain

R Hpva LIJuv+ Rp( RLIJ pv) = 1p\
At the end, it follows that

1|.1v - p( prv) = RHuvm R LIJ uv

Quod erat demonstrandum.

(208)

(209)

(210)

3.6 Theorem. The normalization of the relationship between energy and time

Claim. (Theorem. Proposition. Statement.)
The relationship between Energfy,, and timext,, can be normalized as

REuv + Rtuv :+1“V
RSuv R%xv
Direct proof.
In general, axiom | is determined as
+1=+]1

Multiplying by the tensor of the unified field,J we obtain

1,n1=1,n1
]MV:]'UV

A commutative multiplication of this equation byettensogS,, leads to

RSuv N ]'pv: :I'uvm R%V
orto
RSuv: Rsuv

Due to our definition above it i&,, + gty =rSu. The equation before changes to
R Euv + R tuv = S

R~y

A commutativelivision of the equation before by the teng8y, leads to

(211)

(212)

(213)

(214)

(215)

(216)

(217)
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REw , el 1, (218)

R Suv R SJV

Quod erat demonstrandum.

3.7 Theorem. The normalization of the relationship between matter and gravita-
tional field

Claim. (Theorem. Proposition. Statement.)
The relationship between the quantum mechanicalabpeof matter and the wavefunction of the graiotaal
field can be normalized as

Rgpv + RMpv = +1“V (219)
U, U
Direct proof.
In general, axiom | is determined as
+1=+1 (220)

A commutativanultiplication by the tensor of the unified fielg, leads to

1,n1=1,n1 (221)

or too
]uv = j_uv (222)

A commutative multiplication byM ., leads to

fM,nl,=:M N1

pv pv pv pv (223)
which is equivalent with
R Muv = RM 1Y (224)
and at the end with
RMuv_ RM pvzouv (225)

In our understandingM,,, is a determining part of |J We add {J,, and do obtain

RMuv+qu_ RM uv:U [\ (226)
Due to Einsteirall but matter is gravitational fieldSincerg,, = U,y - M, it follows that

Rguv+ RMuv: qu (227)
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A commutativedivision of the equatiobefore by |J, leads to the normalization of matter and gravitslo
field as

R RMpv:_'_l“ (228)
U U v

" uv

Quod erat demonstrandum.

3.8 Theorem. The gravitational field rgyv

Claim. (Theorem. Proposition. Statement.)
The gravitational fielckg,, is determined as

=_ RWw (229)
Rguv -
. Rcuv N Rva
Direct proof.
In general, axiom | is determined as
+1=+1 (230)

A commutativanultiplication by the tensor of the unified fielg, leads to

1,n1=1,n1 (231)

or too

]_“V = ]'uv (232)

Due to a theorem before it igH,, : rS.v) *+ Rt RSi)=1 The equation before changes too

+1, = ﬂ + b (233)
RSuv R va

Due to another theorem before it @A, : Un) + (Y. Up)=1.. The equation before changes too

Rgpv + RMpv: REuv+ Rt Hv (234)

u, U S, &S

1\ pv R™~uv

uv

A commutative multiplication by L is leads to

U U
Rgpv+ RMpv: S n RE + - n Rtpv (235)

R>uv R ~uv
According to our definition, it i8S,y = (rRCuwN rRCGw) NUy. Thus far, it is ((1)/ (RGN rRCGw)) = Uw / rSuv. The
equationbefore changes to
E t
_ R v R “pv
R gpv + R M pv + (236)

RCw N rCyw  rRCWN RC

R™pv
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Due to our definition of matter ad,,, = rE,., /(rCuvN rCw). The equatiomhanges to

— uv
Rgpv+ RMuv_ RM + (237)
puv 'Ry

The tensor of matteyM,,, drops out, and what is left is the tensor of trevigational fieldzg,, as

_ Rl (238)

rRCuw N rC

Rguv =
pv

Quod erat demonstrandum.

3.9 Theorem. The normalization of the relationship between the tensor of energy
and the wave function tensor.

Claim. (Theorem. Proposition. Statement.)
The relationship between the Hamiltonian operatal the wavefunction can be normalized as

=M + =P +1,, (239)

R Suv R va

Direct proof.
In general, axiom | is determined as

+1=+1 (240)
A commutativanultiplication by the tensor of the unified fielg, leads to

1,n1=1,n1 (241)

or too

]uv = 1uv (242)
A commutative multiplication of this equation byettensogS,, leads to

RSuv n ]'pv = luv n R Sw (243)
orto
RS = R%v (244)

wv
Due to our definition above it jgH,,, + ¥,y =rS.v. The equation before changes to

RHuv+ RLIJpv: RS

uv (245)
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After a commutative division of the equation befditee normalization of the relationship between ¢hergy
tensorgH,,, and the tensor of the wavefunctigtl,, follows as

’Hw , fW 1, (246)

R Suv R va

Quod erat demonstrandum.

3.10 Theorem. The relationship between the wave function tensor W,y and the
tensor of the gravitational field rgyv

Claim. (Theorem. Proposition. Statement.)
In general, the tensor of the gravitational figdgl, is determined as

Wy
RO = _ R w (247)
. Rcuv N Rva
Direct proof.
In general, axiom | is determined as
+1=+1 (248)

A commutativanultiplication by the tensor of the unified fielg, leads to

1,n1=1,n1 (249)
or too
1,=1, (250)

Due to a theorem before it igM ., : rRSw) + G¥uv: RSWW)=1- The equation before changes too

+1, :ﬂJ,ﬂ (251)
RSuv RSJV

Due to another theorem before itggy(: U,,) + My @ Uw) =1, The equation before changes too

r9uv + RMuv — rH o rRY Hv (252)

u, U S, &S

[\ 1\ R>uv

Multiplying this equation by L, it is

U U
_ uv uv 253
Rguv+RMuv_ S N RHuv + N RLIJ pv ( )
R>uv R “v
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According to our definition, it IS,y = (rRCuwN rRCuw)N Uy Thus far, it is (1, /(rCuvn rRCw)) = Uy / &S The
equation before changes to

H y
Rguv_'_ RMMV: R™ "pv + R " uv (254)

C,N gC C,.,N gC

R ™~pv R™pv R™uv R™~pv

Due to our definition of matter a# ., = grH v/ (RGN rCw), €Quatiorbefore changes to

()
- R " pv
Rgpv + RM pv RM uv+ (255)
Rcuv N chv

Subtracting the tensor of mattgvl,, on both sides of the equation before, the tenttheogravitational field
rOuv follows as

_rPw (256)

Rguv:
rCu N &C

uv pv

Quod erat demonstrandum.

3.11 Theorem. The equivalence of the tensor of time gt,, and the tensor of the
wave function Wy

Claim. (Theorem. Proposition. Statement.)
Under conditions of the special theory of relagiitom the standpoint of a stationary observer iR it

R tuv =R Y uv (257)
Direct proof.
In general, axiom | is determined as
+1=+1 (258)
A commutativanultiplication by the tensor of the unified fielg, leads to
1,n1=1,n1 (259)

or too
]uv = j_uv (260)

A commutative multiplication by the tensor of thegtational fieldgg,.,, we obtain
Rguv N 1uv = Rguvm ]'uv (261)

Due to a theorem before, itdg,, = rt,v /(RGN rRCuw). We obtain

Rtpv
N zC

=0, (262)
rC e

uv uv
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According to another theorem, itdg,, = rW,v/ (rCuvN rCw). RE@rranging equation, we obtain

¥

_ Hv

Rcuvm RCuv Rcuvm Rva

Rearranging equatioyields

Quod erat demonstrandum.

3.12 Theorem. The generally covariant form of Schrédinger’s equation

(263)

(264)

Einstein's field equations can be rewritten explicks a wave equation. In order to geometrizentladter field
in general, it is useful to bring Schrédinger’s guen mechanical “wave equation” into a generallyaraant

form.

Claim. (Theorem. Proposition. Statement.)

In general, the generally covariant form of Schngyéir’'s equation is determined by the equation

: 0 _
Ipv n thvn (_ N RLIJ pv = RH uvn RLIJ H
ot ),

Direct proof.
In general, axiom | is determined as

+1=+1
A commutativanultiplication by the tensor of the unified fielg, leads to
1,n1=1,n1

or too

Lv=1y

A commutativanultiplication bygH,,, n g¥,, yields

RHuvn RLIJpv = RHuvn Rl'IJ H\

.. .. (0 4 N N 1, N
Due to our definition it is (— =- b n—" 2N /0 nT,
a 1Y Ipv N Rh uv Rcuv N RCuvn chvn RC v
Substituting this equation into the equation

we obtain the generally covariant form of Schrédirg equation as

(265)

(266)

(267)

(268)

(269)

before



Ilija Baruk¢ic¢

. 0 _
Ly N R7 N (aj ngW, =gH, n ¥, (270)
uv

Quod erat demonstrandum.

Scholium.

A methodological important point in the procesdtw establishment of field equations for unifieeldi theory
is the relationship between quantum theory andgatal) field theory. In this context, with regdadthe unified
field theory, an extension of general relativityisttrial to bridge the gap between quantum theowy (classi-
cal) field theory yields the derivation of quantdiheory as a consequence of the unified field theArgatis-
factory quantization of the gravitational fieldlistemains to be achieved.

3.13 Theorem. The quantization of the gravitational field

Claim. (Theorem. Proposition. Statement.)
In general, the quantization of the gravitationeld is determined by the equation

M, N SUTAAN: LIV (A RPN 4 (271)
R uv Rg T2 dt
chvm RCuv uv Rlen chv
Direct proof.
In general, axiom | is determined as
+1=+1 (272)

A commutativanultiplication by the tensor of the unified fielg, leads to

1,n1=1,n1 (273)

or too

]_“V = ]'uv (274)

A commutativanultiplication bygH,, n g¥,, yields

RHuvn RLIJpv = RH uvm Rl'IJ H\ (275)
Due to a theorem before, this equation is equivalétin
=j 0 276
rHy 0 W S0 RN 3 Nng¥, (276)
t v

Dividing by the speed of the light squared, we obta
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H Y i Nh 0 Y
R "pv n R T pv - uv pv n (_ n RT uv (277)
chvaCuv RCanRC]J\/ R(Eme(Elv tpv R%vaE\/

Due to our definition of matter it igvl,,, = rH, /(rCvN rCwy). The equation before changes to

Y i N L7 0 Y
. M " n R T pv — W R pv n (_ n RT pv (278)
RvamRCuv chvnRCw tuv R(ElvnRva

Due to a theorem before itgg ., = ¥,/ (rCuvN rCwy). The quantization of the gravitational field foNs as

i, N gh W
RMyy N gy, =t m(aj n—R W (279)
w o rRG

chvm Rva ot v chv

Quod erat demonstrandum.

3.14 Theorem. The tensor of time gty

In general, the modification of our understandifigace and time undergone through Einstein'sivigiathe-
ory is indeed

280
Rtw=(%ﬂgwj—(/\ﬂgw) 0
Claim.
In general, axiom | is determined as
+1=+1 (281)
A commutativemultiplication by the tensor of the unified fielg, leads to
1,n1=1,n1 (282)

or too

1,51, (283)
A commutativenultiplication of this equation by Einstein's siseenergy tensor leads to
1.,nrE,=rEnn1, (284)
or to
rEnw=r E (285)

uv uv

which is equivalent with Einstein's field equatias
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(286)

(Rw-%ﬂ @lw}(/\n 9u) =r B

Rearranging equation, we obtain
R (287)
R, =r E“V+(E N gwj—(/\ N gw)

Under conditions of general relativity, the tensbispacesS,, is equivalent with the Ricci tensor,R Thus far
we equateS,,= R, and do obtain

R (288)
suv =g E“V+(E N gwj—(/\ N gw)
In general, it iRS,,= rE, *+ rly. Rearranging equation before yields
R (289)
REuv+R uv:R Euv+(5 n guvj_(/\ n guv)
In generalunder conditions of the theory of general theding tensor of timet,,, follows as
(290)

Rtpv:(%m gwj_(/\ n gpv)

Quod erat demonstrandum.

3.15 Theorem. The equivalence of time and gravitational field

In general, the modification of our understandifigace and time undergone through Einstein'sivigiathe-

ory is indeed a profound one. But even Einsteiglativity theory does not give satisfactory answers lot of
guestions. One of these questions is the probletimeotrue' tensor of the gravitational field. Th&pose of this
publication is to provide some new and basic funelatal insights by the proof that the gravitatiofield and
time is equivalent even under conditions of theegahtheory of relativity.

Einstein's successful geometrization of the gréwital field in his general theory of relativity & not include
a geometrized theory of the electromagnetic fietal fThe theoretical physicists working in the fieldthe gen-
eral theory of relativity were not able to succ@efinding a convincing geometrical formulation thie gravita-
tional and electromagnetic field. Still, electromatjc fields are not described by Riemannian methtsre se-
rious from the conceptual point of view, in ordefachieve unification, with the development of cuam theory
any conceptual unification of the gravitational axldctromagnetic field should introduce a posgipilhat the
fields can be quantized. In our striving towardfigation of the foundations of physics a relatiddteld theory
we are looking for should therefore be an extensiotie general theory of relativity and equallyaf no less
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importance a generalization of the theory of thevgational field. In the attempt to solve theselgems one
meets at least with another difficulty. Einsteinswelemanding that

“the symmetrical tensor field must be replaced Impa-symmetrical one. This means that the condijjpr g
for the field components must be dropped) “

Evidently, following up these train of thoughts andview of all these difficulties, the followindp¢ory is based
on a (gravitational) field of more complex natustill, in our attempt to obtain a deeper knowleddehe
foundations of physics the new and basic conceptsnaaccordance with general relativity theorynfrthe be-

ginning but with philosophy too. In general, enertisne and space are deeply related and interatikeghe
one with its own other and vice versa.

Claim.
The relationship between time and gravitationdtifie determined as

Rtpv = c R gpv (291)

Proof.
In general, axiom | is determined as

+1=+1 (292)
A commutativanultiplication by the tensor of the unified fielg, leads to

1,n1=1,n1 (293)

or too

]_“V = ]'uv (294)

A commutativemultiplication of this equation byRE“V + .t . vyields

R *uv
R Euv + Rtuv = REuv+ Rtu\ (295)
initi = iti = v =
Due to our definition, S, = gE, + gt,, itis _ U,S———n S, =M+ 0,
RCuv N RCuv
and it follows that

REuv+ Rtuv: Rcuvn Rvan ( RM uv+ Rg u) = Rsp (296)

Rearranging equation, it is as
REuv+ Rtuv: ( Rcuvn Rvan RM u\)+( Rcu\p Rcu\/m Rg u)/ (297)

4x 2x Y
Due to the relationship M, =———* R ™ Yy
Rcuv N RC|.1V (chv n chv) N ( RCuvn RC|.1Vn Rvan Rcu)

nT

pv

it follows that

REuv+ Rtuv: REpv+( chvn Rcuvn Rgp)
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(298)
The equivalence of time and gravitational fielddals in general as
Rtuv = Rcuv n RCuvn Rgp\ (299)
Quod erat demonstrandum.
3.16 Theorem. The generally covariant form of Planck’s-Einstein relation
Claim.
In general, it is
Rhuv n O(’opv_ Rh pvm Rf Hv (300)
Direct proof.
In general, axiom | is determined as
+1=+1 (301)
Multiplying by the tensor of the unified field,J we obtain
1,n1=1,n1 (302)

or

]_“V = ]'uv (303)

Multiplying this equation by the stress-energy tarsf general relativity ((>42><n><y)/(c4))><Tp\,, itis

4x2 4x 2
A(E ()

wherey is Newton's gravitational ‘constant’, ¢ is the egef light in vacuum and , sometimes referred to as
‘Archimedes’ constant’, is the ratio of a circlelscumference to its diameter. Due to Einstein’sagal relativi-
ty, the equation before is equivalent with

R 4x 2% TIX
R, ‘(5" guvj + (’\ % guV) = (Ty X ij (305)

R, is the Ricci curvature tensor, R is the scalar durea g, is the metric tensov) is the cosmological con-
stant and [, is the stress—energy tensor. By defining the Eindgensor a&,~ Ry~ (R/2)q,, it is possible to
write the Einstein field equations in a more contzac

0, (Axg.) = PET T,

C4



Ilija Baruk¢ic¢

(306)
This equation can be rearranged as
h h 4 N2 . N0NT,N
R N (Guv +(/\xguv)) =R N A e = Y ad N Tuv (307)
thv thv chvm Rcuvm RC uvm RC pv

Simplifying equation we obtain

4
Rhuvn£ b n(Gw+(/\xgw))J= oo |2 n[ TIPS J (308)

pv
Rhu Rcuvm Rcuvm Rcuvm RC

R pv uv

Due to our definitions before, the equation casibglified as

4
fiyy 0 oWy, = jN N0 b n{ w0 A 0 T 0 Vi mTJ (309)

pv
th Rcuvm Rcuvm chvm Rcuv

and the generally covariant form of Planck’s-Eiirstelation follows as

Y I\ Hv R v (310)
Quod erat demonstrandum.
3.17 Theorem. The generally covariant form of de Broglie relationship
Claim.
The generally covariant form of de Broglie’s retatship is determined as
h (311)
h = =| B
R uv_Rpuvm R)\pv mRuvm F\)\w
chv
Direct proof.
In general, axiom | is determined as
+1=+1 (312)
Multiplying by the tensor of the unified field,J we obtain
1,n1=1,n1 (313)

or

]W = ]'uv (314)

Multiplying this equation byc,,, we obtain

®
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luv N Rcuv = 1uv N Rcuv (315)
and at the end
Rcuv = Rcuv (316)
Due to our definition, it is
chv = Rfuv n R)\ Hv (317)
This equation can be rearranged as
]uv _ wa (318)
R)\uv chv
Multiplying by gh,., we obtain
— R 'pv _ Rhuvm prv_ R " pv f (319)
Rppv - A - - N g Hv
R pv chv Rcuv

wheregp,, denotes the tensor of the momentum. The genesallgriant form of de Broglie’s relationship fol-

lows as
h (320)
h = =| B
R uv_Rpuvm R)\pv mRuvm F\)\w
chv
Quod erat demonstrandum.
The four basic fields of nature
3.18 Theorem. The tensor of ‘ordinary’ matter oE,
Claim.
In general, of ordinary matter follows as
A= B, =[BTV ) [ e (e xE ) [Lxg xE, xE®
uv —0 =pv T T uv E ( uc v ) Z guv dv (321)
Direct proof.
In general, axiom | is determined as
+1=+1 (322)
Multiplying by the tensor of the unified field,J we obtain
1,n1=1,n1 (323)

®
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or
]uv = j_uv (324)

Multiplying this equation by the stress-energy tarsf general relativity ((>42><n><y)/(c4))><Tp\,, itis

4% 2% TIX 4x 2X TIX
#hon(FEEE = (S,
¢! ¢
or
4% 2% TIX 4x 2X TIX
(—4 YT, j (—4 YT, j (326)
C C
Due our definition this is equivalent with
_ 4x 2% Xy
Auv + Buv - (T xTuvj (327)
and at the end
_ [ 4x2x% Xy
Auv = (TXTMVJ -B uv (328)

Due to our definition it is B~(1/(4x19)x((FucxR,°) — (((1/4)Xgy* Fgy % F™). The equation changes to

_ o 4x2xmxy L 1 .
A =oEuv=(c4XTuvj (4,(”] [(F xF,°)- [4><9w><de><F )] (329)

Quod erat demonstrandum.

Scholium.
Under conditions of general theory of relativithetassociated probability tensor, the ‘joint disition’ tensor
between the tensor of energly,, and Einstein’s tensor (3 follows as

4x 2XTIXY (L y_(1 v
)=( c* 7XTHVJ [4Xn_]x((FHCXF\, ) (4x guvdevxF jj ) oEpV (330)
- R "R

pv uv

p(Apv) p(OEuv)E p(REuv'G

The tensor of ordinary mattgM,,, is determined as

A, Eu (1) (4x2 1 1 Y
O G e e P S (RS R U0 B

®
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3.19 Theorem. The probability tensor associated with ‘ordinary’ matter (E,v
Claim.
In general, of ordinary matter follows as

. . 1, E,. (332)
p(Al.lv)Ep(OE},lv)E'A\uvn RLIJ uVEOEan FlLIJ va OE p\p RPl =0R7U
Hv Hv
Direct proof.
In general, axiom | is determined as
+1=+1 (333)
Multiplying by the tensor of the unified field,J we obtain
1,n1=1,n1 (334)

or
]uv = j_uv (335)

Multiplying this equation by A, it is

Hv Hv
(336)
or in general to
Auv E0 Euv
(337)
Multiplying by the tensorY it is
Auv n RYuv EOE pvn RY Hv (338)

The commutative multiplication with the tensof,,, yields the probability tensor as associated with tensor
AL

p(AL)EALN Y WEE W0 Y (339)

uv T

Due to our theorem before, itd¥',,, = R*LIJH\, = (1./R.). The equation before simplifies as

: . 1, oE

p(AMV)Ep(oEuv)EAwﬂ WL EELN W E E 0 (340)

Quod erat demonstrandum.
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3.20 Theorem. The stress-energy tensor of the electromagnetic field B,y
Claim.
In general, it is

— = 1uv c 1 dv
Buv o Euv = ([4)(77: X (Fuc X Fv )_ Zx guv X de xF (341)
Direct proof.

In general, axiom | is determined as
+1=+1 (342)
Multiplying by the tensor of the unified field,J we obtain

1,n1=1,n1 (343)

or
]uv = j_uv (344)

Multiplying this equation by B, it is

(345)
We defined B,=(1/(4xm)x((FuxF.) — (((1/4) xguyx Fgy % F™)) where denotes the stress energy tensor of the
electromagnetic field. In general, we obtain

— — \Y c 1 dv
BuSEu = {U‘)‘(ﬂ]x[(ﬁc xF, )-(4X Oy X Fyy X F m (346)

Quod erat demonstrandum.

3.21 Theorem. The probability tensor as associated with the electromagnetic field oE,v
Claim.
In general, it is

. . 1, _oEu (347)
p(B)Ep(OEJV)E a‘lvn RquvEOfE.wm RLIJHVEOfE‘Wm Ru EORu
Hv Hv
Direct proof.
In general, axiom | is determined as
+1=+1 (348)
Multiplying by the tensor of the unified field,J we obtain
1,n1=1,n1 (349)

®
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or
]uv = j_uv (350)

Multiplying this equation by B, it is

(351)

— — \Y c 1 dv
BuSEu = [[ i‘(ﬂ]x[(ﬁm xF, )-(4X Oy X Fyy X F ]B (352)

where B,=(1/(4x))x((FuexFy%) — (((1/4) Xgux Fgy % F™)) denotes the stress energy tensor of the eleagom
netic field. Multiplying by the tensagY it is

or in general to

Buv N RYuv EOEMV n RY Hv (353)

The commutative multiplicationvith the tensogY ., yields the probability tensor as associated with tensor
By

P(B.) =B YW=oEwn oY (354)

Uy

Due to our theorem before, itd¥',,, = R*LIJH\, = (1./R.). The equation before simplifies as

: : L. _ oEw (355)
p(B)E p(OE”")E Byn W WwSoEuvn ¥ W=0Eun RLl = ORu

pv pv

Quod erat demonstrandum.

Scholium.

Due to Einstein’s theory of gravitation the stresergy tensor of the electromagnetic field is &feevoid of
any geometrical significance. An additional taskloé approach to the unified field theory is thasgibility to
“geometrize” the electromagnetic field. A geomedtitensorial representation of the electro-magrfeid un-
der conditions of the general theory of relativitighin the framework of a “unified field theory” lows as

[(]w]x[(pmxpvc)-[ixgw xF, devmsp(B)m Rw=p(sEu)0 R, (356)

4xr

3.22 Theorem. The relationship between the gravitational and the electromagnetic field
Claim.
In general, it is

C, +(Axg,)= B (357)

()
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Direct proof.
In general, axiom | is determined as

+1=+1 (358)
Multiplying by the tensor of the unified field,J we obtain

1,n1=1,n1 (359)

or
1,=1, (360)

Multiplying this equation by the stress-energy tarsf general relativity ((>42><n><y)/(c4))><Tp\,, itis

4x2 4x 2
R

Due to Einstein’s general relativity, the equatimiore is equivalent with

R 4X 2% TIX
R, ‘(5" gwj + (’\ % guV) = (Ty X ij (362)

By defining the Einstein tensor &.~ R.v- (R/2)0,., it is possible to write the Einstein field eqoas in a
more compact as

4x 2% T[xy

G, *+(Axg,)= (—04 T, j (363)
According to our definition, under conditions ofngeal relativity it is Auv + Cuv = OWW = Guv
Substituting this relationship into Einstein’s @iedquation, we obtain

4 X 2X TIX
A,+ C, +(/\xgw) (TV T, j (364)
4 x 2% TIX y

Under conditions of general relativity it is A + B T pv
Substituting this relationship into Einstein’s @iedquation, we obtain

A+ C,+(Axg,)= A,+ B, (365)

We defined B, as the second rank covariant tensor of the eletgmetic field in the absence of ‘ordinary’
matter and ¢, as the tensor of time (i. e. gravitational fieds) associated with the tensqr,AThis equation be-
fore can be rearranged as

()

C, +(Axg,)= B (366)

Quod erat demonstrandum.

®
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Scholium.
The following 2x2 table may illustrate the equatkafore Table 4).

Table 4The unified fieldgW,,.

Curvature
yes no
Energy / yes AW BW R U“"
momentum o Cuv Duv . Q w
OWuv OWW RWuv

3.23 Theorem. The tensor of time ot,v as associated with ordinary energy tensor oE.v

Claim.
In general, the tensor of tingk,, as associated with ordinary eneggy, follows as

47

\Y c 1 v
Cp\; = otuv = +[1“]X((Fuc x Fv )—(4ng x de x Fd jj_/\xguv (367)

Direct proof.
In general, axiom | is determined as

+1=+1 (368)
Multiplying by the tensor of the unified field,J we obtain

1,n1=1,n1 (369)

or
]w = luv (370)

Multiplying this equation by (z we obtain

C =C (371)

uv v

Due to our definition, we rearrange this equatimn t

C,= G,- A,

v Hv

(372)
We define A, = ((4x2xTxy)/c™) xT,v- B,y The equation before changes too

~ _ 4% 2XTIXY 1, \_[(1 v
Cuv = Guv - Auv = Guv _((dlx Tuv\J_(wjx[(Fuc X FV )—(4ng X FdV x F¢ \JJJ (373)

or to

C 4x 7

_ AX2XTIXY 1o e\ (1 v
N NEA R T W R
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The tensor of timgt,,, as associated with ordinary eneg§y, follows as
= = luv ) 1 dv -
Cuv = ol _+(4xn X (F”CXFV ) nguvdevxF Axguv (375)

Quod erat demonstrandum.

3.24 Theorem. The probability tensor as associated with the tensor oty
Claim.
In general, it is

. . 1, t, (376)
p(C:)Ep(Oq.lv)Ec:uvm RLIJHVEO.':MVm RLIJ pv= Otp\p I;l E%
uv Hv
Direct proof.
In general, axiom | is determined as
+1=+1 (377)
Multiplying by the tensor of the unified field,J we obtain
1,n1=1,n1 (378)

or
]uv = j_uv (379)

Multiplying this equation by (, it is

(380)
or in general to

— — luv c 1 v
CHV o tW:[[A].X;[ x (Fuchv )_ ngpvdevde _/\xgpv (381)

where B,=(1/(4x))x((FuexFy%) — (((1/4) Xgyux Fgy % F™)) denotes the stress energy tensor of the eleagom
netic field andAxg,, denotes the cosmological ‘constafittimes the metric g term. Multiplying by the tensor
RY uv it is

(382)

The commutative multiplicationvith the tensogY ., yields the probability tensor as associated with tensor
Cuv

Y, Sot,n Y (383)

Due to our theorem before, itd¥',,, = R*LIJH\, = (1./R.). The equation before simplifies as
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. . 1, v (384)
p(C:)Ep(Oq.lv)Ec:uvm Rl-P“VEOt”Vﬂ Rl'IJ pv= Otp\[\l Rl'l :(l;u
uv Hv
Quod erat demonstrandum.
Scholium.
Under conditions of general theory of relativitiyetassociated probability tensor follows as
luv c 1 dv
_ _+(4X7[ X (Fuchv )_ ngpvdevxF _Axgpv_ Qt”\,
p( Cu)=Ploty)= = == (385)
v Hv

3.25 Theorem. The tensor of the gravitational and the electromagnetic hyper-field

Einstein himself spent decades of his life on théication of the electromagnetic with the gravibaal and
other physical fields. Even from Einstein’s andevtffiailed attempts at unification the hunt for mexs for
reaching a common representation of all four funeiatal interactions in the framework of “unified lfieheo-
ry” is justified. In all the attempts at unificatiove encounter that electromagnetic fields anditptienal are to
be joined into a new field. Tonnelat points out:

“a theory joining the gravitational and the eleatagnetic field into one single hyperfield whoseiatpns
represent the conditions imposed on the geomesioatture of the universel|

Claim.
In general, the tensor of the gravitational andeieetromagnetic hyper-field is determined as

2 G, +(Axg.)= G+ B, (386)

Direct proof.
In general, axiom | is determined as

+1=+1 (387)
Multiplying by the tensor of the unified field,J we obtain

1,n1=1,n1 (388)

or

]uv = 1uv (389)
Multiplying this equation by the tensogBwe obtain

]'uv N Buv = luv N Buv (390)
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or

Buv = pr (391)

Due to the theorem before, the equation beforegdmito
— 392
Cuv +(/\><gpv)— Buv (392)

Adding G, , the tensor of time (i. e. gravitational field) associated with the tensog,Awe obtain

— 393
Cu* Cu+(Axg,)= G+ 8, %99
or at the end the tensor of the gravitational dedeiectromagnetic hyper-field

2x C, +(Axg,)= G,+B8, (394)
Quod erat demonstrandum.

Scholium
Under conditions of general theory of relativitietgravitational and the electromagnetic hypedfisl deter-
mined as

— — ]'uv c 1 v
Cuv+Buv=2x Cuv+ /\xgw=2x[4xn X (Fuchv )— nguvdevde - /\xgw (395)

It is very easy to get lost in the many differettempts by Weyl, Kaluza, Eddington, Bach, Einsteia other to
include the electromagnetic field into a geomesetting. The point of departure to “geometrize” glectro-
magnetic field was general relativity. In view @ietimmense amount of material, neither a briefriazi de-
scriptions of the various unified field theoriesrrall the contributions from the various scientiichools to
unify the electromagnetic and gravitational fiethde discussed with the same intensity. The jgininprevi-
ously separated electromagnetic and gravitatiaeld fvithin one conceptual and formal second ramsbr is
based on a deductive-hypothetical methodologicar@gh. Einstein himself spent decades of hisdiiethe
unification of the electromagnetic with the gratidaal field. Mie, Hilbert, Ishiwara, Nordstrom arathers
joined Einstein in his unsuccessful hunt for pregren this matter. In contrast to Kaluza’'s geornation of the
electromagnetic and gravitational fields within isefdimensional space, this approach is based cziglipl
within the conceptual and formal framework of geheelativity. Under conditions of general theoffyrelativ-

ity, the associated probability tensor follows as

1|JV c)_ 1 dv _
(zuvn Cuv)+ /\ng =2x(4Xn’ * (F“CXFV ) 4xg“\)XFdVXF AXQ“" (396)
R R

uv uv

p( C,+B,)=
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3.26 Theorem. The tensor ot
Claim.
In general, the tensor,D= ot,,, as associated with the stress energy tensor aéistromagnetic field B = oE,.,

follows as
— R luv c 1 v
Duv OIW =(2jxguv_(4xn]x[(|:ucx|:v )_[4xguvdevde jj (397)

Direct proof.
In general, axiom | is determined as

+1=+1 (398)
Multiplying by the tensor of the unified field,J we obtain

1,n1=1,n1 (399)

or
]uv = j_uv (400)

Multiplying this equation by the Ricci tensof,Rve obtain

1,NnR,=1,nR, (401)
or
R, =R, (402)
Adding Q. it is
va = va + Ouv (403)
The zero tensor is equivalent tg, & +((R/2xg.) - ((R/2xg.). We rearrange the equation before as
=R D (E)ea,

Einstein’s tensor is defined asG R, - ((R/2)xg,,). We simplify the equation before as

R (405)
Ruv = G“" +(Ej Q= Guv+—Ghv

Due to our definition, itis R = A,y + Byw+ Cuw + Dw and Gy = A, + Cu. We rearrange the equation
before as



Ilija Baruk¢ic¢

R (406)
AL +BHV+CW+ D,,=A uV+C ”V+(Eng "
Simplifying equation, it follows that
(R (407)
Buv + Duv - (Ej ><guv
or
R (408)

Due to the decomposition of the stress-energy temsdg(4<2xTxy)/c’) XT,w= A + By, the stress-energy ten-
sor of the electromagnetic field is,B(1/(4x10))x((FuexF%) — (((1/4) xgu* Fay ¥ F™). Under conditions of
general relativity, the tensor,D= ., as associated with the stress energy tensor oé¢ldotromagnetic field
B,v = oE, follows as

_(R Ly e\ _(1 v
w Otuv=(2]xguv_(4xﬂ]x((|:ucx|:v )—£4xgwadvde j] (409)

Quod erat demonstrandum.

D

3.27 Theorem. The probability tensor as associated with the tensor ot,v
Claim.
In general, it is

. 1, t, (410)
p(C:)Ep(Oq.lv)Ec:uvm Rl-Pquotuvﬂ RLIJ va Otp\n Rl'l E%
nv Hv
Direct proof.
In general, axiom | is determined as
+1=+1 (411)
Multiplying by the tensor of the unified field,J we obtain
1,n1=1,n1 (412)

or
]uv = j_uv (413)

Multiplying this equation by R, it is

O
1]
O

(414)
or in general to
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(415)

where B,=(1/(4x))x((FuexFy%) — (((1/4) Xgux Fgy % F™)) denotes the stress energy tensor of the eleagom
netic field andAxg,, denotes the cosmological ‘constafittimes the metric g term. Multiplying by the tensor
RY uv it is

(416)

The commutative multiplicatiomvith the tensogY ,, yields the probability tensor as associated with tensor
D

p( Duv) = p( OLV) = Duv n RYuvE OIuv N RY [T\ (417)

Due to our theorem before, itd¥',,, = R*LIJH\, = (L./Rw). The equation before simplifies as

. . 1, _ oty (418)
p(OLV)EDWmRLP Eot n RLIJ Eo,t QLEOH

uv —Hv

p(D)

Quod erat demonstrandum.

Scholium.
Under conditions of general theory of relativitiyetassociated probability tensor follows as

R v c 1 v
(2jxgw—(4]1*(ﬂjx((meFv )—[4xgwadvde D (419)

R

uv

p( Dy)=p(otw)=

3.28 Theorem. The tensor wg,v

Still, one of the major unsolved problems in phgsgthe unification of gravity with all the othieteractions of
nature. Such a unification would have to providbeoretical framework of a theory of everything ethifully
would explain and link together all physical aspeat objective reality. Einstein's theoretical framork of the
theory of general relativity focuses mostly on gnavas being curvature of spacetime. The curvatifre
spacetime is expressed mathematically using theiatehsor — denoted,g Curvature itself is caused by the
presence of energy/matter and accelerating eneeagigmgenerate changes in this curvature. Changései
curvature of spacetime propagate in a wave-likemaaand are known as gravitational waves.

Claim.
In general, under conditions of general relativigsavitational waves are determined by the equation
— W uv _ v c v
9w = - xg, ~ x| F _xF - —=%g xF. xF (420)
W v va n va 2“\/ n Cuv n va v (4“\) xn_w n Cuvﬂ va] ( He v ) 4 (Y dv

Direct proof.
In general, axiom | is determined as
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+1=+1 (421)
Multiplying by the tensor of the unified field,J we obtain

1,n1=1,n1 (422)

or
]uv = ]w (423)

Multiplying this equation by the stress-energy tarsf general relativity ((>42><n><y)/(c4))><Tp\,, itis

4x2 4x 2
+1,, N (—x :nxy Tj +1,,0 ( a znxy Tj (424)

Due to Einstein’s general relativity, the equatimiore is equivalent with

R 4x 2% TIX
R, ‘(5" gwj + (’\ % guV) = (Ty X ij (425)

By defining the Einstein tensor &.~ R.v- (R/2)0,., it is possible to write the Einstein field eqoas in a
more compact as

4 X 2X TIX
G, +(Axg,)= (Ty Tj (426)

T

The equation can be rearranged g8, = [4]11: ]x[(Fuc xF, c) _(;Erx O X Fy, % Fav j}_ Axg,,

R _( 4x 2xTIXY
Ruv _Exgpv-l_(/\x guv) _(Tx Tuvj

(427)
or as
4Xx 2XTIXY _R
Ruv _(TXTHVJ _Ex gpv_(/\>< gpv) (428)
or as
R
Rtpv =Exguv_(/\xgpv) (429)
This equation can be changed as
R
Rtpv+0:§><9uv‘(/\x gpv) (430)
oras
_R
Rtpv_Otuv+ Otuv_zxgpv_(/\xgpv) (431)
wtpv = Rtuv_ Otpv
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Due to our definition it is . Teguation changes to

R
Wtuv+0tuv=5xgpv_(/\xgpv) (432)
and at the end to

R
Wtuv zzxgpv_(/\xguv)_ Otuv (433)

4 N

uv

v C 1 \%
Due to the theorem before it igt,, = [JMFJX((FW xF, )—[4>< Oy X Fy X Fe jj - Axg,,
nv

The equation above changes to

R v o (1 '
thv:Exgw_(/\xg“")_[(lu—Jx((FucXFV )_(nguvdevde jJ_ /\xguvj (434)

4pvn7rw
orto
o =Rxg, ~(Axg, )~ 2 |« (chFf)-(lxgvdevde“j + Axg,, (435)
H 2 H W 4u\,ﬂ7l'w X 4 ) 3

and at the end to
_ R luv [ 1 dv
thv—EXgpv_{m]X((ﬁchF\, )_ ngwx':dvxl: (436)
Dividing the equation before by the c2, we obtain

t
WOy = R w-[ et }X[(FHCXFVC)-GXQWX Fo % F"”D (437)

= Xg
Cuw N Cyy 2n GvN G, 4W><7ruv n G,N G

Quod erat demonstrandum.

Scholium.

There are circumstances, where the teqgpy is identical with the tensor of the gravitatiomedves. Whether
this is the case in general is a point of furtleearch. It is convenient to consider the existefiggavitational
waves in analogous manner to electromagnetic wda&fere going on to discuss this aspect in moraidehe
could expect gravitational waves to carry energgywom a radiating source. However, there are ssioet-
comings of such an approach. Assigning an energgitjeto a gravitational field is notoriously difilt, both in
principle and technically. In general relativithet energy momentum of a gravitational field at @o@t in
space-time has no real meaning. One way of circatimg such a problem is to take seriously the that all
energy and momentum is contained within the steeesgy tensor. This has the important consequédrate t
there is no energy and momentum left, which co@gbt within an own energy momentum tensor of ttaeg
itational field.
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3.29 Theorem. The probability tensor as associated with Einstein’s tensor Gy
Claim.
In general, it is

R
. . 1, G, 5 O (438)
p(G)Ep(qu)E (prm RLIJMVEOCMVm RLIJ quOCp\[\RLERiu: luv_zT
Hv Hv v
Direct proof.
In general, axiom | is determined as
+1=+1 (439)
Multiplying by the tensor of the unified field,J we obtain
1,n1=1,n1 (440)

or
]uv = j_uv (441)

Multiplying this equation by Einstein’s tensoy, it is

Hv Hv
(442)
or in general to
_ _ R
oCw=G, = [ Ruv_(zjx guVJ (443)
Multiplying by the tensorY it is
Gpv n RYuv E0 Cuv N RY i\ (444)

The commutative multiplicationvith the tensogY ., yields the probability tensor as associated with tensor
G-

P(0Cu) = G YW=0Cun 1Y, (445)

0 ~v R uv_

p(Cu)

Due to our theorem before, itd¥',,, = R*LIJH\, = (1./R.). The equation before simplifies as

R
\ \ 1, G, - 9w (446)
p(G) = p(o QJV) = (prm RLIJ vaO Cuvm RLIJ qu 0 Cp\n == lpv_27

uv uv uv

Quod erat demonstrandum.
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3.30 Theorem. The probability tensor as associated with anti Einstein’s tensor G,
Claim.
In general, it is

R
. . 1, _G, 2 G (447)
p(G)Ep(qu)E (prm RLIJMVEOCMVm RLIJ quOCp\[\RLERiu: luv_zT
Hv Hv v
Direct proof.
In general, axiom | is determined as
+1=+1 (448)
Multiplying by the tensor of the unified field,J we obtain
1,n1=1,n1 (449)

or
]uv = j_uv (450)

Multiplying this equation by anti Einstein’s tenggy,, it is

gpv = guv
(451)
or in general to
_ — R (R
G =Gz R Ru~( B e =[5 a. us2)
Multiplying by the tensorY it is
guv n RYuv EO qu N Rva (453)

The commutative multiplicationvith the tensogY ., yields the probability tensor as associated with tensor
G-

p(guv) = p(og.lv) Egpv N R Yuv EOfcuvm RYuv (454)

Due to our theorem before, itd¥',,, = R*LIJH\, = (1./R.). The equation before simplifies as

R
* * 1V G v 7xg {2 455
p((—';)E r‘-)(O—q-lv)E—G‘-lvn RLPHVEOQJVn R\P ququlvn Ru = E“ :Tu ( )

uv uv uv

Quod erat demonstrandum.
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Scholium.
The following 2x2 table may illustrate the basitat®nships between the tensofable 5).

Table 5The unified fieldgW,y.

Curvature
yes no
Energy / yes AW B“V R UW
momentum o Cuv Duv . Q "
OWuv OV_va RWuv

Under conditions of general theory of relativityg, terms of probability tensors, we obtain the foilog table
(Table 6).

Table 6The unified field in terms of probabitliy tensors .

o Cuvaure

Energy / o p( A ) p( B, ) p( r B )

romenn ne p( Cuv ) p( Duv ) p( R tuv )
p(G.)  p(G) i

3.31 Theorem. Einstein’s Weltformel

As long as humans have been trying to understamthths of objective reality, they have been propgsheo-
ries. In contrast to the well-known quantum thedhg most fundamental theory of matter currentlgilable,
Laplace's demon and Einstein's Weltformel are edlamore widely at least by standing out againsiriteter-
minacy as stipulated by today's quantum theory. Bammess as such does not exclude a deterministitomre!
ship between cause and effect, since every randemt das its own cause. The purpose of this puigicas to
provide a satisfactory description of the microstuwe of space-time by mathematising the detertiinigla-
tionship between cause and effect at quantum lieviie form of a mathematical formula of the causdd-
tionship k.

Despite our best and different approaches of theoworldwide spanning more than thousands of yeden to
describe the workings of the universe in genecalinderstand the nature at the most fundamentaltgonalevel

and to develop a theory of everything progressheen very slow. There are a lot of proposals atetpreta-
tions, some of them grounded on a picturesqueglagrof observation and experiment with ideas.Harg the
battle for the correct theory is not completelyefd metaphysics. Yet, besides of the many effant$ attempts
to reconcile quantum (field) theory with generdhtieity an ultimate triumph of human reason orsthiatter is
not in sight. There is still no single theory whiptovides a genuine insight and understanding a¥ity and
guantum mechanics, one of the most cherished dreaptsysics and of science as such. Einstein’s fafefiel

or a “final” or “ultimate” theory of everythindToE) as a hypothetical theoretical framework bflgsophy,

mathematics and physics capable of describingh@hpmena of objective reality should rest at leasgeneral
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relativity (GR) and quantum (field) theory (Q(F)TStill, physicists have experimentally confirmedttii@R)
and (Q(F)T) as they are currently formulated arsdme extent mutually incompatible and cannot lbethight

in the same respect. Thus far, some of today’st fremners are thetring theory theloop quantum gravityet
cetera and thguantum field theoryAmong the numerous alternative proposals formeitiog quantum physics
and general relativity theory, the mathematical andceptual framework of quantum field theory (¥J(F
covers the electromagnetic, the weak and the stimegaction.In quantum field theory, there is a field associ-
ated to each type of a fundamental particle thgtemrs in nature However, quantization of a classical field
proposed by quantum field theory is (philosophigalinsatisfactory since the very important and amental
force in nature, gravitation, has defied quant@aso far. The problems are related to the quamhgthanical
framework as such. The usual axioms of quantum ar@ch say that observables are represented by tgmmi
operators which is not entirely true. At least ahservable in quantum mechanics is not represdntedHer-
mitian operator: the time it self. Today, the tiiteelf enters into the mathematical formalism ofugtum me-
chanics but not as an eigenvalue of any operatar sGbsequent discussion will be restricted almostpletely
to both, the principles of general relativity ancagtum theory.

Claim.
In general, the mathematical formula of the cavsakionship k (Einstein’s Weltformel) follows as

): o Rqu’ Wuv (p(Rqu’OWp)_p( Rqu)m p( OWuv))
uv

(U000 () ™ J[o(00 ) (ol U] (W) (3 - L) 0

k(& Uy W

Direct proof.
As a rule, the point of departure is axiom I. Imgel, axiom | is determined as

+1=+1 (457)
Multiplying be the tensor of the unified fielg,1 we obtain

1,n1=1,n1 (458)

or

luv = ]uv (459)
Multiplying this equation by the tensor of the cans,.,, we obtain

]'uv N Ruuvzluvm Rqu (460)

or

U= .U (461)

Hv I\
Multiplying by the tensor of the effegiV,,,, it is

RUpv n OWuv: RU uvn yvp\ (462)

crU)

R ~ v

%/(p(R Up) 0 (3= p(x Ua)))

Due to our definition of standard deviation of tause , it isr Uw =
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Substituting this relation into the equation above,obtain
— 0( R qu )

rRUw N W, = o
E/(p(R qu) n (]IN B p( R U”V)))

o( W)

0" "pv

(463)

Due to our definition of standard deviation of effat is OWuv =
%/(p(owuv) n (]'pv - p( OWuv)))

Substituting this relation into the equation befave obtain

0( U )no(W)

R ~ v 0" "pv

i/(p(R U, )n (1[.1\) -p(x qu))) n %/( p(oW,) 0 (:Lv - OV\{W))) (464)

RUpv N Ova:

According to the definition of the co-variance aluse and effect, it is

0( R qu’ OWuv)

(p(RUHV' oW )_ p( RUHV) n p( OWHV))

Substituting this relationship into the equatiofobe, we obtain

R qu N OWuv =

(U W,,) _ a(:U,,)no(W,,)

(p(& Yy W) = P U) B W) Ap(ab) 0 (80 - p(e ) 0 gl AW 0 (3~ o W) (465)

Rearranging equation, it is

o R qu' 0W|,lv (p(R qu’ OWuv) - p( qu) n p( OWuv))
N

(20100 (0) o0 ) (1 oo U ) o (o oV8) (3~ o) o

o(«Un) 0 0(0) 02 0n) 0 (b -0l U ) (Al W) (- Hows)) 467

Quod erat demonstrandum.

®
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Scholium.
The range of the causal relationship is,,-1<  kRU v, oW ) < +1,. In last consequence, negative parti-
cles can be derived from Einstein’s field equation.

Causality and determinism (and prediction) are ofignated even if both are not really the same aRariety

of reasons such an approach to determinism andligus fraught with many problems. A further pteim is
posed by the fact that, as is today widely recagghizhat the fundamental, exceptionless laws afreaire gov-
erned by the laws of quantum mechanics which iiselfidely thought to be a strongly non-determinisg1]-
[34] theory. Roughly speaking, Einstein's dream of apleta[35] theory of quantum mechanics (i. e. hidden
variable theory) with the goal “to restore to thedry causality and locality’36], determinism and definiteness
to micro-reality becamg7] partly mistaken and/or misleading but not impogsibB] -[39] in principle.

The causal relationship k, deeply connected with understanding of objective reality, became a extbjo
clarification and mathematical analysis and hasibeeestigated in a specific, well-defined thearaticontext

of the general theory of relativity as developedthy German-born theoretical physicist Albert Egivst In or-

der for us to gain a clear understanding of thecephof causality or unified field theory under ddions of the
general theory of relativity further explanationdainvestigation is required. Causality has beenrgivarious,
usually imprecise definitions. Many scholars cdnited to the notion of causality and determinismoiag
them Nicolas de Condorcet, Baron D'Holbach and Lagl&0]. One of these definitions is the known Laplace
demon (sometimes referred to as Laplace's Superafign, Hans Reichenbach). The mechanical determinism
generally referred to as Laplace demon is of coursempatible with the mainstream interpretatiofisoolay
guantum mechanics which stipulates indeterminaog,veas formulated by Laplace as follows:

“Une intelligence qui, pour un instant donné, connaitrait
toutes les forces dont la atune est animée, et la
situation respective des étres qui la composent, Si dailleurs
elle était assez vaste pour soumettre ces données a l'analyse,
embrasserait dans la méme feemu les mouvements des
plus grand corps de l'univers et ceux du plus léger
atome: rien ne serait incertain  pour elle, l'avenir comme
le passé seraient présents a ses yeux.[41]

Laplace demon translated into English:

“We may regard the present state of the univerdbeasffect of its past and the cause of its futéreintellect
which at a certain moment would know all forcestthat nature in motion, and all positions ofl al
items of which nature is composed, if thistellect were also vast enough to submit these
data to analysis, it would embrace in a single fdemthe movements of the greatest bodies o0& th
universe and those of the tiniest atom; fsuch an intellect nothing would be uncertain
and the future just like the past would kmesent before its eyes.”

Thus far, to avoid certain major errors of defmitj the geometrical tensorial representation ointla¢ghematical
formula of the causal relationship k (Einstein’s lMiéemel) as

. (P(% Upr Wo) = P U, 0 B W)

P A0 0 )0 e W) (oo (- o) 459

Q
o

c

=

k(& Uy W

pv? 0

is valid for a chaotic and random system too anthotibe reduced to Laplace demon and his articuladf

causal or scientific determinism.
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4. Discussion

Einstein had started unifying the electromagnetid gravitational fields via pure geometry into &fied field
[2] theory. In spite of failing success, Einstein triedrelate the macroscopic world of universal spéoe to
those in the physical phenomena in the submicrasaemrld of the atom. Einstein’s modest hope arelkby to
a more perfect quantum theory was his epistemadbgiod methodological position that a “real stadé’a
physical system exists objectively and indepenadérny observation or measurement, independentwfain
mind and consciousness. Still only a rather smathier of theoretical physicists devoted their wtrkthe
search for a unified theory and the unificatioretefctromagnetism and gravitation has apparentlgdadto the
background at least since the death of Einstein.

For the convenience of the reader, some of the enadlical formalism given by general relativity theds re-
peated in a slightly extended form only as mucheexled for an understanding of this paper. In génfer the
geometrization and the quantization of the fieldsjous geometric frameworks can been chosen. €bengt-
rical structures of the underlying probability fleénables the transformation to different geomdtameworks.

Under conditions of general theory of relativityg wbtain the following relationship$gble 7).

Table 7.Unified field theory under conditions of the theafygeneral realtivity

Curvature
yes no
e | v | R (orr
BT et | A Hertan)) | (Snenwns
/
nTeon n *[[::,w]X[(ﬁcxﬁc)-[ixywxFWXF‘”D] E[MJ“;W]x((r:wxﬁ‘)—(%xgwxFWxF“V)]] o
tum o % (%}n o [5)” 9 ~AN G,
G,, (5)es. R,

Curvature excludes momentum and vice versa

Under conditions where curvature excludes momentilm®, stress-energy tensor of ordinary magtgyr, is
equivalent to zero we obtain

Table 8.Curvature excludes momentum and vice versa.

Curvature
yes no
eEr/;;/ 2 O +[(4iu:,w]x((Fvchvc)‘(%xgwamXF‘”D] [ CwNCyN GyN Gy e
e +[[ 1\‘:{W]X[(Fucx':uc)‘[lxgwxFWXF"“D] x]“;[w X((FWXFV°)—(1><QWXFWXde)]
SIH PR T -
G, o R,

or the equation

OEv: 4HV02UV0T[UVOV“V ﬂTv_ luv x (chFvc)_(}xgvdeVXdej -0 (469)
g Cuvncuvncuvnqw ’ axz ’ 4

pv

®
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From this assumption we obtain

4,02,0T,0Y,, T, = 1. X(chFf)—(}ngdevde“j (470)
€ NGy N CyN G, " 4xm,, " 4 ¥

Such a manifold is determined by the fact thaieakrgy and momentum is contained within the steessgy
tensor of the electromagnetic field.

Momentum implies curvature

Under conditions of general relativity, there arewmstances where momentum implies curvature. $uehi-
folds are determined by the stress-energy tensthireoglectro-magnetic field which is eqyh),,=0. Under these

conditions we obtain
]'uv B (F = c)_ }xg xF dev =0 (471)
4xﬂ_w He v 4 Hv dv

The following 2x2 table may illustrate these cirgtancesTable 9).

Table 9. Momentum implies curvature.

Curvature
yes no
En- |y 4,02,NT,NY,, - 0 40 2, N LY,y -
ey | €| (G nGunGuncy) * 60 G G G )
s
mo
: &)
men N | _— n ngy,-Ang,
tum | O An gHV (ZJHQW 2
R
Gu\) (Ej N guv |.1V

Without momentum no curvature

Under conditions of general relativity, manifoldsncbe determined by the fact that without momentoncur-
vature. Under these conditions it is

{[43@Jx[(F”CXFVC)_(ingw X Fy, X deDJ_/\ ng, =0 (472)

and the stress energy tensor of the electromagingticis determined by the equation

[(41‘;](@ Ff)—(%xgw XF, x Fm “Ang, (473)

The question of course is, are there circumstaatedl, where the stress energy tensor of the releagnetic
field is determined by the equation before. Théofsing 2x2 table may illustrate these circumstan@ezble
10).
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Table 10.Without momentum no curvature.

Curvature
yes no

A0 200 0 Vi 4 n n n
En- Y {Cumcwﬂw %]”T“ A 0 20 0 T 0 Yy nT.
ergy © -Ang, +An g, Cu N Gy N Gy N Gy

s
/

mo An g
men | N R R
tum O O (zjngw [E)m g, -Ang,

G (5)0s R

Hv By W

Momentum or curvature
One feature of manifolds determined by momenturuovature is the validity of the equation

o Hmorr o

Consequently, under these circumstances the stnesgyetensor of the electromagnetic field is deteed by

the equation
luv c)_ } dv - B (475)
[£4><an g (FHCXFv ) 4xg““XFd“XF “(Z2)" G

The following 2x2 table may illustrate this mandah more detailTable 11).

Table 11.Momentum or curvature.

Curvature
yes no
[4wn2wnnumvw]ﬂw [%m 2,0 1,0 vuv]nT
v n vn \/n v v
:rn- Z Cu N Gy N Gy G, ) +(B]ng CwNCyN Cyn Gy .
/gy s _(2)0 O 2
mo
men (‘B]” G
n 2 i R
wm o ang, [E)ﬂ 9 ~AN G,
R
- N9
GHV (ZJ Ruv
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Either momentum or curvature
Manifolds determined bgither momentunor curvature are illustrated by the following 2x2l&brable 12).

Table 12.Either momentunor curvature.

Curvature
En- )e( (%]ﬂw - 1 Ly ncj 1 ™ [%ﬁ“’:“’]ﬂnv
er/gy e -[mw]x[(wﬁ)_[zwmXF.W)J] +[(M]x((w J-(Lraxmr ]]] w0 Gy 0 Gy N G,
m et | e ) |
tum | o " (5)ro [2) G 9o

Gy ()ns. R,

Theeithermomentunor curvature manifold is determined by the equation

[gJ " O _([43 , Jx[( Fuo Fvc)‘(ix G X Fy F"“m =0 (476)

and by the equation

4uvr\2uvﬂﬂuvﬂyuv ﬁTv_ lpv x (FCXFVC)_(EgideVXFdVJ =0 (477)
cunc,nc,ng, ) M ([ 4xz, " 4

The following 2x2 table may illustrate this manddh more detailTable 13.

Table 13.Either momentunor curvature.

Curvature
yes no
En- y R 4uvnzuvnnuvanv AT
ergy | © O (Ej N Oy Cw N Gy N Gy Gy w
/ S
mo R)a
men N (ZJ e O R
tum | O A0 [E) ng,-Ang,
Bln
G,, G Ry
In last consequence, this manifold is determinethlbyequation
R R _ _ _
> ”gw‘/\”ngfE”g,w—R” Qv =AN G, =An g, = R (478)

At the end eithermomenturnor curvature manifolds are described by the equation

*Ang,+Ang,=Rngq, (479)
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whereA denotes anti lamda, the anti cosmological constantiertheseconditions, anti lambda describes the
geometrical structures underlying the unified hyfield of electromagnetism and gravitation, thefyinig of
the electromagnetic and gravitational fields intoyaer-field via pure geometry.

5. Conclusions

For the geometrization of fields, various geomefrioneworks can been chosen. This probability theom-
patible approach to the unified field theory enathle us of different geometric frameworks dependipgn
circumstances. The relationship between cause Hedt és expressed completely in the language n$des
while demonstrating the close relationship to Eimss general theory of relativity and Einstein'asld equation.
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