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Abstract 

In the Einstein field equations the geometry or the curvature of space-time defined as depended 

on the distribution of mass and energy principally resides on the left-hand side is set identical to a 

nongeometrical tensorial representation of matter on the right-hand side. In one or another form, 

general relativity accords a direct geometrical significance only to the gravitational field while the 

other physical fields are not of spacetime, they reside only in spacetime. Less well known, though 

of comparable importance is Einstein's dissatisfaction with the fundamental asymmetry between 

gravitational and non-gravitational fields and his contributions to develop a completely relativ-

istic geometrical field theory of all fundamental interactions, a unified field theory. Of special note 

in this context and equally significant is Einstein’s demand to replace the symmetrical tensor field 

by a non-symmetrical one and to drop the condition gik = gki for the field components. Historically, 

many other attempts were made too, to extend the general theory of relativity's geometrization of 

gravitation to non-gravitational interactions, in particular, to electromagnetism. Still, progress has 

been very slow. It is the purpose of this publication to provide a unified field theory in which the 

gravitational field, the electromagnetic field and other fields are only different components or 

manifestations of the same unified field by mathematizing the relationship between cause and ef-

fect under conditions of general theory of relativity. 
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1. Introduction  

The historical development of physics as such shows that formerly unrelated and separated parts of physics can 
be fused into one single conceptual formalism. Maxwell’s theory unified the magnetic field and the electrical 
field once treated as fundamentally different. Einstein’s special relativity theory provided a unification of the 
laws of Newton’s mechanics and the laws of electromagnetism [1]. Thus far, the electromagnetic and weak nu-
clear forces have been unified together as an electroweak force. The unification with the strong interaction 
(chromodynamics) enabled the standard model of elementary particle physics. Meanwhile, the unification of 
gravitation with the other fundamental forces of nature is in the focus of much present research but still not in 
sight, a unification of all four fundamental interactions within one conceptual and formal framework has not yet 
met with success. Even Einstein himself spent years of his life on the unification [2] of the electromagnetic 
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fields with the gravitational fields. In this context, Einstein’s position concerning the unified field theory is strict 
and clear.  

 

 

        Figure 1. Einstein and the problem of the unified field theory.                             

 

Despite of the many and different approaches of theorists worldwide spanning so many of years taken to devel-
op a unified field theory, to describe and to understand the nature at the most fundamental (quantum) level pro-
gress has been very slow. Thus far, a unification of all four fundamental interactions within one conceptual and 
formal framework has not yet met with success. Excellent and very detailed reviews, some of them in an highly 
and extraordinary satisfying way [3], of the various aspects of the conceptually very different approaches of the 
unified field theories in the 20th century with a brief technical descriptions of the theories suggested and short 
biographical notes are far beyond the scope of this article and can be found in literature. 
The main focus of this article lies on the conceptual development of the geometrization of the electromagnetic 
field, by also paying attention to the unification of the electromagnetic and gravitational fields and the unified 
field theory as such. While the task to “geometrize” the electromagnetic field is not an easy one, a method how 
electromagnetic fields and gravitational fields can be joined into a new hyper-field [4], will be developed, a new 
common representation of all four fundamental interactions will be presented. As will be seen, with regard to 
unified field theories, formerly unrelated parts of physics will be fused into one single conceptual formalism 
while following a deductive-hypothetical approach. We briefly define and describe the basic mathematical ob-
jects and tensor calculus rules needed to achieve unification. In this context, the point of departure for a unified 
field theory will be in accordance with general relativity theory from the beginning. Still, in order to decrease 
the amount of notation needed, we shall restrict ourselves as much as possible to covariant second rank tensors.    
 

2. Material and Methods 

 

2.1. Definitions 

 

Definition: The Pythagorean Theorem 

The Pythagorean (or Pythagoras') theorem is of far reaching and fundamental importance in Euclidean Geome-
try and in science as such. In physics, the Pythagorean (or Pythagoras') theorem serves especially as a basis for 
the definition of distance between two points. Historically, it is difficult to claim with a great degree of credibil-
ity that Pythagoras (~560 - ~480 B.C.) or someone else from his School was the first to discover this theorem. 
There is some evidence, that the Pythagorean (or Pythagoras') theorem was discovered on a Babylonian tablet 
[5] circa 1900-1600 B.C. Meanwhile, there are more than 100 published approaches proving this theorem, 
probably the most famous of all proofs of the Pythagorean proposition is the first of Euclid's two proofs (I.47), 
generally known as the Bride's Chair. The Pythagorean (or Pythagoras') theorem states that the sum of (the areas 
of) the two small squares equals (the area of) the big one square. In algebraic terms we obtain  

 
                 (1) 

 
where c represents the length of the hypotenuse (the longest side within a right angled triangle)  and a and b 
represents the lengths of the triangle's other two sides or legs (or catheti, singular: cathetus, greek: káthetos). 
Following Euclid (Elements Book I, Proposition 47) in right-angled triangles the sum of the squares on the sides 

 “The theory we are looking for must therefore be a generalization of the theory of the gravitation-
al field. The first question is: What is the natural generalization of the symmetrical tensor field? ... What 
generalization of the field is going to provide the most natural theoretical system? The answer ... is that 
the symmetrical tensor field must be replaced by a non-symmetrical one. This means that the condition 
gik = gki for the field components must be dropped. “ [2]  

2 2 2a b c+ =



Ilija Barukčić 

 

 
3 

containing the right angle equals the square on the side opposite the right angle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Definition: The normalization of the Pythagorean theorem 

The normalization of the Pythagorean theorem is defined as 

 
                 (2) 

 
 

where c represents the length of the hypotenuse (the longest side within a right angled triangle) and a and b rep-
resents the lengths of the triangle's other two sides/legs. 
 

Definition: The negation due to the Pythagorean theorem 

We define the negation of x, denoted as n(x), as 

 
                 

(3) 
 
We define the negation of anti x, denoted as n(x), as 

 
                 

(4) 
In general, it is 

 
                 

(5) 
 

2 2 2

2 2 2

a b c
1

c c c
+ = =

2 2

2 2

b a x
n(x) 1

c c c
≡ ≡ − ≡

2 2

2 2

a b x
n(x) 1 n(x) 1 1

c c c
≡ − ≡ = − = −

2 2

2 2

a b
n(x) n(x) 1

c c
+ ≡ + ≡
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Definition: The determination of the hypotenuse of a right angled triangle   

In general, we define 

 
                (6) 

 
where x and x denotes the segments on the hypotenuse c of a right angled triangle (c is the longest side within a 
right angled triangle). 

Scholium. 

Form this follows that ( ) ( ) 2c x c x c× + × = . Due to our definition above, it is ( )2a c x= ×  and 

( )2b c x= × . The Pythagorean theorem is valid even if x=1 and x = +¥ -1 while c = +¥. Under these as-

sumptions, the Pythagorean theorem is of use to prove the validity of the claim that +1 / +0 = +¥. 

 

Definition: The Euclid’s Theorem 

According to Euclid's (ca. 360-280 BC) so called geometric mean theorem or right triangle altitude theorem or 
Euclid's theorem, published Euclid’s Elements in a corollary to proposition 8 in Book VI, used in proposition 14 
of Book II [6] to square a rectangle too, it is 

 
                

(7) 
 
where ∆ denotes the altitude in a right triangle and x and x denotes the segments on the hypotenuse c of a right 
angled triangle. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Scholium. 

The variance of a right angled triangle, denoted as σ(x)², can be defined as 

 
                

(8) 

x x c+ =

2 2
2

2

a b
x x

c

×× ≡ ≡ ∆

( )
2 2 2

2

2 2 2 2 2

x x a b
x

c c c c c

× × ∆σ ≡ ≡ ≡
× ×
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where ∆ denotes the altitude in a right triangle and x and x denotes the segments on the hypotenuse c of a right 
angled triangle. 

 

Definition: The gradient 

The gradient, denoted as grad(a,b), a measure of how steep a slope or a line is, is defined by dividing the verti-
cal height a by the horizontal distance b of a right angled triangle. In other words, we obtain  

 
                

(9) 
  
 
Scholium. 
The following picture of a right angled triangle may illustrate the background of a gradient 
 
 
 
 
 
 
 
 
 
 
 
 
 
where b denotes the run, a denotes the rise and c denotes the slope length. The gradient has several meanings. In 
mathematics, the gradient is more or less something like a generalization of a derivative of a function in one di-
mension to a function in several dimensions. Consider a n-dimensional manifold with coordinates 1x, 2x, nx. The 
gradient of a function f(1x, 2x, nx) is defined as  

 
                

(10) 
  
 
Due to our definition above it is equally c²×n(x)=a². In this case c² is not identical to the speed of the light but 
with the hypotenuse, the longest side within a right angled triangle. Equally, it is c²×n(x)=b². In general, it is true 
that a²/b² = c²×n(x)/ c²×n(x) = n(x)/n(x). The raise can be calculated as a/b = (n(x)/ n(x)) = ( n(x) / (1-n(x)) ). In 
other words, it is a/b=y× (x/c) or a/b= ((c×x)/ (c×x))1/2 =((x)/(x))1/2.  
 

Einstein’s Special Theory Of Relativity 

 
Definition:  The relativistic energy RE (of a system) 
 
In general, it is 
                 

 (11) 
 
 

a Rise
grad(a,b)

b Run
≡ ≡

( )
µ

f
f

xµ

∂∇ ≡
∂

R RE m c²= ×
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where RE denotes the total (“relativistic”) energy of a system, Rm denotes the “relativistic” mass and c denotes 
the speed of the light in vacuum. 
 
Scholium. 
Einstein defined the matter/mass - energy equivalence as follows: 
 
“Gibt     ein      Körper      die      Energie      L      in      Form      von      Strah-
lung      ab,      so      verkleinert      sich      seine      Masse      um      L/V²      
...      Die     Masse      eines      Körpers     ist      ein      Maß      für      dessen     
Energieinhalt;” [7]    
 
In other words, due to Einstein, energy and mass are equivalent.  
 
“Eines      der      wichtigsten      Resultate      der      Relativitätstheorie      ist      die      
Erkenntnis,      daß      jegliche      Energie      E      eine      ihr      proportionale      
Trägheit      (E/c²)      besitzt.” [8]  
  
It was equally correct by Einstein to point out that matter/mass and energy are equivalent.  
 
“Da      Masse      und      Energie      nach      den      Ergebnissen      der      spezi-
ellen      Relativitätstheorie      das      Gleiche      sind      und      die      Energie      
formal      durch      den      symmetrischen      Energietensor      (Tµv)      beschrieben      
wird,      so      besagt      dies,      daß      das      G-Geld     [gravitational field, author]      
durch      den      Energietensor      der      Materie      bedingt      und      bestimmt      
ist.” [9] 
 
   
The term relativistic mass Rm was coined by Gilbert and Tolman [10]. 

   

Definition:  Einstein’s Mass-Energy Equivalence Relation 

The Einsteinian matter/mass - energy equivalence [7] lies at the core of today physics. In general, due to Ein-
stein’s special theory of relativity it is 

 
                

(12) 
 
or equally 
 

  
(13) 

 
 
or equally 

 
                

(14) 
 
 
where OE denotes the “rest” energy,  Om denotes the “rest” mass, RE denotes the “relativistic” energy, Rm de-
notes the “relativistic” mass, v denotes the relative velocity between the two observers and c denotes the speed 
of light in vacuum.  

O O 2

R R

E m c² v²
1

E m c² c²

×= = −
×

2
O R

v²
m m 1

c²
= × −

2 2
O O R R

v² v²
E m c² m c² 1 E 1

c² c²
≡ × ≡ × × − ≡ × −
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Definition:  Normalized Relativistic Energy-Momentum Relation 

The normalized relativistic energy momentum relation [10], a probability theory consistent formulation of Ein-
stein’s energy momentum relation, is determined as 

 
 

  
(15) 

 
 
while the “particle-wave-dualism” [10] is determined as  
 

 
                

(16) 
 
 
where WE = ( Rp x c ) denotes the energy of an electro-magnetic wave and Rp denotes the “relativistic” momen-
tum while c is the speed of the light in vacuum. 
 

Definition:  The relativistic potential energy  

Following Einstein in his path of thoughts, we define the relativistic potential energy pE [10] as 
 

                
(17) 

 
Scholium. 
The definition of the relativistic potential energy pE is supported by Einstein's publication in 1907. Einstein 
himself demands that there is something like a relativistic potential energy. 
 
“Jeglicher      Energie      E      kommt      also      im      Gravitationsfelde      eine      
Energie      der      Lage      zu,      die      ebenso      groß      ist,      wie      die     
Energie      der      Lage      einer     'ponderablen'      Masse      von      der      Größe      
E/c².” [12]  
 
Translated into English: 
 
‘Thus, to each energy E in  the  gravitational  field  there corresponds  an  energy of  position  that  
equals the potential energy of a ‘ponderable’ mass of magnitude E/c².’ 
The relativistic potential energy pE can be viewed as the energy which is determined by an observer P which is 
at rest relative to the relativistic potential energy. The observer which is at rest relative to the relativistic poten-
tial energy will measure its own time, the relativistic potential time pt. 
 

Definition:  The relativistic kinetic energy (the ‘vis viva’) 

The relativistic kinetic energy KE is defined [10] in general as 
 

 
                

(18) 

O O O 2
P O O

R R

E E E v²
E E 1 E

E E c²

×≡ ≡ × ≡ − ×

2W W R R R
K R R

R R

E E m v c m v c
E p v m v

E m c²

× × × × × ×≡ ≡ ≡ × ≡ ×
×

2
O

2
R

m v²
1

m c²
+ =

2 2 2 2 22 2
O O O O WR R

2 2 2 2 2 2 2
R R R R R R R

m m c² c² E E Ev² m c² p c²v²
1

m c² m c² c² c² m c² E E E E

× × × × ×+ ≡ + ≡ + ≡ + ≡
× × × ×
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where Rm denotes the ‘relativistic mass’ and v denotes the relative velocity. In general, it is 

 
             (19) 

 
where PE denotes the relativistic potential energy, KE denotes the relativistic kinetic energy, PH denotes the 
Hamiltonian of the relativistic potential energy, KH denotes the Hamiltonian of the relativistic kinetic energy. 
Multiplying this equation by the wave function RΨ, we obtain relativity consistent form of Schrödinger’s equa-
tion as 

 
             (20) 

 
Scholium. 
The historical background of the relativistic kinetic energy KE is backgrounded by the long lasting and very fa-
mous dispute between Leibniz (1646-1716) and Newton (1642-1726). In fact, the core of this controversy was 
the dispute about the question, what is preserved through changes. Leibnitz himself claimed, that “vis viva” [13], 
[14] or the relativistic kinetic energy KE =Rm × v × v was preserved through changes. In contrast to Leibnitz, 
Newton was of the opinion that the momentum Rp =Rm × v was preserved through changes. The observer which 
is at rest relative to the relativistic kinetic energy will measure its own time, the relativistic kinetic time kt. 
 
 
Definition:  Einstein’s Relativistic Time Dilation Relation 
 
An accurate clock in motion slow down with respect a stationary observer (observer at rest). The proper time Ot 
of a clock moving at constant velocity v is related to a stationary observer's coordinate time Rt by Einstein’s rel-
ativistic time dilation [15] and defined as 

 
                

(21) 
 
 
where Ot denotes the “proper” time, Rt denotes the “relativistic” (i. e. stationary or coordinate) time, v denotes 
the relative velocity and c denotes the speed of light in vacuum.  
 
Scholium. 
Coordinate systems can be chosen freely, deepening upon circumstances. In many coordinate systems, an event 
can be specified by one time coordinate and three spatial coordinates. The time as specified by the time coordi-
nate is denoted as coordinate time. Coordinate time is distinguished from proper time. The concept of proper 
time, introduced by Hermann Minkowski in 1908 and denoted as Ot, incorporates Einstein’s time dilation effect. 
In principle, Einstein is defining time exclusively for every place where a watch, measuring this time, is located.  
 
“...      Definition      ...      der      ...      Zeit      ...      für      den      Ort,      
an      welchem      sich      die      Uhr      …      befindet ... ”  [15] 
In general, a watch is treated as being at rest relative to the place, where the same watch is located.  
 
“Es     werde     ferner     mittels     der     im     ruhenden      System      befindlichen      
ruhenden      Uhren      die      Zeit      t [i. e. Rt, author]      des     ruhenden      Systems     
...      bestimmt,      ebenso      werde     die     Zeit     τ [Ot, author]      des      beweg-
ten      Systems,      in      welchen      sich      relativ     zu      letzterem     ruhende      
Uhren      befinden,      bestimmt     ...” [15] 
 
Due to Einstein, it is necessary to distinguish between clocks as such which are qualified to mark the time Rt 

2
O R

v²
t t 1

c²
= × −

R R P K P KE H E E H H≡ ≡ + ≡ +

( ) ( ) ( ) ( )R R R R P R K R P R K RE H E E H H× Ψ ≡ × Ψ ≡ × Ψ + × Ψ ≡ × Ψ + × Ψ
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when at rest relatively to the stationary system R, and the time Ot when at rest relatively to the moving system O. 
 
“Wir     denken     uns      ferner     eine     der      Uhren,      welche     relativ     
zum     ruhenden     System     ruhend      die      Zeit      t [Rt, author],      relativ     
zum      bewegten      System      ruhend      die      Zeit      τ [Ot, author]      anzugeben      
befähigt      sind      ... ”  [15] 
 
In other words, we have to take into account that both clocks i.e. observers have at least one point in common, 
the stationary observer R and the moving observer O are at rest, but at rest relative to what? The stationary ob-
server R is at rest relative to a stationary co-ordinate system R, the moving observer O is at rest relative to a 
moving co-ordinate system O. Both co-ordinate systems can but must not be at rest relative to each other. The 
time Rt of the stationary system R is determined by clocks which are at rest relatively to that stationary system R. 
Similarly, the time Ot of the moving system O is determined by clocks which are at rest relatively to that the 
moving system O. In last consequence, due to Einstein’s theory of special relativity, a moving clock (Ot) will 
measure a smaller elapsed time between two events than a non-moving (inertial) clock (Rt) between the same 
two events.  
 
Definition:  The Normalized Relativistic Time Dilation Relation 
 
As defined above, due to Einstein’s special relativity, it is 

 
                (22) 

 
  
where Ot denotes the “proper” time, Rt denotes the “relativistic” (i. e. stationary or coordinate) time, v denotes 
the relative velocity and c denotes the speed of light in vacuum. Equally, it is 

 
                

(23) 
 
or  

 
                

(24) 
 
or  

 
                

(25) 
 
The normalized relativistic time dilation is defined as 

 
 

(26) 
 
In general, under conditions of the special theory of relativity, we define 
 

 
(27) 

and 
 

(28) 
 

2
O R

v²
t t 1

c²
= × −

O 2

R

t v²
1

t c²
= −

O 2

R

t c² v²
1

c² t c²
× = −

O

R

t² v²
1

t² c²
= −

O

R

t² v²
1

t² c²
+ =

R R RS E t≡ +

0 0 0C E t≡ +
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0 

and 
 

(29) 
 
Scholium. 
The following 2x2 table may illustrate the relationships before (Table1). 
 

         Table 1.The unified field under conditions of the special theory of relativity.                

 
 Curvature 

 
yes no 

Energy /  
momentum 

yes 0E  0E E= ∆  RE  

no 0t  0t t= ∆  R t  

 0C  0C RS 

The special theory of relativity. 

The causal relationship k [16] under conditions of special theory of relativity (i. e. the particle-production appa-
ratus) follows as 

 
 

(30) 
 

Under conditions [17] where 

 
(31) 

 

there is a relationship between the causal relationship k the Schrödinger equation in the form 

 
 

(32) 
 
 

 

 

 

 

 

Einstein’s general theory of relativity 

 

Definition: The general Kronecker delta 

The general Kronecker delta δmn , named after Leopold Kronecker, is +1 if the variables m and n are equal, and 
+0 otherwise. 

Scholium. 

0 0 0C E t E t≡ + = ∆ + ∆

( ) ( ) ( )( )
( )

R 0 0 R
0 R

2
00 R R

S E C E
k C, E

C C E t

× − ×
=

× × ×

( ) ( )( )
( ) ( )( )

2

R 0 0 R
R R

00 0 R 0 R

S E C E
H

C C k C, E k C, E

× − ×
× Ψ =

× × ×

R R R RE t H× = × Ψ
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For convenience, the restriction to positive integers is common, but not necessary. The general Kronecker delta, 
running from 1 to 4, denoted as δmn can be displayed in matrix form as 

  
                               
 

(33) 
 
 
 
 
The anti general Kronecker delta denoted as δmn is defined as δmn = 1mn – δmn 

 

Definition: The Special Kroneker Delta 

The special Kronecker delta δ(i,j)mn , named after Leopold Kronecker, is +1 if and only if m=i and if n=j and +0 
otherwise. 

Scholium. 

Example. The special Kronecker delta δ( i=1, j=1)mn for m=i=1 and n=j=1, running from 1 to 4, can be displayed 
in matrix form as 

 
                               
 

(34) 
 
 
 
 
The anti special Kronecker delta denoted as δ(i,j)mn and defined as δ(i,j)mn = 1mn – δ(i,j)mn for m=i=1 and n=j=1, 
running from 1 to 4, can be displayed as   

 
                               
 

(35) 
 
 
 
 
The special Kronecker delta is not grounded on the equality that m=n but on the fact, the m equal to a certain 
value i and that n is equal to another certain value j. In other words, it is m=i and n=j . 

 

 

Definition: The Metric Tensor gµv 

In the following, let us define the following. Let 
 

                 (36) 
and 

 
                 (37) 

mn

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 
 
 δ =
 
 
 

2
2 2 n na d x d x ... d x d x≡ × + + ×

2
1 1b d x d x≡ ×

( )
mn

1 0 0 0

0 0 0 0
i 1, j 1

0 0 0 0

0 0 0 0

 
 
 δ = = =
 
 
 

( )
mn

0 1 1 1

1 1 1 1
i 1, j 1

1 1 1 1

1 1 1 1

 
 
 δ = = =
 
 
 
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In Euclidean coordinates for an n-dimensional space the formula for the length ds² of an infinitesimal line seg-
ment due to the Pythagorean theorem follows as 

 
                 (38) 

 
 
 
 
 
 
 
 
 
 
 
 
or 

 
                 (39) 

 
 
In general, a coordinate system can be changed from the Euclidean X's to some coordinate system of Y's then 

 
                 (40) 

 
and 

 
                 (41) 

 
 
The Pythagorean theorem is defined as 

 
                 (42) 

 
 
 
While using Einstein’s summation convention, a (i.e. position dependent) metric tensor g(x)µv is defined as 

 
                 (43) 

 
 
and a curved space compatible formulation of the Pythagorean theorem follows as 

 
                 (44) 

 
 
Scholium. 
The metric tensor generalizes the Pythagorean theorem of flat space in a manifold with curvature. The metric 
tensor can be decomposed in many different ways. Let gµv = nµv + nµv where gµv is the metric tensor of general 
relativity, nµv is the tensor of special relativity and nµv is the anti tensor of general relativity. In general theory of 
relativity, the scalar Newtonian gravitational potential is replaced by the metric tensor. “In particular, in general 
realtivity, the gravitational potential is replaced by the metric tensor gab.” [18] In last consequence, the gravita-

( ) ( )2 2
1 1 2 2 n nc ds d x d x d x d x ... d x d x≡ ≡ × + × + + ×

m
m r

r

x
d x d y

y

∂≡ ×
∂

n
n s

s

x
d x d y

y

∂≡ ×
∂

2 2 m n
m n mn r s mn

m n m n r s

x x
c ds d x d x d y d y

y y

∂ ∂≡ ≡ × ×δ ≡ × × × ×δ
∂ ∂∑ ∑ ∑ ∑

( ) m n
mnµv

r s

x x
g x

y y

∂ ∂≡ δ × ×
∂ ∂

( )2 2 m n
mn r s r sµv

r s

x x
c ds d y d y g x d y d y

y y

∂ ∂≡ ≡ δ × × × × ≡ × ×
∂ ∂

( )
n

22 2
i

i 1

c ds d x
=

≡ ≡∑



Ilija Barukčić 

 

 1

3 

tional potential is something like a feature of the metric tensor. Following Renn et al, the metric tensor is “… the 
mathematical representation of the gravitational potential …” [19] On this account it is necessary to make a dis-
tinction between a gravitational potential and a gravitational field. Due to Einstein, “... the introduction of inde-
pendent gravitational fields is considered justified even though no masses generating the field are defined.” [2] 
The question is, can a gravitational potential exist even though no masses generating the gravitational potential 
are defined? 
 

Definition: The normalized metric tensor n(X)µv 

In the following, we define the normalized metric tensor nµv, while using Einstein’s summation convention, as 
 

                 (45) 
 
 
The line element follows in general as 

 
                 (46) 

 
 
Scholium. 
The normalized metric tensor is not based on the gradient. The metric tensor passes over into the normalized 
metric tensor and vice versa. We obtain 

 
                 (47) 

or 
 

                 (48) 
 
 

Definition: Einstein’s field equations 

Einstein field equations (EFE), originally [20] published [21] without the extra ‘cosmological’ term Λ×gµv [22]  
may be written in the form  

 
                 

(49) 
 
where Gµv is the Einsteinian tensor, Tµv is the stress-energy tensor of matter (still a field devoid of any geomet-
rical significance), Rµv denotes the Ricci tensor (the curvature of space), R denotes the Ricci scalar (the trace of 
the Ricci tensor), Λ denotes the cosmological “constant” and gµv denotes the metric tensor (a 4×4 matrix) and 
where π is Archimedes' constant (π = 3.1415926535897932384626433832795028841971693993751058209…), 
γ is Newton’s gravitational “constant” and the speed of light in vacuum is c = 299 792 458 [m/s] in S. I. units. 
 
Scholium. 
The stress-energy tensor Tµv, still a tensor devoid of any geometrical significance, contains all forms of energy 
and momentum which includes all matter present but of course any electromagnetic radiation too. Originally, 
Einstein’s universe was spatially closed and finite. In 1917, Albert Einstein modified his own field equations 
and inserted the cosmological constant Λ (denoted by the Greek capital letter lambda) into his theory of general 
relativity in order to force his field equations to predict a stationary universe. 
 
“Ich      komme      nämlich      zu      der      Meinung,      daß      die      von      
mir      bisher      vertretenen      Feldgleichungen      der      Gravitation      noch      ei-
ner      kleinen      Modifikation      bedürfen     …” [22] 
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By the time, it became clear that the universe was expanding instead of being static and Einstein abandoned the 
cosmological constant Λ. “Historically the term containing the ‘cosmological constant’ λ was introduced into 
the field equations in order to enable us to account theoretically for the existence of a finite mean density in a 
static universe. It now appears that in the dynamical case this end can be reached without the introduction of λ“ 
[23] But lately, Einstein's cosmological constant is revived by scientists to explain a mysterious force counter-
acting gravity called dark energy. In this context it is important to note that Newton’s gravitational “constant” 
big G is not [24], [25] a constant. 
 

Definition: General tensors 

Independently of the tensors of the theory of general relativity, we introduce by definition the following covari-
ant second rank tensors of yet unknown structure whose properties we leave undetermined as well. We define 
the following covariant second rank tensors of yet unknown structure as  

 
                 (50) 

 
Tensor can be decomposed (sometimes in many different ways). In the following of this publication we define 
the following relationships. It is 

 
                 (51) 

 
 

                 (52) 
 

 
                 (53) 

 
 

                 (54) 
 

 
                 (55) 

 
Scholium. 
The following 2x2 table may illustrate the relationships above (Table 2). 

         Table 2.The unified field RWµv.                                                   

 
 Curvature 

 
yes no 

Energy /  
momentum 

yes Aµν  Bµν  R Uµν  

no Cµν  Dµν  R Uµν  

 0Wµν  0Wµν  RWµν  

The unified field. 

These tensors above may have different meanings depending upon circumstances. The unified field RWµv can be 
decomposed into several (sub-) fields Aµv, Bµv, Cµv, Dµv. In order to achieve unification between general relativ-
ity theory and quantum (field) theory the (sub-) fields Aµv, Bµv, Cµv, Dµv can denote the four basic fields of na-
ture. The idea of quantum field theory is describe a particle as a manifestation of an abstract field. In this context 
the particle ai can be associated with the field Aµv, the particle bi can be associated with the field Bµv, the particle 
ci can be associated with the field Cµv, the particle di can be associated with the field Dµv. In this context, we can 

R 0R 0 RA , B , C , D , U , U , W , W , Wµν µνµν µν µν µν µν µν µν

RA B Uµν µν µν+ ≡

RC D Uµνµν µν+ ≡

0A C Wµν µν µν+ ≡

0B D Wµνµν µν+ ≡

R 0R 0 RA B C D U U W W Wµν µνµν µν µν µν µν µν µν+ + + ≡ + ≡ + ≡



Ilija Barukčić 

 

 1

5 

something like Aµv = ai × FAµv and Bµv = bi × FBµv and Cµv = ci × FCµv and Dµv = di × FDµv where the subscript F 
denotes the individual particle field. Under conditions of general relativity, Einstein field equation can be re-
written (using the tensors above) as 

 
                 (56) 

 
 

where                            and                          .  From an epistemological point  

of view R Uµν  is the tensor of the cause (in German: Ursache U) while 0Wµν is the tensor of the effect (in 

German: Wirkung W). As we will see, from the definition R 0R 0 RU U W W Wµν µνµν µν µν+ ≡ + ≡  follows 

that 0 R RR 0 R 0g U W W U W W Uµν µν µνµν µν µν µν µνΛ× = − ≡ − ≡ − −  even if Einstein’s cosmological 

constant Λ cannot [26] be treated as a constant. 

 

Unified field theory 

Definition: The tensor of Planck’s constant h 

Planck defined in 1901 the constant of proportionality [27] as h. As long as Planck’s constant h is a constant, a 
tensor form of this constant is not needed. We define the co-variant second rank tensor of Planck’s constant Rhµv 
as 

 
 
 

(57) 
 
 
 

Definition: The tensor of Dirac’s constant  

We define the co-variant second rank tensor of Dirac’s constant as  
 

 
 
 

(58) 
Scholium. 
In general it is known that 

 
                 (59) 

 
 

Definition: The tensor of speed of the light Rcµv 

We define the co-variant second rank tensor of the speed of the light Rcµv , denoted by small letter c, as  
 

                               
 

(60) 
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where Rfµv denotes the stress energy tensor of frequency and Rλµv denotes the wave-length tensor. 
 
Scholium. 
Following Einstein’s own position, the constancy of the speed of the light c is something relative and nothing 
absolute. Theoretically, circumstances are possible where the speed of the light not constant. Einstein himself 
linked the constancy of the speed of the light c to a constant gravitational potential.  
 
“Dagegen      bin      ich      der      Ansicht,      daß      das      Prinzip      der      
Konstanz      der      Lichtgeschwindigkeit      sich      nur      insoweit      aufrecht      
erhalten      läßt,      als      man      sich      auf      raum-zeitliche      Gebiete      von      
konstantem      Gravitationspotential      beschränkt.      Hier      liegt      nach      meiner      
Meinung      die      Grenze      der      Gültigkeit      ...      des      Prinzips      der      
Konstanz      der      Lichtgeschwindigkeit      und      damit      unserer      heutigen      
Relativitätstheorie.”  [8]   
 
Thus far a tensor of the speed of the light is of use to face this theoretical possibilities. 
 
 

Definition: The tensor of Newton’s gravitational ‘constant’ Rγµv 

We define the co-variant second rank tensor of Newton’s gravitational constant Rγµv as  
 
 

                               
 

(61) 
 
 
 
 
Scholium. 
Newton’s gravitational constant is not for sure a constant. Therefore, we prefer to use the same in the form of a 
tensor. 
 

Definition: The tensor of Archimedes ‘constant’ Rπµv 

We define the co-variant second rank tensor of Archimedes constant Rπµv as 
 
  

 
 

(62) 
 
 
 
 
Scholium. 
Archimedes of Syracuse (ca. 287 BC – ca. 212 BC) himself was able to find π ,the circumference of a circle 
with diameter 1 commonly approximated as 3.14159, to 99.9% accuracy about 2000 years ago. Archimedes 
constant π  is an irrational number, π never settles into a permanent repeating pattern, the decimal representation 
of Archimedes constant π  never ends. 
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Definition: The tensor of imaginary number iµv 

We define the co-variant second rank tensor of the imaginary number iµv as 
 
  

 
 

(63) 
 
 

 

Definition: The tensor of space 

We define the second rank tensor of space of yet unknown structure as 
 

                 (64) 
 
Under conditions of general relativity, it is 

 
                 (65) 

 
where Rµv denotes the Ricci tensor, the tensor of the curvature of space. Under conditions different form general 
relativity, RSµv can be determined in a different way. It is important to note the RUµv is not identical with Uµv. 
 

Definition: The tensor of energy 

Similar to general theory of relativity, it is at present appropriate to introduce a corresponding  energy  tensor,  
a  tensor  which  represents  the  amounts  of  energy, momentum,  pressure,  stress et cetera in  the  
space,  a  tensor  which  describes  the  energy/matter/momentum et cetera distribution (at each event) in 
space. The energy tensor expressed mathematically by a symmetrical tensor of the second rank of yet unknown 
structure is defined as 

 
                 (66) 

 
Ipso facto, the same tensor is determined by all matter present but of course any electromagnetic radiation too. 
Under conditions of general relativity, we define 
 

 
                 (67) 

 

To assure compatibility with quantum theory, we define  
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Due to this definition we obtain 
 

 
                 (69) 

R R RE H Uµν µν µν≡ ≡

R R
R

R R R
R

R
RE H U

4 2µν µν µν µν
µν µν µν µν

µν µν µν µν

∩ ∩ ∩
∩

≡ ≡ ∩
∩ ∩

≡
π γ

T
c c c c

( )R RS W U c cµν µν µν µν µν≡ ≡ ∩ ∩

R RS Wµν µν µν≡ ≡ R

R R
R R

µv µv R
R

R
R

R
R

R

4 2
i i

t
E H U

t
µν µν µν µν

µν µν µν µν µν µν
µν µν µν µν

∩ ∩ ∩∂ ∂   ∩ ∩ ≡ ∩ ∩ ≡ ∩ ≡   ∂ ∂ ∩ ∩ ∩ 
≡

 
≡ℏ ℏ

π γ
T

c c c c

R RR R

µv R R R R R R R R R R

1 4 24 21

t i i
µν µν µν µν µν

µν µν
µν µν µν µν µν µν

∩ ∩ ∩× × ×∂  ≡ × × ≡ × ∩ ∂ ∩ × × × ∩ ∩ ∩ ∩  ℏ ℏ

π γπ γ
T T

c c c c c c c c

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

i i i i

i i i i
i

i i i i

i i i i

µν

 
 
 =
 
 
 



Ilija Barukčić 

 

 1

8 

 
The tensor of probability of energy follows as 
 

 
                 
 

(70) 

 

 

General relativity’s geometry of space and time is one but not the only one geometry of space and time. Espe-
cially general relativity’s stress - energy tensor as the source - term of Einstein's field equations a still a field 
devoid of any geometrical significance. A geometrical tensorial representation of the stress energy tensor of en-
ergy is possible as 

 
 

(71) 

 

 

Definition: The tensor of frequency 

In general, we define the covariant second rank tensor of frequency Rfµv as 
 

 
                 (72) 

 

To assure compatibility with quantum theory, we define the inverse tensor Rτµv of the covariant second rank 
tensor of frequency Rfµv as 
 

 
                 (73) 

 
 
Per definition it follows that 
 

 
                 (74) 

Definition: The tensor 0ωµv 

In general, we define the covariant second rank tensor 0ωµv as 
 

 
                 (75) 

Scholium. 
The tensor of frequency Rfµv and the 0ωµv tensor are related. Under circumstances of general relativity, there are 
conditions where 
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Definition: The tensor of matter RMµv 

The matter tensor expressed mathematically by a symmetrical tensor of the second rank of yet unknown struc-
ture is defined as 

 
                 (77) 

 
 
Under conditions of general relativity, we define 

 
                 

(78) 
 
Scholium. 
This definition is based on the equivalence of mass/matter and energy due to Einstein’s special theory of relativ-
ity. 
 
“Da       Masse       und       Energie       nach      den Ergebnissen       der       spezi-
ellen       Relativitätstheorie       das       Gleiche       sind       und       die Energie       
formal       durch       den       symmetrischen       Energietensor      (Tµv)       beschrie-
ben       wird,       so       besagt       dies,       daß       das       G-Geld [gravitational 
field, author]       durch       den       Energietensor       der       Materie       bedingt       
und       bestimmt       ist.“ [9] 
 

Definition: The tensor of ordinary energy 0Eµv 

We define the second rank tensor of ordinary energy 0Eµv of yet unknown structure as 
 

                 (79) 
 
Scholium. 
Under some well defined circumstances, 0Eµv can denote the unity of strong interaction and weak interaction. 
Under conditions of general relativity, it is 
 

 
  

(80) 
 
 
The associated probability tensor can be achieved as 
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Definition: The tensor of ‘ordinary’ matter 0Mµv  

The tensor of ordinary mater expressed mathematically as a covariant second rank of yet unknown structure is 
defined as 
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Definition: The anti tensor of ‘ordinary’ matter 0Eµv 

We define the second rank anti tensor 0Eµv of the tensor 0Eµv as 
 

                 (83) 
 
Under conditions of general relativity, where 0Eµv is tensor of ordinary energy/matter, the electromagnetic field 
is an anti tensor of ordinary energy/matter. Under conditions of general relativity, the tensor of the electromag-
netic field is determined by an anti-symmetric second-order tensor known as the electromagnetic field (Faraday) 
tensor F. In general, under conditions of general relativity, the second rank covariant tensor of the electromag-
netic field in the absence of ‘ordinary’ matter, which is different from the electromagnetic field tensor F, is de-
fined by 

 
  

(84) 
 
 
where F is the electromagnetic field tensor and gµv is the metric tensor.  
 
Scholium. 
The associated probability tensor is determined as 
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The geometric formulation of the stress-energy tensor of the electromagnetic field follows as 
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Definition: The tensor 0Mµv 

The tensor 0Mµv is defined as 
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Definition: The decomposition of the tensor of energy  

A portion of the tensor of energy is due to the tensor of the electromagnetic field, another portion of the tensor 
of energy is due to the tensor of ordinary energy. Before going on to discuss this topic in more detail, we define 
in general 
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Scholium. 
The tensor of the electromagnetic field is equivalent to the portion of the stress-energy tensor of energy due to 
the electromagnetic field. In this approach, we are following Vranceanu in his position, that the energy tensor Tkl 
can be treated as the sum of two tensors one of which is due to the electromagnetic field. 
 
“On       peut       aussi       supposer       que       le       tenseur       d’énergie       
Tkl       soit       la       somme       de       deux       tenseurs       dont       un       
dû       au       champ       électromagnétique      …” [28] 
 
In English:  
“One can also assume that the energy tensor Tkl be the sum of two tensors one of which is due to the electro-
magnetic field”   
 
Einstein himself demanded something similar. 
“Wir       unterscheiden       im       folgenden       zwischen       ‘Gravitationsfeld’       
und       ‘Materie’       in       dem       Sinne,       daß       alles       außer       
dem       Gravitationsfeld       als       ‘Materie’       bezeichnet       wird,       also       
nicht       nur       die       ‘Materie’       im       üblichen       Sinne,       sondern       
auch       das       elektromagnetische       Feld.” [21] 
 

Definition: The tensor of time Rtµv 

We define the second rank tensor of time of yet unknown structure as 
 

                 (90) 
 
Scholium. 
All but energy is time, there is no third between energy and time. Under conditions of general theory of relativi-
ty, the associated probability tensor follows as 
 

 
                 (91) 

 
 
 

Definition: The tensor Rgµv 

We define the second rank tensor Rgµv as 
 

                 (92) 
Scholium. 
The tensor  

 
                 (93) 

 
 
is not identical with the metric tensor of general relativity, defined as 
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Still, circumstances may exist, where both tensors can be treated as being identical. 
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Definition: The tensor 0tµv 

We define the second rank tensor 0tµv as 
 

 
                 (95) 

 
Scholium. 
Under conditions of general theory of relativity, the associated probability tensor follows as 

 
                 

(96) 
 
 
 

Definition: The tensor 0gµv 

We define the second rank tensor 0gµv as 
 

                 (97) 
 
 
 

Definition: The tensor Wtµv 

We define the second rank tensor Wtµv as 
 

 
                 (98) 

 
 
Scholium. 
Under conditions of general theory of relativity, the associated probability tensor follows as 
 

 
                 
 

(99) 
 
 

Definition: The tensor Wgµv 

We define the second rank tensor Wgµv as 
 

                 (100) 
 
 
 

Definition: The wave function tensor RΨµv   

We define the covariant second rank wave function tensor as  
 

                 (101) 
R µνΨ

0 R W 0t C t t C Aµν µν µν µν µν µν≡ ≡ − ≡ −

R R R R

0 R W
0

t t t
g µν µν µν

µν
µν µν µν µν

−
≡ ≡

∩ ∩c c c c

W R 0t D t tµν µν µν µν≡ ≡ −

R R R R

W R 0
W

t t t
g µν µν µν

µν
µν µν µν µν

−
≡ ≡

∩ ∩c c c c

( ) ( )
( ) µv

R W 0
0

µv µv µ

  

v

1 1
4 4

g
t t C A

p t p C
R R R

ν
µ ν µν ν

µν µν µν µν
µν µν

    × × − × × ×    ×   
+ − Λ×

− −
≡ ≡ ≡ ≡ 

c d
c dF F g F F

π

( ) ( )
( )  

µv µ
µv

R 0
W

µv µv

v

R
g

2t t
p t p D

R R

1 1
4 4

µν ν
µ ν µν ν

µν µν
µν µν

    × × − × × ×     ∩   
× −

−
≡ ≡ ≡

c d
c dF F g F F

π
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Under conditions of general relativity, we define 
 

 
                 (102) 

 
 

Definition: The complex conjugate wave function tensor R*Ψµv   

We define the covariant second rank complex conjugate wave function tensor of yet unknown structure as 
 

                 (103) 
 
 

Definition: The decomposition of the tensor of space  

A portion of the tensor of space is due to the tensor of time, another portion of the tensor of space is determined 
by the tensor of energy. In general, we define  

 
              (104) 

 
The field equation of the unified field theory follows in general as 

 
              (105) 

 
where RSµv denotes the tensor of space, REµv denotes the tensor of energy and Rtµv denotes the tensor of time. 
 

Definition: The normalization of the tensor of space  

Let RYµv denote a covariant second rank tensor of preliminary unknown structure. In general, we define  
 

              (106) 
 
Scholium. 
In general, the properties of the tensor RYµv are unknown. But one property of this tensor is known and this 
property assures the normalisation of the tensor of space as RSµv ∩  RYµv  = 1µv. Under conditions of the gen-
eral theory of relativity, it is true that as RSµv = Rµv and we do obtain  Rµv ∩ RYµv  = 1µv. 
 

Definition: The probability tensor  

Let  
 

                 (107) 
 
denote a covariant second rank probability tensor of yet unknown structure as associated with a tensor RXµv. The 
probability tensor p(RΨµv) of yet unknown structure as associated with the wave function tensor RΨµv is defined 
as 

 
                 (108) 

 

Definition: General covariant form of Born’s rule  

Under the assumption of the validity of Born’s rule even under conditions of accelerated frames of reference, 

*
R µνΨ

( )Rp Xµν

R R R R RS E t Hµν µν µν µν µν+ + Ψ≡ ≡

R R RS t Eµν µν µν≡−

R RS Y 1µν µν µν≡∩

( )
µv µv µv µvR µv

R R 1 R
g g g g g

2 2 2µν Ψ
     Ψ ≡ ∩ − Λ ∩ ≡ − Λ ∩ ≡ Ψ ∩ ∩ − Λ ∩ ≡ Ψ ∩     Ψ     

( )Rp µνΨ
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we define 
 

                 (109) 
 
where p(RΨµv) denotes the probability tensor as associated i.e. with the wave function tensor RΨµv and R

*Ψµv is 
the covariant second rank complex conjugate wave function tensor and ∩ denotes the commutative multiplica-
tion of tensors. 
 

Definition: The probability tensor II  

In general, we define  
 

                 (110) 
 
where p(RΨµv) denotes the probability tensor as associated i.e. with the wave function tensor RΨµv and RYµv de-
note a covariant second rank tensor of preliminary unknown structure and ∩ denotes the commutative multipli-
cation of tensors. 
Scholium. 
The properties of the tensor RYµv , as mentioned already before, are still unknown. Still, another second property 
of this tensor is the special relationship with the wave function tensor RΨµv . The interaction of the tensor RYµv  
with the wave function tensor RΨµv yields the probability tensor p(RΨµv) as associated with the wave function 
tensor RΨµv. In general it is  p(RΨµv) = RΨµv  ∩  RYµv . 
 

Definition: The tensor Uµv 

In general, we define the tensor Uµv of yet unknown structure as 
 

              
(111) 

 
 
 

Definition: The decomposition of the tensor Uµv 

In general, we decompose the tensor Uµv as 
               

(112) 
 
Scholium. 
By this definition we are following Einstein in his claim that something is determined by matter and the gravita-
tional field. In other words, there is no third between matter and gravitational field, i. e. all but matter is gravita-
tional field. To proceed further, in following Einstein, we make a strict distinction between matter and gravita-
tional field too. 
 
“Wir       unterscheiden       im       folgenden       zwischen       ‘Gravitationsfeld’       
und       ‘Materie’       in       dem       Sinne,       daß       alles       außer       
dem Gravitationsfeld       als       ‘Materie’       bezeichnet       wird,       also       nicht       
nur       die       ‘Materie’       im       üblichen       Sinne,       sondern       auch       
das elektromagnetische      Feld.” [21] 
 
The tensor RUµv is not identical with the tensor Uµv. In terms of set theory, we do obtain the following picture 
(Table 3). 

R R R R R

1 1 1 1 1

c c c c c c c c
U S E t H

c c
µν µν µν µν µν

µν µν µν µν µν µν
µν µν µν µν µν µν µν µν µν µν

       
≡ ∩ ≡ ∩ ∩ ≡ ∩ ∩              ∩ ∩ ∩ ∩ ×    

+ + Ψ
  

R R R RU U M M M M M gµνµν µν µν µν µν µν µν≡ ≡ ≡− + + +

( ) *
RR R R Rp Yµν µν µν µν µνΨ ≡ Ψ ∩ Ψ ≡ Ψ ∩

( )R R Rp Yµν µν µνΨ ≡ Ψ ∩
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         Table 3. The relationship between matter and gravitational field.                         

   

 

 

RM µv 
 

Rgµv 
   

   Uµv 

 

Definition: The tensor of curvature 0Cµv 

In general, we define the tensor of curvature as 0Cµv of yet unknown structure as 
 

                 
(113) 

 
 
where Gµv is the Einsteinian tensor, Rµv is the Ricci tensor, R is the Ricci scalar and gµv is the metric tensor of 
general relativity. Under conditions of the theory of general relativity it is 0Cµv = Gµv. 
 
Scholium. 
Under conditions of general theory of relativity, the associated probability tensor follows as 

 
                 
 

(114) 
 
 

Definition: The tensor of anti-curvature 0Cµv 

In general, we define the tensor of anti-curvature as 0Cµv of yet unknown structure as 
 

                 (115) 
 
where RSµv is the tensor of space, 0Cµv is the tensor of curvature. Under conditions of general relativity, the ten-
sor of anti-curvature is equivalent with 

 
                 (116) 

 
 
where Gµv is the Einsteinian tensor, Rµv is the Ricci tensor, R is the Ricci scalar and gµv is the metric tensor of 
general relativity. 
 
Scholium. 
Under conditions of general theory of relativity, the associated probability tensor follows as 
 

 
                 
 

(117) 

0

R
C G A C R g

2µν µν µν µν µν µν≡ ≡ + ≡ − ×

0 R 0C S Cµν µν µν≡ −

0

R R
C B D R G R R g g

2 2µν µν µν µν µν µν µν µν µν
 ≡ + ≡ − ≡ − − × ≡ × 
 

( ) ( )0

R
R g

A C 2
p C p G

R R

µν µν
µν µν

µν µν
µν µν

 − × +  ≡ ≡ ≡

( )0

R RR R g gB D R G 2 2p C
R R R R

µν µν µν µν
µν µν µν µν

µν
µν µν µν µν

 − − × × + −  ≡ ≡ ≡ ≡
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2.3. Tensor calculus. 

 

Definition: The tensor of the unified field 1µv 

In general, we define the tensor of the unified field, the tensor of the unified field  1µv , as 
               

(118) 
 
Scholium. 
Every component of a unity tensor is equal to +1. the tensor of the unified field  is of order two, its components 
can be displayed in 4 × 4 matrix form as 

               
 
 

(119) 

 

 

Definition: The zero tensor 0µv 

In general, we define the zero tensor 0µv as 
               

(120) 
 
Scholium. 
Every component of a zero tensor is equal to +0. The zero tensor is of order two, its components can be dis-
played in 4 × 4 matrix form too as 

               
 
 

(121) 
 
 

 

Definition: The tensor of the number 2µv 

In general, we define tensor of any number, i.e. the number 2µv as 
               

(122) 
 
Scholium. 
Every component of a tensor of the number +2 is equal to +2. The tensor of the number +2 can be displayed in 4 
× 4 matrix form as 

               
 
 

(123) 
 

 

 

1µν

1 1 1 1

1 1 1 1
1

1 1 1 1

1 1 1 1

µν

+ + + + 
 + + + + + ≡
 + + + +
 + + + + 

0µν

0 0 0 0

0 0 0 0
0

0 0 0 0

0 0 0 0

µν

+ + + + 
 + + + + + ≡
 + + + +
 + + + + 

2µν

2 2 2 2

2 2 2 2
2

2 2 2 2

2 2 2 2

µν

+ + + + 
 + + + + + ≡
 + + + +
 + + + + 



Ilija Barukčić 

 

 2

7 

Definition: The tensor of infinity ¥µv 

In general, we define the tensor of infinity ¥µv as 
               

(124) 
 
Scholium. 
Every component of the tensor of infinity is equal to +¥. The tensor of infinity is of order two, its components 
can be displayed in 4 × 4 matrix form as 

               
 
 

(125) 
 
 

 

Definition: The symmetrical part of a tensor S( 0Xµv ) 

Let 0Xµv denote a second-tensor rank. The symmetric part of a tensor 0Xµv is defined as 
               

(126) 
 
 
and denoted using the capital letter S and the tensor itself within the parentheses.  
 

Definition: The anti- symmetrical part of a tensor S( 0Xµv ) 

Let 0Xµv denote a second-tensor rank. The anti-symmetric part of a tensor 0Xµv is defined as 
               

(127) 
 
 
and denoted using the capital letter S underscore and the tensor itself within the parentheses.  
 
Scholium. 
In general, the tensor 0Xµv can be written as a sum of symmetric and antisymmetric parts as 

               
(128) 

 
 

Definition: Tensor 0Xµv and anti tensor 0Xµv 

In general, let 
               

(129) 
 
We define the anti tensor 0Xµv of the tensor 0Xµv as 

               
(130) 

 
Scholium. 
There is no third tensor between a tensor and its own anti tensor, a third is not given, tertium non datur (Aristo-

R 0 1 NC X X ... Xµν µν µν µν= + + +

0 R 0 1 NX C X X ... Xµν µν µν µν µν≡ − ≡ + + +

µν∞

µν

+∞ +∞ +∞ +∞ 
 +∞ +∞ +∞ +∞ +∞ ≡
 +∞ +∞ +∞ +∞
 +∞ +∞ +∞ +∞ 

( )0 0 0 µ

1
S( X ) X X

2µν µν ν= × +

( )0 0 0 µ

1
S( X ) X X

2µν µν ν= × −

( ) ( )0 0 0 0 0 µ 0 0 µ

1 1
X S( X ) S( X ) X X X X

2 2µν µν µν µν ν µν ν= + = × + + × −



Ilija Barukčić 

 

 2

8 

tle).  An anti tensor is denoted by the name of the tensor with underscore. Theoretically, the distinction be-
tween an anti-symmetrical tensor and an anti tensor is necessary. The simplest nontrivial antisymmetric rank-2 
tensor, written as a sum of symmetric and antisymmetric parts, satisfies the equation 

               
(131) 

 
 
In general, the relationship between an anti symmetrical tensor and an anti tensor follows as 

               
(132) 

 
 
Only under conditions where            we obtain 

               
(133) 

 
but not in general. In this context it is 

               
(134) 

 
The anti tensor δµv of the Kronecker delta or Kronecker's delta δµv, named after Leopold Kronecker (1823 
–1891), follows as 
 

 (135) 
 

Definition: The addition of tensors 

Tensors independent of any coordinate system or frame of reference as generalizations of scalars (magnitude, no 
direction associated with a scalar) which have no have no indices and other mathematical objects (vectors (sin-
gle direction), matrices) to an arbitrary number of indices may be operated on by tensor operators or by other 
tensors. In general, tensors can be represented by uppercase Latin letters and the notation for a tensor is similar 
to that of a matrix even if a tensor may be determined by an arbitrary number of indices. A distinction between 
covariant and contravariant indices is made. A component of a second-rank tensor is indicated by two indices. 
Thus far, a component of any tensor of any tensor rank which vanishes in one particular coordinate system, will 
vanish in all coordinate systems too. As is known, two tensors X and X which have the same rank and the same 
covariant can be added and/or contravariant indices. The sum of two tensors of the same rank is also a tensor of 
the same rank. In general, it is 

               
(136) 

or 
               

(137) 
or 

               
(138) 

 
 

Definition: The difference of tensors 

The difference of two tensors of the same rank is also a tensor of the same rank. In general, it is 
               

(139) 
or 

( ) ( )0 0 0 0 0 0

1 1
X X X X X X

2 2µν νµ µν νµ µν νµ= − ≡ × + + × −

00 0 RX X C X µνµν νµ µν= − ≡ −

00X X µννµ− ≡ −

1 1 0 1 1 0 0µν µνµν µν µν µν µν= + ≡ + ≡ +

R C 0µν =

1µν µν µνδ = − δ

0R 0C X Xµνµν µν= +

0R 0C X Xµν µν µν= +

µµ µ
0R 0C X X νν ν= +

0 R 0X C Xµν µν µν= −
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(140) 

or 
               

(141) 
 

Definition: The commutative multiplication of tensors 

Let us display the individual components of a co-variant rank two tensor Xµv in matrix form as 
 

                               
 

(142) 
 
 
 
 
Let us display the individual components of a co-variant rank two tensor Yµv in matrix form as 

 
                               
 

(143) 
 
 
 
 
The commutative multiplication of tensors (i. e. matrices), which is different from the non-commutative multi-
plication (of matrices), is operation of multiplying the corresponding elements of both tensors by each other. We 
define the commutative multiplication of tensors in general as 

 
                               
 

(144) 
 
 
 
 
while the sign Ç denotes the commutative multiplication of tensors which is equally related to the Hadamard 
[29] product. The Hadamard product (also known as the Schur product or the pointwise product), due to 
Jacques Salomon Hadamard (1865 - 1963), is an operation of two matrices of the same dimensions which is 
commutative, associative and distributive over addition. 
 

Definition: The tensor raised to power n  

Let us introduce the notation of a co-variant rank two tensor Xµv raised to power n as 
               

(145) 
 
 
Each individual component of the tensor Xµv is multiplied by itself n-times. 
 
 

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

X X X X

X X X X
X

X X X X

X X X X

µν

 
 
 =
 
 
 

00 00 01 01 02 02 03 03

10 10 11 11 12 12 13 13

20 20 21 21 22 22 23 23

30 30 31 31 32 32 33 33

X Y X Y X Y X Y

X Y X Y X Y X Y
X Y Y X

X Y X Y X Y X Y

X Y X Y X Y X Y

µν µν µν µν

× × × × 
 × × × × ∩ ≡ ∩ ≡
 × × × ×
 × × × × 

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

Y Y Y Y

Y Y Y Y
Y

Y Y Y Y

Y Y Y Y

µν

 
 
 =
 
 
 

n

n times

X X X ... Xµν µν µν µν

−

= ∩ ∩ ∩
���������

0 R 0X C Xµν µν
µν = −

µ µ
0 R 0X C Xµν ν ν+ = −
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Definition: The root of the tensor raised to power 1/n  

Let us introduce the notation of a co-variant rank two tensor Xµv raised to power 1/n as 
               

(146) 
 
 
Each individual component of the tensor Xµv is raised to the power 1/n. 
 

Definition: The commutative division of tensors 

Let us once again display the individual components of a co-variant rank two tensor RXae in matrix form as 
 

                               
 

(147) 
 
 
 
The commutative division of tensors is defined by the division of the corresponding elements of both tensors by 
each other and displayed in matrix form as 

 
                               
 

(148) 
 
 
 
 
while the sign : denotes the commutative division of tensors. The commutative division of tensors is displayed as 

 
                               
 

(149) 
 
 
 
too. 
 

Definition: The expectation value of a second rank tensor 

Let E(Xµv) denote the expectation value of the covariant second rank tensor Xµv. Let p(Xµv) denote the probabil-
ity tensor of the second rank tensor Xµv. In general, we define 
 

               
(150) 

 
 
while the sign Ç denotes the commutative multiplication of tensors. 
 

Definition: The expectation value of a second rank tensor raised to power 2  

Let E(2Xµv) denote the expectation value of the covariant second rank tensor Xµv raised to the power 2. Let 

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

X X X X

X X X X
X

X X X X

X X X X

µν

 
 
 =
 
 
 

00 00 01 01 02 02 03 03

10 10 11 11 12 12 13 13

20 20 21 21 22 22 23 23

30 30 31 31 32 32 33 33

X / Y X / Y X / Y X / Y

X / Y X / Y X / Y X / Y
X : Y

X / Y X / Y X / Y X / Y

X / Y X / Y X / Y X / Y

µν µν

 
 
 =
 
 
 

( ) ( )E X p X Xµν µν µν≡ ∩

1/n

n

n times

X X X ... Xµν µν µν µν

−

= ∩ ∩ ∩
���������

00 00 01 01 02 02 03 03

10 10 11 11 12 12 13 13

20 20 21 21 22 22 23 23

30 30 31 31 32 32 33 33

X / Y X / Y X / Y X / Y

X / Y X / Y X / Y X / Y X
X : Y

X / Y X / Y X / Y X / Y Y

X / Y X / Y X / Y X / Y

µν
µν µν

µν

 
 
 = =
 
 
 
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p(Xµv) denote the probability tensor of the second rank tensor Xµv. In general, we define 
 

               
(151) 

 
 
while the sign Ç denotes the commutative multiplication of tensors. 
 

Definition: The variance of a second rank tensor  

Let σ(Xµv)² denote the variance of the covariant second rank tensor Xµv. Let E(Xµv) denote the expectation value 
of the covariant second rank tensor Xµv. Let E(2Xµv) denote the expectation value of the covariant second rank 
tensor Xµv raised to the power 2. Let p(Xµv) denote the probability tensor of the second rank tensor Xµv. In gen-
eral, we define 

               
(152) 

 
which can be written as 

               
(153) 

 
or as 

               
(154) 

 
or as 

               
(155) 

 
or as 

               
(156) 

 
while the sign Ç denotes the commutative multiplication of tensors and 1µv is the tensor of the unified field. 
 

Definition: The standard deviation of a second rank tensor  

Let σ(Xµv) denote the standard deviation of the covariant second rank tensor Xµv. Let E(Xµv) denote the expecta-
tion value of the covariant second rank tensor Xµv. Let E(2Xµv) denote the expectation value of the covariant 
second rank tensor Xµv raised to the power 2. Let p(Xµv) denote the probability tensor of the second rank tensor 
Xµv. In general, we define 
 

               
(157) 

 
which can be written as 

               
(158) 

 
or as 

               
(159) 

 

( ) ( ) ( )2 2E X p X X X p X Xµν µν µν µν µν µν≡ ∩ ∩ ≡ ∩

( ) ( ) ( ) ( )( )2 2X E X E X E Xµν µν µν µνσ ≡ − ∩

( ) ( ) ( ) ( )( )2
X X X p X p X p Xµν µν µν µν µν µνσ ≡ ∩ ∩ − ∩

( ) ( ) ( )( ) ( )( )( )2
X p X X X p X X p X Xµν µν µν µν µν µν µν µνσ ≡ ∩ ∩ − ∩ ∩ ∩

( ) ( ) ( )( )( )2
X X X p X 1 p Xµν µν µν µν µν µνσ ≡ ∩ ∩ ∩ −

( ) ( ) ( ) ( )( )22X E X E X E Xµν µν µν µνσ ≡ − ∩

( ) ( ) ( ) ( )( )2X X p X p X p Xµν µν µν µν µνσ ≡ ∩ − ∩

( ) ( ) ( )( )( )2X X p X 1 p Xµν µν µν µν µνσ ≡ ∩ ∩ −

( ) ( ) ( ) ( )( )2
X p X X X X X p X p Xµν µν µν µν µν µν µν µνσ ≡ ∩ ∩ − ∩ ∩ ∩
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while the sign Ç denotes the commutative multiplication of tensors and 1µv is the tensor of the unified field . The 
covariant second rank tensor Xµv follows as 

               
(160) 

 
 
 
 

Definition: The co-variance of two second rank tensors  

Let σ(Xµv , Yµv) denote the co-variance of the two covariant second rank tensors Xµv and Yµv. Let E(Xµv,Yµv) 
denote the expectation value of the two covariant second rank tensors Xµv and Yµv. Let p(Xµv ,Yµv) denote the 
probability tensor of the two covariant second rank tensors Xµv and Yµv. Let E(Xµv) denote the expectation value 
of the covariant second rank tensor Xµv. Let p(Xµv) denote the probability tensor of the second rank tensor Xµv. 
Let E(Yµv) denote the expectation value of the covariant second rank tensor Yµv. Let p(Yµv) denote the probabil-
ity tensor of the second rank tensor Yµv. In general, we define 
 

               
(161) 

 
which can be written as 
 

               
(162) 

 
or as 

               
(163) 

 
while the sign Ç denotes the commutative multiplication. In general it is 
  

               
(164) 

 

 

Definition: Einstein’s Weltformel  

Let σ(RUµv , 0Wµv) denote the co-variance of the two covariant second rank tensors RUµv and 0Wµv. Let σ(RUµv) 
denote the standard deviation of the covariant second rank tensor of the cause. Let σ(0Wµv) denote the standard 
deviation of the covariant second rank tensor of the effect 0Wµv. Let k(RUµv , 0Wµv) denote the mathematical 
formula of the causal relationship in a general covariant form (i. e. Einstein’s Weltformel). In general, we define 
 

               
(165) 

 
 
 
Scholium.  
In this context, the above equation is able to bridge the gap between classical field theory and quantum theory 
since the same enables the existence elementary particles i. e. with unequal mass but with opposite though oth-
erwise equal electric charge. 

( ) ( ) ( ) ( )( )X ,Y E X ,Y E X E Yµν µν µν µν µν µνσ ≡ − ∩

( ) ( ) ( ) ( )( )X ,Y X Y p X ,Y p X p Yµν µν µν µν µν µν µν µνσ ≡ ∩ ∩ − ∩

( ) ( ) ( ) ( )( )X ,Y p X ,Y X Y p X X Y p Yµν µν µν µν µν µν µν µν µν µνσ ≡ ∩ ∩ − ∩ ∩ ∩

( )
( ) ( )( )( )2

X
X

p X 1 p X

µν
µν

µν µν µν

σ
≡

∩ −

( )
( ) ( ) ( )( )

X ,Y
X Y

p X ,Y p X p Y

µν µν
µν µν

µν µν µν µν

σ
∩ ≡

− ∩

( ) ( )
( ) ( )

R 0

R 0

R 0

U , W
k U , W

U W

µν µν
µν µν

µν µν

σ
≡

σ ∩ σ
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2.3. Axioms. 

 

2.3.1. Axiom I. (Lex identitatis. Principium identitatis. The identity law) 

The foundation of all what may follow is the following axiom: 
               

(166) 
 
Scholium. 
From the standpoint of tensor calculus, it is 

               
(167) 

 
 
 
This article does not intend to give a review of the history of the identity law (principium identitatis). In the fol-
lowing it is useful to sketch, more or less chronologically, and by trailing the path to mathematics, the history of 
attempts of mathematizing the identity law. The identity law was used in Plato's dialogue Theaetetus, in Aristo-
tle's Metaphysics (Book IV, Part 4) and by many other authors too. Especially, Gottfried Wilhelm Leibniz 
(1646–1716) expressed the law of identity as everything is that what it is. “Chaque chose est ce qu'elle est. Et 
dans autant d'exemples qu'on voudra A est A, B est B.” [30]. In The problems of philosophy (1912) Russell 
himself is writing about the identity law too.  
Lex identitatis or the identity law can be expressed mathematically in the very simple form as +1 = +1 . Conse-
quently, +1 is only itself, simple equality with itself, it is only self-related and unrelated to another, +1 is distinct 
from any relation to another, +1 contains nothing other, no local hidden variable, but only itself, +1. In this way, 
there does not appear to be any relation to another, any relation to another is removed, any relation to another 
has vanished. Consequently, +1 is just itself and thus somehow the absence of any other determination. +1 is in 
its own self only itself and nothing else. In this sense, +1 is identical only with itself, +1 is thus just the 'pure' +1 
. Let us consider this in more detail, +1 is not the transition into its opposite, the negative of +1, denoted as -1, is 
not as necessary as the +1 itself, +1 is not confronted by its other, +1 is without any opposition or contradiction, 
is not against another, is not opposed to another, +1 is identical only with itself and has passed over into pure 
equality with itself. But lastly, identity as different from difference, contains within itself the difference itself. 
Thus, it is the same +1 which equally negates itself, +1 in the same respect is in its self-sameness different from 
itself and thus self-contradictory. It is true, that +1 = +1, but it is equally true that -1 = -1. It is the same 1 which 
is related to a +1 and a -1. It is the +1 which excludes at the same time the other out of itself, the -1, out of itself, 
+1 is +1 and nothing else, it is not -1, it is not +2, it is not … Especially +1 is at the same time not -1 , +1 is thus 
far determined as non being at least as non-being of its own other. In excluding its own other out of itself, +1 is 
excluding itself in its own self. By excluding its own other, +1 makes itself into the other of what it excludes 
from itself, or +1 makes itself into its own opposite, +1 is thus simply the transition of itself into its opposite, +1 
is therefore determined only in so far as it contains such a contradiction within itself. The non-being of its other 
(-1) is at the end the sublation of its other. This non-being is the non-being of itself, a non-being which has its 
non-being in its own self and not in another, each contains thus far a reference to its other. Not +1 (i. e. -1) is the 
pure other of +1. But at the same time, not +1 only shows itself in order to vanish, the other of +1 is not. In this 
context, +1 and not +1 are distinguished and at the same time both are related to one and the same 1, each is that 
what it is as distinct from its own other. Identity is thus far to some extent at the same time the vanishing of oth-
erness. +1 is itself and its other, +1 has its determinateness not in another, but in its own self. +1 is thus far 
self-referred and the reference to its other is only a self-reference. On closer examination +1 therefore is, only in 
so far as its Not +1 is, +1 has within itself a relation to its other. In other words, +1 is in its own self at the same 
time different from something else or +1 is something. It is widely accepted that something is different from 
nothing, thus while +1 = +1 it is at the same time different from nothing or from non - +1. From this it is evi-
dent, that the other side of the identity +1 =+1 is the fact, that +1 cannot at the same time be +1 and -1 or not +1 
. In fact, if +1 = +1 then +1 is not at the same time not +1 . What emerges from this consideration is, therefore, 

1 1.+ ≡ +

1 1µν µν≡
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even if +1=+1 it is a self-contained opposition, +1 is only in so far as +1 contains this contradiction within it, +1 
is inherently self-contradictory, +1 is thus only as the other of the other. In so far, +1 includes within its own self 
its own non-being, a relation to something else different from its own self. Thus, +1 is at the same time the unity 
of identity with difference. +1 is itself and at the same time its other too, +1 is thus contradiction. Difference as 
such it unites sides which are, only in so far as they are at the same time not the same. +1 is only in so far as the 
other of +1, the non +1 is. +1 is thus far that what it is only through the other, through the non +1, through the 
non-being of itself. From the identity +1=+1 follows that +1 - 1 = 0. +1 and -1 are negatively related to one an-
other and both are indifferent to one another, +1 is separated in the same relation. +1 is itself and its other, it is 
self-referred, its reference to its other is thus a reference to itself, its non-being is thus only a moment in it. +1 is 
in its own self the opposite of itself, it has within itself the relation to its other, it is a simple and self-related 
negativity. Each of them are determined against the other, the other is in and for itself and not as the other of an-
other. +1 is in its own self the negativity of itself. +1 therefore is, only in so far as its non-being is and vice ver-
sa. Non +1 therefore is, only in so far as its non-being is, both are through the non-being of its other, both as 
opposites cancel one another in their combination, it is +1 - 1 = 0.    
 

2.3.2. Axiom II. (Lex negationis) 

               
(168) 

 
Scholium. 
From the standpoint of tensor calculus, it is 

               
(169) 

 
 

2.3.3. Axiom III. (Lex contradictionis) 

               
(170) 

 
 
Scholium. 
From the standpoint of tensor calculus, it is 

               
(171) 

 
 
 
The law of non-contradiction (LNC) is still one of the foremost among the principles of science and equally a  
fundamental principle of scientific inquiry too. Without the principle of non-contradiction we could not be able 
to distinguish between something true and something false. There are arguably many versions of the principle of 
non-contradiction which can be found in literature. The method of reductio ad absurdum itself is grounded on 
the validity of the principle of non-contradiction. To be consistent, a claim / a theorem  /  a proposition / a  
statement et cetera accepted as correct, cannot lead to a logical contradiction. In general, a claim / a theorem / a 
proposition / a statement et cetera which leads to the conclusion that +1 = +0 is refuted.    
 
 
 
 
 
 

( ) ( )1 0 .+ ≡ +∞ × +

1 0µν µν µν∞ ∩≡

0
1.

0

+ ≡ +
+

( ) ( ) ( ) ( )0
0 0 1 0 .

0
µν

µν µν µν µν
µν

 +
+ ≡ ∩ + ≡ + ∩ +  + 
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3. Results 

 

3.1 Theorem. Einstein’s field equation 

Einstein’s field equations can be derived from axiom I. 
 
Claim. (Theorem. Proposition. Statement.) 
In general, Einstein’s field equations are derived as 
 
 

(172) 
 
Direct proof. 
In general, axiom I is determined as 
 
 

(173) 
 
Multiplying this equation by the stress-energy tensor of general relativity ((4×2×π×γ)/(c4))×Tµv, it is 
 
 

(174) 
 
 
where γ is Newton's gravitational ‘constant’[25], [26], c is the speed of light in vacuum and π , sometimes re-
ferred to as ‘Archimedes' constant’, is the ratio of a circle's circumference to its diameter. Due to Einstein’s gen-
eral relativity, the equation before is equivalent with 
 
 
 

(175) 
 
 
 
Rµv is the Ricci curvature tensor, R is the scalar curvature, gµv is the metric tensor, Λ is the cosmological con-
stant and Tµv is the stress–energy tensor. By defining the Einstein tensor as Gµv= Rµv - (R/2)×gµv, it is possible to 
write the Einstein field equations in a more compact as 
 
 

(176) 
 
Quod erat demonstrandum. 
 
 
 

3.2 Theorem. The relationship between the complex tensor RYµv and the tensor RSµv 

Claim. (Theorem. Proposition. Statement.) 
In general, it is 
 
 

(177) 

1 1+ = +

µv µv4 4

4 2 4 2
1 T 1 T

c c

× × π× γ × × π× γ   + × × = + × ×   
   

( )µv µv µv µv4

R 4 2
R g g T

2 c

× × π× γ   − × + Λ × = ×   
   

( )µv µv µv4

4 2
G g T

c

× × π× γ + Λ × = × 
 

( )µv µv µv4

4 2
G g T

c

× × π× γ + Λ × = × 
 

µv
R µ v

R µ v

1
Y

S
≡
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Direct proof. 
In general, axiom I is determined as 
 

(178) 
 
Multiplying by the tensor of the unified field 1µv, we obtain 
 

(179) 
 
or 

(180) 
 
Multiplying this equation by RSµv∩RYµv, we obtain 
 
 

(181) 
 
Due to our above definition the unknown tensor RYµv assures that RSµv ∩ RYµv = 1µv. Consequently, equation 
before reduces too 
 
 

(182) 
A commutative division yields 
 

(183) 
 
 
Quod erat demonstrandum. 
 
 

3.3 Theorem. The relationship between the complex conjugate tensor R
*Ψµv and the ten-

sor RYµv 

Claim. (Theorem. Proposition. Statement.) 
In general, it is 
 

(184) 
Direct proof. 
In general, axiom I is determined as 
 

(185) 
 
Multiplying by the tensor of the unified field 1µv, we obtain 
 

(186) 
 
or 

(187) 
 
Multiplying this equation by RΨµv ∩ R

∗Ψµv, we obtain 
 

R µv R µ v µv R µ v R µ v µ vS Y 1 S Y 1∩ ∩ ≡ ∩ ∩

R µv R µ v µ vS Y 1∩ ≡

µv
R µ v

R µ v

1
Y

S
≡

*
RR µv µvY ≡ Ψ

1 1+ = +

µv µv1 1 1 1∩ = ∩

µv µv1 1=

1 1+ = +

µv µv1 1 1 1∩ = ∩

µv µv1 1=
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(188) 

 
Due to our above definition, it is RΨµv ∩ R

∗Ψµv =  RΨµv ∩ RYµv. Consequently, the equation before changes too 
 

(189) 
 
At the end, after a commutative division, we obtain 
 

(190) 
 
Quod erat demonstrandum. 
 
 

3.4 Theorem. The relationship between the complex conjugate tensor R
*Ψµv and the Ricci 

tensor Rµv 

 
Claim. (Theorem. Proposition. Statement.) 
In general, it is 
 

(191) 
 
Direct proof. 
In general, axiom I is determined as 
 

(192) 
 
Multiplying by the tensor of the unified field 1µv, we obtain 
 

(193) 
 
or 

(194) 
 
Multiplying this equation by RYµv, we obtain 
 

(195) 
 
or  
 

(196) 
 
Due to the theorem before, it is RYµv = R

*Ψµv. Consequently, substituting this equation into the equation before 
we obtain 
 

(197) 
 
Due to another theorem before, it is RYµv = 1µv : RSµv. Consequently, substituting this equation into equation be-
fore, we obtain 
 

(198) 

* *
R RR µ v µv µv R µ v µ v µv1 1Ψ ∩ Ψ ∩ ≡ Ψ ∩ Ψ ∩

*
RR µ v R µ v R µ v µvYΨ ∩ ≡ Ψ ∩ Ψ

*
RR µv µvY ≡ Ψ

R µv µ v R µv µ vY 1 Y 1∩ = ∩

*
R µ v R µ vYΨ =

µ v*
R µv

µ v

1

R
Ψ =

µ v*
R µ v

R µ v

1

S
Ψ =

1 1+ = +

µv µv1 1 1 1∩ = ∩

µv µv1 1=

R µ v R µvY Y=
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Under conditions of general relativity it is Rµv= RSµv where Rµv denotes the Ricci tensor. In general, under con-
ditions of general relativity, we obtain 
 
 

(199) 
 
 
 
Quod erat demonstrandum. 
 
 

3.5 Theorem. The probability tensor 1µv - p(RHµv) as associated with the energy tensor 

RHµv  

 
Claim. (Theorem. Proposition. Statement.) 
The probability 1µv - p(RHµv)) as associated with the energy tensor RHµv is determined as 
 

 (200) 
 
Direct proof. 
In general, axiom I is determined as 
 

(201) 
 
Multiplying by the tensor of the unified field 1µv, we obtain 
 

(202) 
 
or 

(203) 
 
A commutative multiplication of this equation by the tensor RSµv leads to 
 

(204) 
 
or to 

(205) 
 
Due to our definition above, we obtain 
 
 

 (206) 
 
A commutative multiplication of the equation before by the complex conjugate wave function tensor R

*Ψµv , it is 
 
 

 (207) 
 
 
Due to the theorem before, it is RSµv ∩ R

*Ψ µv=1µv. Thus far, equation before changes to 

R µv R µv R µvH S+ Ψ =

* * *
R R RR µv µv R µv µv R µv µvH S∩ Ψ + Ψ ∩ Ψ = ∩ Ψ

( ) *
Rµv R µv R µv µv1 p H H− = × Ψ

R µv µv µv R µvS 1 1 S∩ = ∩

R µv R µvS S=

1 1+ = +

µv µv1 1 1 1∩ = ∩

µv µv1 1=

µ v*
R µv

µ v

1

R
Ψ =
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 (208) 
 
Following Born’s rule, it is p(RΨµv) = RΨµv × RΨ*

µv. We obtain 
 

 (209) 
 
At the end, it follows that 
 

 (210) 
 
Quod erat demonstrandum. 
 
 
3.6 Theorem. The normalization of the relationship between energy and time   
 
 
Claim. (Theorem. Proposition. Statement.) 
The relationship between Energy REµv and time Rtµv can be normalized as 
 
 

 (211) 
 
 
Direct proof. 
In general, axiom I is determined as 
 

(212) 
 
Multiplying by the tensor of the unified field 1µv, we obtain 
 

(213) 
 
or 

(214) 
 
A commutative multiplication of this equation by the tensor RSµv leads to 
 

(215) 
 
or to 

(216) 
 
 
Due to our definition above it is REµv + Rtµv = RSµv. The equation before changes to 
 
 

 (217) 
 
A commutative division of the equation before by the tensor RSµv leads to 

 
 

( )*
RR µv µv R R µv µvH p 1× Ψ + Ψ =

( ) *
Rµv R µv R µv µv1 p H− Ψ = ∩ Ψ

* *
R RR µv µv R µv µv µvH 1∩ Ψ + Ψ ∩ Ψ =

R µv R µv
µv

R µv R µv

E t
1

S S
+ = +

R µv R µv R µvE t S+ =

1 1+ = +

µv µv1 1 1 1∩ = ∩

R µv µv µv R µvS 1 1 S∩ = ∩

R µv R µvS S=

µv µv1 1=
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 (218) 
 
 
Quod erat demonstrandum. 
 
 
 
 
3.7 Theorem. The normalization of the relationship between matter and gravita-
tional field 
 
Claim. (Theorem. Proposition. Statement.) 
The relationship between the quantum mechanical operator of matter and the wavefunction of the gravitational 
field can be normalized as 
 
 

 (219) 
 
 
Direct proof. 
In general, axiom I is determined as 
 

(220) 
 
A commutative multiplication by the tensor of the unified field 1µv leads to 
 

(221) 
 
or too 

(222) 
 
A commutative multiplication by RM  µv, leads to 
 
 

 (223) 
which is equivalent with 
 

 (224) 
and at the end with 
 
 

 (225) 
 
In our understanding RMµv is a determining part of Uµv. We add Uµv, and do obtain 
 
 

 (226) 
 
Due to Einstein all but matter is gravitational field. Since Rgµv = Uµv - RMµv, it follows that 
 
 

 (227) 
 

R µv µv R µv µvM 1 M 1∩ = ∩

R µv R µv µvg M U+ =

R µv µv R µv µvM U M U+ − =

R µv R µv µvM M 0− =

R µv R µv
µv

µv µv

g M
1

U U
+ = +

R µv R µv
µv

R µv R µv

E t
1

S S
+ =

1 1+ = +

µv µv1 1 1 1∩ = ∩

µv µv1 1=

R µv R µvM M=
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A commutative division of the equation before by Uµv  leads to the normalization of matter and gravitational 
field as 
 

 (228) 
 
 
Quod erat demonstrandum. 
 
 
3.8 Theorem. The gravitational field Rgµv 
 
Claim. (Theorem. Proposition. Statement.) 
The gravitational field Rgµv is determined as 
 

 (229) 
 
Direct proof. 
In general, axiom I is determined as 
 

(230) 
 
A commutative multiplication by the tensor of the unified field 1µv leads to 
 

(231) 
 
or too 

(232) 
 
 
Due to a theorem before it is (REµv : RSµv) + (Rtµv: RSµv)=1µv. The equation before changes too 
 

 
 (233) 

 
 
Due to another theorem before it is (RMµv : Uµv) + (Rgµv: Uµv)=1µv. The equation before changes too 
 
 

 (234) 
 
 
A commutative multiplication by Uµv is leads to 
 
 

 (235) 
 
 
According to our definition, it is RSµv = (Rcµv∩ Rcµv) ∩Uµv. Thus far, it is ((1µ)/ (Rcµv∩ Rcµv))

  = Uµv / RSµv. The 
equation before changes to 
 

 (236) 
 
 

R µv R µv
µv

µv µv

g M
1

U U
+ = +

R µv
R µv

R µv R µv

t
g

c c
≡

∩

R µv R µv
µv

R µv R µv

E t
1

S S
+ = +

R µv R µv R µv R µv

µv µv R µv R µv

g M E t

U U S S
+ = +

µv µv
R µv R µv R R µv

R µv R µv

U U
g M E t

S S

   
+ = ∩ + ∩      

   

R µv R µv
R µv R µv

R µv R µv R µv R µv

E t
g M

c c c c
+ = +

∩ ∩

1 1+ = +

µv µv1 1 1 1∩ = ∩

µv µv1 1=
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Due to our definition of matter as RMµv = REµv /(Rcµv∩ Rcµv). The equation changes to 
 
 

 (237) 
 
 
The tensor of matter RMµv drops out, and what is left is the tensor of the gravitational field Rgµv as 
 
 

 (238) 
 
 
Quod erat demonstrandum. 
 
 
 
 
3.9 Theorem. The normalization of the relationship between the tensor of energy 
and the wave function tensor.    
 
 
Claim. (Theorem. Proposition. Statement.) 
The relationship between the Hamiltonian operator and the wavefunction can be normalized as 
 
 

 (239) 
 
 
Direct proof. 
In general, axiom I is determined as 
 

(240) 
 
A commutative multiplication by the tensor of the unified field 1µv leads to 
 

(241) 
 
or too 

(242) 
 
 
A commutative multiplication of this equation by the tensor RSµv leads to 
 

(243) 
 
or to 

(244) 
 
 
Due to our definition above it is RHµv + RΨµv = RSµv. The equation before changes to 
 
 

 (245) 

R µv
R µv R µv R µv

R µv R µv

t
g M M

c c
+ = +

∩

R µv
R µv

R µv R µv

t
g

c c
=

∩

R µv R µv
µv

R µv R µv

H
1

S S

Ψ
+ = +

R µv R µv R µvH S+ Ψ =

1 1+ = +

µv µv1 1 1 1∩ = ∩

µv µv1 1=

R µv µv µv R µvS 1 1 S∩ = ∩

R µv R µvS S=
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After a commutative division of the equation before, the normalization of the relationship between the energy 
tensor RHµv and the tensor of the wavefunction RΨµv follows as 
 
 

 (246) 
 
 
Quod erat demonstrandum. 
 
 
 
 
 
3.10 Theorem. The relationship between the wave function tensor RΨµv and the 
tensor of the gravitational field Rgµv 
 
Claim. (Theorem. Proposition. Statement.) 
In general, the tensor of the gravitational field Rgµv is determined as 
 
 

 (247) 
 
Direct proof. 
In general, axiom I is determined as 
 

(248) 
 
A commutative multiplication by the tensor of the unified field 1µv leads to 
 

(249) 
 
or too 

(250) 
 
Due to a theorem before it is (RMµv : RSµv) + (RΨµv: RSµv)=1µv. The equation before changes too 
 
 

 (251) 
 
 
Due to another theorem before it is (Rgµv: Uµv) + (RMµv : Uµv) =1µv. The equation before changes too 
 
 

 (252) 
 
 
Multiplying this equation by Uµv, it is 
 
 

 (253) 
 
 

R µv
R µv

R µv R µv

g
c c

Ψ
≡

∩

R µv R µv
µv

R µv R µv

H
1

S S

Ψ
+ = +

R µv R µv R µv R µv

µv µv R µv R µv

g M H

U U S S

Ψ
+ = +

µv µv
R µv R µv R µv R µv

R µv R µv

U U
g M H

S S

   
+ = ∩ + ∩ Ψ      

   

R µv R µv
µv

R µv R µv

H
1

S S

Ψ
+ = +

1 1+ = +

µv µv1 1 1 1∩ = ∩

µv µv1 1=
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According to our definition, it is RSµv = (Rcµv∩ Rcµv)∩Uµv. Thus far, it is (1µv /(Rcµv∩ Rcµv))
  = Uµv / RSµv. The 

equation before changes to 
 
 

 (254) 
 
 
Due to our definition of matter as RM  µv = RH µv / (Rcµv∩ Rcµv), equation before changes to 
  
 

 (255) 
 
 
Subtracting the tensor of matter RMµv on both sides of the equation before, the tensor of the gravitational field 
Rgµv follows as 
 
 

 (256) 
 
Quod erat demonstrandum. 
 
 
3.11 Theorem. The equivalence of the tensor of time Rtµv and the tensor of the 

wave function RΨµv    

 
Claim. (Theorem. Proposition. Statement.) 
Under conditions of the special theory of relativity from the standpoint of a stationary observer R it is 
 

(257) 
 
Direct proof.  
In general, axiom I is determined as 
 

(258) 
 
A commutative multiplication by the tensor of the unified field 1µv leads to 
 

(259) 
 
or too 

(260) 
 
A commutative multiplication by the tensor of the gravitational field Rgµv, we obtain 
 

(261) 
 
 
Due to a theorem before, it is Rgµv = Rtµv /(Rcµv∩ Rcµv). We obtain 
 
 

(262) 
 

R µv R µv
R µv R µv

R µv R µv R µv R µv

H
g M

c c c c

Ψ
+ = +

∩ ∩

R µv
R µv R µv R µv

R µv R µv

g M M
c c

Ψ
+ = +

∩

R µv
R µv

R µv R µv

g
c c

Ψ
=

∩

R µ v R µ vt = Ψ

R µv µv R µv µvg 1 g 1∩ = ∩

R µv
R µv

R µv R µv

t
g

c c
=

∩

1 1+ = +

µv µv1 1 1 1∩ = ∩

µv µv1 1=
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According to another theorem, it is Rgµv = RΨµv / (Rcµv∩ Rcµv). Rearranging equation, we obtain 
 
 

(263) 
 
 
Rearranging equation yields 
 
 

(264) 
Quod erat demonstrandum. 
 
 
 
 
3.12 Theorem. The generally covariant form of Schrödinger’s equation   
 
Einstein's field equations can be rewritten explicitly as a wave equation. In order to geometrize the matter field 
in general, it is useful to bring Schrödinger’s quantum mechanical “wave equation” into a generally covariant 
form. 
 
Claim. (Theorem. Proposition. Statement.) 
In general, the generally covariant form of Schrödinger’s equation is determined by the equation 
 
 

 (265) 
 
Direct proof. 
In general, axiom I is determined as 
 

(266) 
 
A commutative multiplication by the tensor of the unified field 1µv leads to 
 

(267) 
 
or too 

(268) 
 
 
A commutative multiplication by RHµv ∩ RΨµv yields 
 
 

 (269) 
 
 
Due to our definition it is                                                  
 
 
Substituting this equation into the equation before,                                                 
we obtain the generally covariant form of Schrödinger’s equation as 
 

R µv R µv

R µv R µv R µv R µv

t

c c c c

Ψ
=

∩ ∩

R µv R µvt = Ψ

µv R µv R µv R µv R µv
µv

i  H
t

∂ ∩ ∩ ∩ Ψ ≡ ∩ Ψ ∂ 
ℏ

1 1+ = +

µv µv1 1 1 1∩ = ∩

µv µv1 1=

R µv R µv R µv R µvH  H∩ Ψ ≡ ∩ Ψ

µv µv µv R µv R µv

µv µv R µv R µv R µv R µv R µv

1 4 2

t i µν

∩ ∩ ∩∂  ≡ ∩ ∩ ∂ ∩ ∩ ∩ ∩  ℏ

π γ
T

c c c c
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 (270) 

 
 
Quod erat demonstrandum. 
 
 
Scholium. 
A methodological important point in the process of the establishment of field equations for unified field theory 
is the relationship between quantum theory and (classical) field theory. In this context, with regard to the unified 
field theory, an extension of general relativity, this trial to bridge the gap between quantum theory and (classi-
cal) field theory yields the derivation of quantum theory as a consequence of the unified field theory. A satis-
factory quantization of the gravitational field still remains to be achieved. 
 
 
 
 
 
3.13 Theorem. The quantization of the gravitational field   
 
Claim. (Theorem. Proposition. Statement.) 
In general, the quantization of the gravitational field is determined by the equation 
 
 

 (271) 
 
 
Direct proof. 
In general, axiom I is determined as 
 

(272) 
 
A commutative multiplication by the tensor of the unified field 1µv leads to 
 

(273) 
 
or too 

(274) 
 
 
A commutative multiplication by RHµv ∩ RΨµv yields 
 
 

 (275) 
 
Due to a theorem before, this equation is equivalent with 
 
  

 (276) 
 
 
Dividing by the speed of the light squared, we obtain 
 

µv R µv
µ

R µv R µ
v

v R µvi  H
t

∩ ∂ 
 ∂

∩ ≡


∩ Ψ ∩ Ψℏ

1 1+ = +

µv µv1 1 1 1∩ = ∩

µv µv1 1=

R µv R µv R µv R µvH  H∩ Ψ ≡ ∩ Ψ

R µv R µv µv µvR
µv

R µvt
H i

∂∩ 
 ∂

Ψ ≡ ∩ ∩ ∩


Ψ


ℏ

µv R µv R µv
R µv R µv

µvµv µvR R R µv µvR

i
M g   

c c t c c

∩ Ψ∂ ∩ = ∩ ∩ ∩ ∂ ∩ 

ℏ
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 (277) 

 
 
Due to our definition of matter it is RMµv = RHµv /(Rcµv∩ Rcµv). The equation before changes to 
 
 

 (278) 
 
 
Due to a theorem before it is Rg µv = RΨµv/(Rcµv∩ Rcµv). The quantization of the gravitational field follows as 
 
 

 (279) 
 
 
Quod erat demonstrandum. 
 
 
 

3.14 Theorem. The tensor of time Rtµv 

In general, the modification of our understanding of space and time undergone through Einstein's relativity the-
ory is indeed 
 

(280) 
 
 
 
Claim. 
In general, axiom I is determined as 
 

(281) 
 
A commutative multiplication by the tensor of the unified field 1µv leads to 
 

(282) 
 
or too 

(283) 
 
 
A commutative multiplication of this equation by Einstein's stress energy tensor leads to 
 

(284) 
 
 
or to 
 

(285) 
 
 
which is equivalent with Einstein's field equation as 

R µv R µv µv µv R µv

µvµv µv µv µR R v µv µv µvR R R vR µR R

H  i
  

c c c c c c t c c

Ψ ∩ Ψ∂ ∩ = ∩ ∩ ∩ ∩ ∩ ∂ ∩ 

ℏ

R µv µv R µv R µv
R µv

µvµv µv µv µR R R R µR µ vRv v

 i
M   

c c c c t c c

Ψ ∩ Ψ∂ ∩ = ∩ ∩ ∩ ∩ ∂ ∩ 

ℏ

µv R µv R µv
R µv R µv

µvµv µvR R R µv µvR

i
M g   

c c t c c

∩ Ψ∂ ∩ = ∩ ∩ ∩ ∂ ∩ 

ℏ

1 1+ = +

µv µv1 1 1 1∩ = ∩

µv µv1 1=

µv R µv R µv µv1 E E 1∩ = ∩

R µv R µvE E=

( )
µvR µv µv

R
t g g

2
 = ∩ − Λ ∩ 
 
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(286) 

 
 
 
Rearranging equation, we obtain  
 

(287) 
 
 
 
Under conditions of general relativity, the tensor of space RSµv is equivalent with the Ricci tensor R µv. Thus far 
we equate RSµv = R µv and do obtain 
 

(288) 
 
 
 
 
 
 
In general, it is RSµv = REµv + Rtµv. Rearranging equation before yields 
 

(289) 
 
 
 
In general, under conditions of the theory of general theory, the tensor of time Rtµv follows as 
 

(290) 
 
 
 
Quod erat demonstrandum. 
 
 

3.15 Theorem. The equivalence of time and gravitational field 

In general, the modification of our understanding of space and time undergone through Einstein's relativity the-
ory is indeed a profound one. But even Einstein's relativity theory does not give satisfactory answers to a lot of 
questions. One of these questions is the problem of the 'true' tensor of the gravitational field. The purpose of this 
publication is to provide some new and basic fundamental insights by the proof that the gravitational field and 
time is equivalent even under conditions of the general theory of relativity. 
 
 
Einstein's successful geometrization of the gravitational field in his general theory of relativity does not include 
a geometrized theory of the electromagnetic field too. The theoretical physicists working in the field of the gen-
eral theory of relativity were not able to succeed in finding a convincing geometrical formulation of the gravita-
tional and electromagnetic field. Still, electromagnetic fields are not described by Riemannian metrics. More se-
rious from the conceptual point of view, in order to achieve unification, with the development of quantum theory 
any conceptual unification of the gravitational and electromagnetic field should introduce a possibility that the 
fields can be quantized. In our striving toward unification of the foundations of physics a relativistic field theory 
we are looking for should therefore be an extension of the general theory of relativity and equally and of no less 

( )
µvµv µv R µv

R
R g g E

2
 − ∩ + Λ ∩ = 
 

( )
µvµv R µv µv

R
R E g g

2
 = + ∩ − Λ ∩ 
 

( )
µvµv R µv µv

R
S E g g

2
 = + ∩ − Λ ∩ 
 

( )
µvR µv R µv R µv µv

R
E t E g g

2
 + = + ∩ − Λ ∩ 
 

( )
µvR µv µv

R
t g g

2
 = ∩ − Λ ∩ 
 
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importance a generalization of the theory of the gravitational field. In the attempt to solve these problems one 
meets at least with another difficulty. Einstein was demanding that  
 
“the symmetrical tensor field must be replaced by a non-symmetrical one. This means that the condition gik = gki  
for the field components must be dropped. “[2] 
 
Evidently, following up these train of thoughts and in view of all these difficulties, the following theory is based 
on a (gravitational) field of more complex nature. Still, in our attempt to obtain a deeper knowledge of the 
foundations of physics the new and basic concepts are in accordance with general relativity theory from the be-
ginning but with philosophy too. In general, energy, time and space are deeply related and interacting like the 
one with its own other and vice versa. 
 
 
Claim. 
The relationship between time and gravitational field is determined as 

  
(291) 

 
Proof. 
In general, axiom I is determined as 
 

(292) 
 
A commutative multiplication by the tensor of the unified field 1µv leads to 
 

(293) 
 
or too 

(294) 
 
 
 
A commutative multiplication of this equation by                            yields 
 

(295) 
 
 
Due to our definition, it is     
 
and it follows that 

  
(296) 

 
Rearranging equation, it is as 

  
(297) 

 
 
 
Due to the relationship    
 
it follows that  

  

R µv R µvt   c² g= ×

( )R µv R µv R µv R µv R µv R µv R µv E t  c c M g S+ = ∩ ∩ + =

( ) ( )R µv R µv R µv R µv R µv R µv R µv R µv E t  c c M c c g+ = ∩ ∩ + ∩ ∩

( )R µv R µv R µv R µv R µv R µv E t   E c c g+ = + ∩ ∩

µv
R µv R µv R µv R µv

R µv R µv

1
U S M g

c c
≡ ∩ ≡ +

∩R µv R µv R µvS E t≡ +

( ) ( )
R µv R µv R µv

R µv µv
R µv R µv R µv R µv R µv R µv R µv R µv

E 4 2
M T

c c c c c c c c

× × π × γ
≡ ≡ ∩

∩ ∩ ∩ ∩ ∩ ∩

R µv R µvE t+

1 1+ = +

µv µv1 1 1 1∩ = ∩

µv µv1 1=

R µv R µv R µv R µv E t  E t+ = +
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(298) 
 
 
The equivalence of time and gravitational field follows in general as  

  
(299) 

 
Quod erat demonstrandum. 
 
 
 
 
3.16 Theorem. The generally covariant form of Planck’s-Einstein relation 
Claim. 
In general, it is 
 
 

(300) 
 
Direct proof. 
In general, axiom I is determined as 
 

(301) 
 
Multiplying by the tensor of the unified field 1µv, we obtain 
 

(302) 
 
or 

(303) 
 
 
Multiplying this equation by the stress-energy tensor of general relativity ((4×2×π×γ)/(c4))×Tµv, it is 
 
 

(304) 
 
 
where γ is Newton's gravitational ‘constant’, c is the speed of light in vacuum and π , sometimes referred to as 
‘Archimedes' constant’, is the ratio of a circle's circumference to its diameter. Due to Einstein’s general relativi-
ty, the equation before is equivalent with 
 
 
 

(305) 
 
 
 
Rµv is the Ricci curvature tensor, R is the scalar curvature, gµv is the metric tensor, Λ is the cosmological con-
stant and Tµv is the stress–energy tensor. By defining the Einstein tensor as Gµv= Rµv - (R/2)×gµv, it is possible to 
write the Einstein field equations in a more compact as 
 
 

R µv R µv R µv R µvt   c c g= ∩ ∩

1 1+ = +

µv µv1 1 1 1∩ = ∩

µv µv1 1=

µv µv µv µv4 4

4 2 4 2
1 T 1 T

c c

× × π× γ × × π× γ   + ∩ × = + ∩ ×   
   

( )µv µv µv µv4

R 4 2
R g g T

2 c

× × π× γ   − × + Λ × = ×   
   

( )µv µv µv4

4 2
G g T

c

× × π× γ + Λ × = × 
 

R µv 0 µv R µv R µvh f∩ ω = ∩ℏ



Ilija Barukčić 

 

 5

1 

(306) 
 
This equation can be rearranged as 
 
 

(307) 
 
 
Simplifying equation we obtain 
 
 

(308) 
 
 
Due to our definitions before, the equation can be simplified as 
 
 

(309) 
 
 
and the generally covariant form of Planck’s-Einstein relation follows as 
 
 

(310) 
 
Quod erat demonstrandum. 
 
 
 
 
3.17 Theorem. The generally covariant form of de Broglie relationship 
Claim. 
The generally covariant form of de Broglie’s relationship is determined as 

 
(311) 

 
 
 
 
Direct proof. 
In general, axiom I is determined as 
 

(312) 
 
Multiplying by the tensor of the unified field 1µv, we obtain 
 

(313) 
 
or 
 

(314) 
 
Multiplying this equation by Rcµv, we obtain 

( )( )R µv R µv µv µv µv µv
µv µv µv

R µv R µv R µv R µv R µv R µv

h 4 2
G g T

h c c c c

 ∩ ∩ π ∩ γ
∩ + Λ × = ∩ ∩  ∩ ∩ ∩ 

ℏ

ℏ

( )( )µv µv µv µv µv µv
R µv µv µv R µv µv

R µv R µv R µv R µv R µv R µv

1 1 4 2
G g h T

h c c c c

    ∩ ∩ π ∩ γ
∩ ∩ + Λ× = ∩ ∩ ∩        ∩ ∩ ∩    

ℏ
ℏ

µv µv µv µv µv
µv 0 µv R µv µv

R µv R µv R µv R µv R µv

1 4 2
h T

h c c c c

  ∩ ∩ π ∩ γ
∩ ω = ∩ ∩ ∩    ∩ ∩ ∩  

ℏ

µv 0 µv µv R µvh f∩ ω = ∩ℏ

1 1+ = +

µv µv1 1 1 1∩ = ∩

µv µv1 1=

R µv
R µv R µv R µv R µv R µv

R µv

h
h p f

c

 
≡ ∩ λ = ∩ ∩ λ  

 
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(315) 

 
and at the end 
 

(316) 
 
Due to our definition, it is 
 

(317) 
 
This equation can be rearranged as 

(318) 
 
 
Multiplying by Rhµv, we obtain 
 

(319) 
 
 
 
where Rpµv denotes the tensor of the momentum. The generally covariant form of de Broglie’s relationship fol-
lows as 

(320) 
 
 
 
Quod erat demonstrandum. 
 
 
 
The four basic fields of nature 
 
 
 
3.18 Theorem. The tensor of ‘ordinary’ matter 0Eµv 
Claim. 
In general, of ordinary matter follows as 
 
 

 
(321) 

 
 
Direct proof. 
In general, axiom I is determined as 
 

(322) 
 
Multiplying by the tensor of the unified field 1µv, we obtain 
 

(323) 
 

1 1+ = +

µv µv1 1 1 1∩ = ∩

( )µv 0 µv µv4
  4 2 1 1

4
A E

c 4
T µν ν

µ ν µν ν
    × × − × × ×    ×    

× × π× γ ≡ ≡ × − 
 

c d
c dF F g F F

π

µv R µv µv R µv1 c 1 c∩ = ∩

R µv R µvc c=

R µv R µv R µvc f= ∩ λ

µv R µv

R µv R µv

1 f

c
=

λ

R µv R µv R µv R µv
R µv R µv

R µv R µv R µv

h h f h
p f

c c

∩
≡ = = ∩

λ

R µv
R µv R µv R µv R µv R µv

R µv

h
h p f

c

 
≡ ∩ λ = ∩ ∩ λ  

 
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or 
(324) 

 
Multiplying this equation by the stress-energy tensor of general relativity ((4×2×π×γ)/(c4))×Tµv, it is 
 
 

(325) 
 
 
or 
 
 

(326) 
 
 
Due our definition this is equivalent with 
 
 

(327) 
 
and at the end 
 
 

(328) 
 
 
Due to our definition it is Bµv=(1/(4×π))×((Fµc×Fv

c) – (((1/4) ×gµv× Fdv × Fdv)). The equation changes to 
 

 
(329) 

 
 
Quod erat demonstrandum. 
 
Scholium. 
Under conditions of general theory of relativity, the associated probability tensor, the ‘joint distribution’ tensor 
between the tensor of energy REµv and Einstein’s tensor Gµv, follows as 
 

 
(330) 

 
 
The tensor of ordinary matter 0Mµv is determined as 
 

 
(331) 

 
 
 
 
 
 
 

µv µv1 1=

µv µv µv µv4 4

4 2 4 2
1 T 1 T

c c

× × π× γ × × π× γ   + ∩ × = + ∩ ×   
   

µv µv4 4

4 2 4 2
T T

c c

× × π× γ × × π× γ   × = ×   
   

µv µv µv4

4 2
A B T

c

× × π× γ + = × 
 

µv µv µv4

4 2
A T B

c

× × π× γ ≡ × − 
 

( )µv 0 µv µv4
  4 2 1 1

4
A E

c 4
T µν ν

µ ν µν ν
    × × − × × ×    ×    

× × π× γ ≡ ≡ × − 
 

c d
c dF F g F F

π

( )µv 0 µv
0 µv µv2

 
2 4 2

 
2

A E 1 4 2 1
M T

c c c c

1 1

4 4c
µν ν

µ ν µν ν
× × π× γ     ≡ ≡ ≡ × × − ×     

  

    × × − × × ×    ×      

c d
c dF F g F F

π

( ) ( ) ( )
( )µv4

0 µv
µv 0 µv R µv µv

µv µ

  

v

4 2
T

Ec
p A p E p E ,G

R

1

4

R

1
4

µν ν
µ ν µν ν

 × × π× γ × −
  × × − × × ×    ×    


 ≡ ≡ ≡ ≡

c d
c dF F g F F

π
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3.19 Theorem. The probability tensor associated with ‘ordinary’ matter 0Eµv 
Claim. 
In general, of ordinary matter follows as 
 

 
(332) 

 
 
Direct proof. 
In general, axiom I is determined as 
 

(333) 
 
Multiplying by the tensor of the unified field 1µv, we obtain 
 

(334) 
 
or 

(335) 
 
Multiplying this equation by Aµv, it is 
 
 

 
(336) 

or in general to 
 
 

 
(337) 

 
 
Multiplying by the tensor RYµv it is 

 
(338) 

 
 
The commutative multiplication with the tensor RYµv yields the probability tensor as associated with the tensor 
Aµv.  

 
(339) 

 
 
Due to our theorem before, it is RYµv = R

*Ψµv  = (1µv/Rµv). The equation before simplifies as 
 

 
(340) 

 
 
 
Quod erat demonstrandum. 
 
 

µv 0 µvA E≡

1 1+ = +

µv µv1 1 1 1∩ = ∩

µv µv1 1=

µv R µv 0 µv R µvA Y E Y∩ ≡ ∩

µv µvA A≡

( )µv µv R µv 0 µv R µvp A A Y E Y≡ ∩ ≡ ∩

( ) ( ) µv 0 µv* *
µv 0 µv µv R µv 0 µv R µv 0 µv

µv µv

1 E
p A p E A E E

R R
≡ ≡ ∩ Ψ ≡ ∩ Ψ ≡ ∩ ≡

( ) ( ) µv 0 µv* *
µv 0 µv µv R µv 0 µv R µv 0 µv

µv µv

1 E
p A p E A E E

R R
≡ ≡ ∩ Ψ ≡ ∩ Ψ ≡ ∩ ≡
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3.20 Theorem. The stress-energy tensor of the electromagnetic field Bµv 
Claim. 
In general, it is 
 

 
(341) 

 
Direct proof. 
In general, axiom I is determined as 
 

(342) 
 
Multiplying by the tensor of the unified field 1µv, we obtain 
 

(343) 
 
or 

(344) 
 
Multiplying this equation by Bµv, it is 
 
 

 
(345) 

We defined Bµv=(1/(4×π))×((Fµc×Fv
c) – (((1/4) ×gµv× Fdv × Fdv)) where denotes the stress energy tensor of the 

electromagnetic field.  In general, we obtain 
 

 
(346) 

 
 
Quod erat demonstrandum. 
 
 
 
3.21 Theorem. The probability tensor as associated with the electromagnetic field 0Eµv 
Claim. 
In general, it is 
 

 
(347) 

 
 
Direct proof. 
In general, axiom I is determined as 
 

(348) 
 
Multiplying by the tensor of the unified field 1µv, we obtain 
 

(349) 
 

1 1+ = +

µv µv1 1 1 1∩ = ∩

µv µv1 1=

1 1+ = +

µv µv1 1 1 1∩ = ∩

( ) ( ) µv µv0* *
µv µv µv0 µv R µv 0 R µv 0

µv µv

1 E
p B p E B E E

R R
≡ ≡ ∩ Ψ ≡ ∩ Ψ ≡ ∩ ≡

( )vµv
 

0
 

µ

1 1
B E

4 4
µν ν

µ ν µν ν
    × × − × × ×    ×   

 
≡ ≡ 

 


c d
c dF F g F F

π

µv µvB B≡

( )vµv
 

0
 

µ

1 1
B E

4 4
µν ν

µ ν µν ν
    × × − × × ×    ×   

 
≡ ≡ 

 


c d
c dF F g F F

π
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or 
(350) 

 
Multiplying this equation by Bµv, it is 
 
 

 
(351) 

or in general to 
 

 
(352) 

 
 
where Bµv=(1/(4×π))×((Fµc×Fv

c) – (((1/4) ×gµv× Fdv × Fdv)) denotes the stress energy tensor of the electromag-
netic field. Multiplying by the tensor RYµv it is 

 
(353) 

 
 
The commutative multiplication with the tensor RYµv yields the probability tensor as associated with the tensor 
Bµv.  

 
(354) 

 
 
Due to our theorem before, it is RYµv = R

*Ψµv  = (1µv/Rµv). The equation before simplifies as 
 

(355) 
 
 
Quod erat demonstrandum. 
 
 
Scholium. 
Due to Einstein’s theory of gravitation the stress-energy tensor of the electromagnetic field is a field devoid of 
any geometrical significance. An additional task of this approach to the unified field theory is the possibility to 
“geometrize” the electromagnetic field. A geometrical tensorial representation of the electro-magnetic field un-
der conditions of the general theory of relativity within the framework of a “unified field theory” follows as 
 

 
 

(356) 
 
 
 
 
 
3.22 Theorem. The relationship between the gravitational and the electromagnetic field 
Claim. 
In general, it is 
 

(357) ( )µvC g Bµν µν+ Λ × =

( )vµv
 

0
 

µ

1 1
B E

4 4
µν ν

µ ν µν ν
    × × − × × ×    ×   

 
≡ ≡ 

 


c d
c dF F g F F

π

µv µv1 1=

µvµv R µv 0 R µvB Y E Y∩ ≡ ∩

µv µvB B≡

( ) µvµv µv R µv 0 R µvp B B Y E Y≡ ∩ ≡ ∩

( ) ( ) ( )µvµv 0
  

µvp B R R
4

p E
1 1

4
µν ν

µ ν µν ν
    × × − × × ×    ×   



 


≡ ∩ ≡ ∩ 

 

c d
c dF F g F F

π

( ) ( ) µv µv0* *
µv µv µv0 µv R µv 0 R µv 0

µv µv

1 E
p B p E B E E

R R
≡ ≡ ∩ Ψ ≡ ∩ Ψ ≡ ∩ ≡
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Direct proof. 
In general, axiom I is determined as 
 

(358) 
 
Multiplying by the tensor of the unified field 1µv, we obtain 
 

(359) 
 
or 

(360) 
 
Multiplying this equation by the stress-energy tensor of general relativity ((4×2×π×γ)/(c4))×Tµv, it is 
 
 

(361) 
 
 
Due to Einstein’s general relativity, the equation before is equivalent with 
 
 

(362) 
 
By defining the Einstein tensor as Gµv= Rµv - (R/2)×gµv, it is possible to write the Einstein field equations in a 
more compact as 
 
 

(363) 
 
 
According to our definition, under conditions of general relativity it is 
 
Substituting this relationship into Einstein’s field equation, we obtain 
 
 

(364) 
 
 
 
Under conditions of general relativity it is  
 
 
Substituting this relationship into Einstein’s field equation, we obtain 
 

(365) 
 
We defined Bµv as the second rank covariant tensor of the electromagnetic field in the absence of ‘ordinary’ 
matter and Cµv as the tensor of time (i. e. gravitational field) as associated with the tensor Aµv. This equation be-
fore can be rearranged as 
 

(366) 
 
Quod erat demonstrandum. 

1 1+ = +

µv µv1 1 1 1∩ = ∩

µv µv1 1=

µv µv µv µv4 4

4 2 4 2
1 T 1 T

c c

× × π× γ × × π× γ   + ∩ × = + ∩ ×   
   

( )µv µv µv µv4

R 4 2
R g g T

2 c

× × π× γ   − × + Λ × = ×   
   

( )µv µv µv4

4 2
G g T

c

× × π× γ + Λ × = × 
 

0 µvA C W Gµν µν µν+ ≡ ≡

( )µv µv4

4 2
A C g T

cµν µν
× × π× γ + + Λ × = × 

 

µv4

4 2
A B T

cµν µν
× × π× γ + ≡ × 

 

( )µvA C g A Bµν µν µν µν+ + Λ × = +

( )µvC g Bµν µν+ Λ × =
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Scholium. 
The following 2x2 table may illustrate the equation before (Table 4). 

         Table 4. The unified field RWµv.                                                  

 
 Curvature 

 
yes no 

Energy /  
momentum 

yes Aµν  Bµν  R Uµν  

no Cµν  Dµν  R Uµν  

 0Wµν  0Wµν  RWµν  

 
 
3.23 Theorem. The tensor of time 0tµv as associated with ordinary energy tensor 0Eµv 
 
Claim. 
In general, the tensor of time 0tµv as associated with ordinary energy 0Eµv follows as 
 

 
(367) 

 
Direct proof. 
In general, axiom I is determined as 
 

(368) 
 
Multiplying by the tensor of the unified field 1µv, we obtain 
 

(369) 
 
or 

(370) 
 
Multiplying this equation by Cµv we obtain 
 

(371) 
 
Due to our definition, we rearrange this equation to 
 

 
(372) 

We define Aµv = ((4×2×π×γ)/c4) ×Tµv - Bµv. The equation before changes too 
 
 

 
(373) 

 
or to 
 

 
(374) 

 
 

1 1+ = +

µv µv1 1 1 1∩ = ∩

µv µv1 1=

µv µvC C=

C G Aµν µν µν≡ −

( )  
µv4

1 1

4 4

4 2
C G A G T

c
µν ν

µν µν µν µν µ ν µν ν
  × × π× γ ≡ − ≡ −   × × − × × ×    × 

× −  
    

c d
c dF F g F F

π

( )v4
  

µ

4 1 1

4

2

c 4
C G T µν ν

µν µν µ ν µν ν
    × × − × × ×    ×    

× × π× γ ≡ − × + 
 

c d
c dF F g F F

π

( ) 
µ

 
0 vC

4
t

4
g

1 1µν ν
µν µν µ ν µν ν

    × × − × × ×   ≡ ≡ + − ×   
Λ ×



c d
c dF F g F F

π
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The tensor of time 0tµv as associated with ordinary energy 0Eµv follows as 
 

 
(375) 

 
Quod erat demonstrandum. 
 
 
3.24 Theorem. The probability tensor as associated with the tensor 0tµv 
Claim. 
In general, it is 
 

 
(376) 

 
 
Direct proof. 
In general, axiom I is determined as 
 

(377) 
 
Multiplying by the tensor of the unified field 1µv, we obtain 
 

(378) 
 
or 

(379) 
 
Multiplying this equation by Cµv, it is 
 
 

 
(380) 

or in general to 
 

 
(381) 

 
 
where Bµv=(1/(4×π))×((Fµc×Fv

c) – (((1/4) ×gµv× Fdv × Fdv)) denotes the stress energy tensor of the electromag-
netic field and Λ×gµv denotes the cosmological ‘constant’ Λ times the metric gµv term. Multiplying by the tensor 
RYµv it is 

 
(382) 

 
 
The commutative multiplication with the tensor RYµv yields the probability tensor as associated with the tensor 
Cµv.  

 
(383) 

 
 
Due to our theorem before, it is RYµv = R

*Ψµv  = (1µv/Rµv). The equation before simplifies as 

( ) 
µ

 
0 vC

4
t

4
g

1 1µν ν
µν µν µ ν µν ν

    × × − × × ×   ≡ ≡ + − ×   
Λ ×



c d
c dF F g F F

π

( )µv 0 µ µ
 

v v
 1 1

4 4
C t gµν ν

µ ν µν ν

 
≡

    × × − × × ×    ×    
≡ − Λ × 
 

c d
c dF F g F F

π

1 1+ = +

µv µv1 1 1 1∩ = ∩

µv µv1 1=

µv R µv 0 µv R µvC Y t Y∩ ≡ ∩

µv µvC C≡

( )µv µv R µv 0 µv R µvp C C Y t Y≡ ∩ ≡ ∩

( ) ( ) µv 0 µv* *
0 µv µv R µv 0 µv R µv 0 µv

µv µv

1 t
p C p t C t t

R R
≡ ≡ ∩ Ψ ≡ ∩ Ψ ≡ ∩ ≡
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(384) 
 
 
 
Quod erat demonstrandum. 
 
 
Scholium. 
Under conditions of general theory of relativity, the associated probability tensor follows as 
 
 

 
 

(385) 
 
 
 
 
3.25 Theorem. The tensor of the gravitational and the electromagnetic hyper-field 
 
Einstein himself spent decades of his life on the unification of the electromagnetic with the gravitational and 
other physical fields. Even from Einstein’s and other failed attempts at unification the hunt for progress for 
reaching a common representation of all four fundamental interactions in the framework of “unified field theo-
ry” is justified. In all the attempts at unification we encounter that electromagnetic fields and gravitational are to 
be joined into a new field. Tonnelat points out: 
 
 “a theory joining the gravitational and the electromagnetic field into one single hyperfield whose equations 
represent the conditions imposed on the geometrical structure of the universe.” [4] 
 
Claim. 
In general, the tensor of the gravitational and the electromagnetic hyper-field is determined as 
 

(386) 
 
Direct proof. 
In general, axiom I is determined as 
 

(387) 
 
Multiplying by the tensor of the unified field 1µv, we obtain 
 

(388) 
 
or 

(389) 
 
 
Multiplying this equation by the tensor Bµv we obtain 
 

(390) 
 

1 1+ = +

µv µv1 1 1 1∩ = ∩

µv µv1 1=

( )µv2 C g C Bµν µν µν× + Λ × = +

µv µv µv µv1 B 1 B∩ = ∩

( ) ( )
( )

0

  
µv

0

g
1 1
4 t

p C p t
R R

4
µν ν

µ ν µν ν
µν

µν µν
µν µν

    × × − × × ×  + − Λ ×
 

≡ ≡
 ×    ≡  










c d
c dF F g F F

π

( ) ( ) µv 0 µv* *
0 µv µv R µv 0 µv R µv 0 µv

µv µv

1 t
p C p t C t t

R R
≡ ≡ ∩ Ψ ≡ ∩ Ψ ≡ ∩ ≡
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or 
 

(391) 
 
Due to the theorem before, the equation before changes to 
 

(392) 
 
 
Adding Cµv , the tensor of time (i. e. gravitational field) as associated with the tensor Aµv, we obtain   
 
 

(393) 
 
 
or at the end the tensor of the gravitational and the electromagnetic hyper-field 
 

(394) 
 
Quod erat demonstrandum. 
 
Scholium 
Under conditions of general theory of relativity, the gravitational and the electromagnetic hyper-field is deter-
mined as 
 

 
(395) 

 
 
It is very easy to get lost in the many different attempts by Weyl, Kaluza, Eddington, Bach, Einstein and other to 
include the electromagnetic field into a geometric setting. The point of departure to “geometrize” the electro-
magnetic field was general relativity. In view of the immense amount of material, neither a brief technical de-
scriptions of the various unified field theories nor all the contributions from the various scientific schools to 
unify the electromagnetic and gravitational field can be discussed with the same intensity. The joining of previ-
ously separated electromagnetic and gravitational field within one conceptual and formal second rank tensor is 
based on a deductive-hypothetical methodological approach. Einstein himself spent decades of his life on the 
unification of the electromagnetic with the gravitational field. Mie, Hilbert, Ishiwara, Nordström and others 
joined Einstein in his unsuccessful hunt for progress on this matter. In contrast to Kaluza’s geometrization of the 
electromagnetic and gravitational fields within a five-dimensional space, this approach is based completely 
within the conceptual and formal framework of general relativity. Under conditions of general theory of relativ-
ity, the associated probability tensor follows as 
 

 
(396) 

 
 
 
 
 
 
 
 
 

µv µvB B=

( )µv µvC g Bµν + Λ × =

( )µv µvC C g C Bµν µν µν+ + Λ × = +

( )µv µv2 C g C Bµν µν× + Λ × = +

( )µv
  C B 2 C

1 1

4
g 2

4
gµν ν

µν µν µν µ ν µν ν µν
    × ×+ ≡ × + Λ × ≡ × − × × × −    ×    

Λ ×c d
c dF F g F F

π

( ) ( ) ( )
µv

  2 g
2 C g

p C B
R R

1 1
4 4

µν ν
µ ν µν ν µν

µν µν µν
µν

µν µν

    × × − × × × −    ×   
× Λ×∩ + Λ ×

+ ≡ ≡

c d
c dF F g F F

π
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3.26 Theorem. The tensor 0tµv 
Claim. 
In general, the tensor Dµv = 0tµv as associated with the stress energy tensor of the electromagnetic field Bµv = 0Eµv 
follows as 
 

 
(397) 

 
 
 
Direct proof. 
In general, axiom I is determined as 
 

(398) 
 
Multiplying by the tensor of the unified field 1µv, we obtain 
 

(399) 
 
or 
 

(400) 
 
 
Multiplying this equation by the Ricci tensor Rµv we obtain 
 

(401) 
 
 
or 
 

(402) 
 
 
Adding 0µv, it is 
 

(403) 
  
 
The zero tensor is equivalent to 0µv = +((R/2)×gµv)  –  ((R/2)×gµv). We rearrange the equation before as 
 

(404) 
  
 
 
Einstein’s tensor is defined as Gµv = Rµv - ((R/2)×gµv). We simplify the equation before as 
 

(405) 
  
 
Due to our definition, it is Rµv = Aµv  +  Bµv +  Cµv  +  Dµv  and Gµv = Aµv  +  Cµv. We rearrange the equation 
before as 
 

1 1+ = +

µv µv1 1 1 1∩ = ∩

µv µv1 1=

µv µv µv µv1 R 1 R∩ = ∩

µv µvR R=

µv µv µvR R 0= +

µv µv µv µv

R R
R R g g

2 2
   = − × + ×   
   

µvµv µv µv µv

R
R G g G G

2
 = + × = + 
 

( )µv
  

0

1 1

4

R
D t g

2 4
µν ν

µνµν µ ν µν ν
    × × − × × ×    ×    

 ≡ ≡ × − 
 

c d
c dF F g F F

π
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(406) 
  
 
Simplifying equation, it follows that 
 

(407) 
  
 
or 

(408) 
  
 
 
Due to the decomposition of the stress-energy tensor as ((4×2×π×γ)/c4) ×Tµv = Aµv + Bµv, the stress-energy ten-
sor of the electromagnetic field is Bµv=(1/(4×π))×((Fµc×Fv

c) – (((1/4) ×gµv× Fdv × Fdv)).  Under conditions of 
general relativity, the tensor Dµv = 0tµv as associated with the stress energy tensor of the electromagnetic field 
Bµv = 0Eµv follows as 
 

 
(409) 

 
Quod erat demonstrandum. 
 
 
 
3.27 Theorem. The probability tensor as associated with the tensor 0tµv 
Claim. 
In general, it is 
 

 
(410) 

 
 
Direct proof. 
In general, axiom I is determined as 
 

(411) 
 
Multiplying by the tensor of the unified field 1µv, we obtain 
 

(412) 
 
or 

(413) 
 
Multiplying this equation by Dµv, it is 
 
 

 
(414) 

or in general to 
 

 

µv µv µv µv µv µv µv

R
A B C D A C g

2
 + + + = + + × 
 

µv µv µv

R
B D g

2
 + = × 
 

µv µv µv

R
D g B

2
 = × − 
 

( )µv
  

0

1 1

4

R
D t g

2 4
µν ν

µνµν µ ν µν ν
    × × − × × ×    ×    

 ≡ ≡ × − 
 

c d
c dF F g F F

π

( )µ
 

vµv 0 µv
 R

D t g
1 1

4 42
µν ν

µ ν µν ν
    × × − × × ×    ×    

   ≡ ≡ × −    
    

c d
c dF F g F F

π

1 1+ = +

µv µv1 1 1 1∩ = ∩

µv µv1 1=

µv µvD D≡

( ) ( ) µv 0 µv* *
0 µv µv R µv 0 µv R µv 0 µv

µv µv

1 t
p C p t C t t

R R
≡ ≡ ∩ Ψ ≡ ∩ Ψ ≡ ∩ ≡
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(415) 
 
 
where Bµv=(1/(4×π))×((Fµc×Fv

c) – (((1/4) ×gµv× Fdv × Fdv)) denotes the stress energy tensor of the electromag-
netic field and Λ×gµv denotes the cosmological ‘constant’ Λ times the metric gµv term. Multiplying by the tensor 
RYµv it is 

 
(416) 

 
 
The commutative multiplication with the tensor RYµv yields the probability tensor as associated with the tensor 
Dµv.  

 
(417) 

 
 
Due to our theorem before, it is RYµv = R

*Ψµv = (1µv/Rµv). The equation before simplifies as 
 

 
(418) 

 
 
 
Quod erat demonstrandum. 
 
Scholium. 
Under conditions of general theory of relativity, the associated probability tensor follows as 
 
 

 
(419) 

 
 
 
3.28 Theorem. The tensor Wgµv 
 
Still, one of the major unsolved problems in physics is the unification of gravity with all the other interactions of 
nature. Such a unification would have to provide a theoretical framework of a theory of everything which fully 
would explain and link together all physical aspects of objective reality. Einstein's theoretical framework of the 
theory of general relativity focuses mostly on gravity as being curvature of spacetime. The curvature of 
spacetime is expressed mathematically using the metric tensor — denoted gµv. Curvature itself is caused by the 
presence of energy/matter and accelerating energy/matter generate changes in this curvature. Changes in the 
curvature of spacetime propagate in a wave-like manner and are known as gravitational waves. 
  
Claim. 
In general, under conditions of general relativity, gravitational waves are determined by the equation 
 
 

(420) 
 
 
Direct proof. 
In general, axiom I is determined as 

( )W µv
W µv µ

  

µ
v

µv µv µv µv µv µvv µv

t R
g g

c c 2 c c

1 1

4 4c c
µν ν

µ ν µν ν
µν

= = × −
∩ ∩ ∩ ∩ ∩

    × × − × × ×     ×    

c d
c dF F g F F

π

( ) ( )
( ) 

µv

0

 R
g

2
p

1 1
4 4

D p t
R

µν ν
µ ν µν ν

µνµν
µν

 × − 
 ≡

    × × − × × ×    ×    ≡

c d
c dF F g F F

π

µvµv R µv 0 R µvD Y t Y∩ ≡ ∩

( ) ( )µv µvµv 0 µv R µv 0 R µvp D p t D Y t Y≡ ≡ ∩ ≡ ∩

( ) ( ) µv µv0* *
µv µv µv0 µv R µv 0 R µv 0

µv µv

1 t
p D p t D t t

R R
≡ ≡ ∩ Ψ ≡ ∩ Ψ ≡ ∩ ≡
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(421) 

 
Multiplying by the tensor of the unified field 1µv, we obtain 
 

(422) 
 
or 

(423) 
 
Multiplying this equation by the stress-energy tensor of general relativity ((4×2×π×γ)/(c4))×Tµv, it is 
 
 

(424) 
 
 
Due to Einstein’s general relativity, the equation before is equivalent with 
 
 

(425) 
 
By defining the Einstein tensor as Gµv= Rµv - (R/2)×gµv, it is possible to write the Einstein field equations in a 
more compact as 
 
 

(426) 
 
 
The equation can be rearranged as 
 
 
 

(427) 
 
 
or as 
 
 

(428) 
 
or as 
 

(429) 
 
This equation can be changed as 
 

(430) 
 
or as 
 

(431) 
 
 

1 1+ = +

µv µv1 1 1 1∩ = ∩

µv µv1 1=

µv µv µv µv4 4

4 2 4 2
1 T 1 T

c c

× × π× γ × × π× γ   + ∩ × = + ∩ ×   
   

( )µv µv µv µv4

R 4 2
R g g T

2 c

× × π× γ   − × + Λ × = ×   
   

( )µv µv µv4

4 2
G g T

c

× × π× γ + Λ × = × 
 

( )µv µv µv µv4

R 4 2
R g g T

2 c

× × π× γ − × + Λ × = × 
 

( )µv µv µv µv4

4 2 R
R T g g

c 2

× × π× γ − × = × − Λ × 
 

( )R µv µv µv

R
t g g

2
= × − Λ ×

( )R µv µv µv

R
t 0 g g

2
+ = × − Λ ×

( )R µv 0 µv 0 µv µv µv

R
t t t g g

2
− + = × − Λ ×

w µv R µv 0 µvt t t≡ −

( ) 
0

 t g
1 1

4 4
µν ν

µν µ ν µν ν µν
    × × − × × ×    ×    

≡ − Λ×c d
c dF F g F F

π
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Due to our definition it is                   . The equation changes to 
 
 

(432) 
and at the end to 
 

(433) 
 
 
Due to the theorem before it is                                                      .  
 
 
The equation above changes to  
 
 

(434) 
 
 
or to 
 
 

(435) 
 
 
and at the end to 
 
 

(436) 
 
 
Dividing the equation before by the c², we obtain 
 
 

(437) 
 
 
Quod erat demonstrandum. 
 
Scholium. 
There are circumstances, where the tensor Wgµv is identical with the tensor of the gravitational waves. Whether 
this is the case in general is a point of further research. It is convenient to consider the existence of gravitational 
waves in analogous manner to electromagnetic waves. Before going on to discuss this aspect in more detail one 
could expect gravitational waves to carry energy away from a radiating source. However, there are some short-
comings of such an approach. Assigning an energy density to a gravitational field is notoriously difficult, both in 
principle and technically. In general relativity, the energy momentum of a gravitational field at one point in 
space-time has no real meaning. One way of circumventing such a problem is to take seriously the fact that all 
energy and momentum is contained within the stress-energy tensor. This has the important consequence that 
there is no energy and momentum left, which could be put within an own energy momentum tensor of the grav-
itational field. 
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3.29 Theorem. The probability tensor as associated with Einstein’s tensor Gµv 
Claim. 
In general, it is 

 
 

(438) 
 
 
Direct proof. 
In general, axiom I is determined as 
 

(439) 
 
Multiplying by the tensor of the unified field 1µv, we obtain 
 

(440) 
 
or 

(441) 
 
Multiplying this equation by Einstein’s tensor Gµv, it is 
 
 

 
(442) 

or in general to 
 

 
(443) 

 
 
Multiplying by the tensor RYµv it is 

 
(444) 

 
 
The commutative multiplication with the tensor RYµv yields the probability tensor as associated with the tensor 
Gµv.  

 
(445) 

 
 
Due to our theorem before, it is RYµv = R

*Ψµv  = (1µv/Rµv). The equation before simplifies as 
 
 

(446) 
 
 
Quod erat demonstrandum. 
 
 
 
 

0 µv µv µv µv

R
C G R g

2

  ≡ ≡ − ×  
  

1 1+ = +

µv µv1 1 1 1∩ = ∩

µv µv1 1=

µv R µv 0 µv R µvG Y C Y∩ ≡ ∩

µv µvG G≡

( ) ( )µv 0 µv µv R µv 0 µv R µvp G p C G Y C Y≡ ≡ ∩ ≡ ∩

( ) ( ) µv
µv µv* *

0 µv µv R µv 0 µv R µv 0 µv µv
µv µv µv

R
g1 G 2p G p C G C C 1

R R R

×
≡ ≡ ∩ Ψ ≡ ∩ Ψ ≡ ∩ ≡ = −

( ) ( ) µv
µv µv* *

0 µv µv R µv 0 µv R µv 0 µv µv
µv µv µv

R
g1 G 2p G p C G C C 1

R R R

×
≡ ≡ ∩ Ψ ≡ ∩ Ψ ≡ ∩ ≡ = −
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3.30 Theorem. The probability tensor as associated with anti Einstein’s tensor Gµv 
Claim. 
In general, it is 

 
 

(447) 
 
 
 
Direct proof. 
In general, axiom I is determined as 
 

(448) 
 
Multiplying by the tensor of the unified field 1µv, we obtain 
 

(449) 
 
or 

(450) 
 
Multiplying this equation by anti Einstein’s tensor Gµv, it is 
 
 

 
(451) 

or in general to 
 

 
(452) 

 
Multiplying by the tensor RYµv it is 

 
(453) 

 
 
The commutative multiplication with the tensor RYµv yields the probability tensor as associated with the tensor 
Gµv.  

 
(454) 

 
 
Due to our theorem before, it is RYµv = R

*Ψµv  = (1µv/Rµv). The equation before simplifies as 
 
 

(455) 
 
 
 
Quod erat demonstrandum. 
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2 2
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µv µvG G≡
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R
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×
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Scholium. 
The following 2x2 table may illustrate the basic relationships between the tensors (Table 5). 
 

         Table 5. The unified field RWµv.                                                   

 
 Curvature 

 
yes no 

Energy /  
momentum 

yes Aµν  Bµν  R Uµν  

no Cµν  Dµν  R Uµν  

 0Wµν  0Wµν  RWµν  

 
 
Under conditions of general theory of relativity, in terms of probability tensors, we obtain the following table 
(Table 6). 
 

         Table 6.The unified field in terms of probabitliy tensors .                               

 
 Curvature 

 
yes no 

Energy /  
momentum 

yes ( )p Aµν  ( )p Bµν  ( )Rp Eµν  

no ( )p Cµν  ( )p Dµν  ( )Rp tµν  

 ( )p Gµν  ( )p Gµν  1µν  

 
 
 
 

3.31 Theorem. Einstein’s Weltformel 

As long as humans have been trying to understand the laws of objective reality, they have been proposing theo-
ries. In contrast to the well-known quantum theory, the most fundamental theory of matter currently available, 
Laplace's demon and Einstein's Weltformel are related more widely at least by standing out against the indeter-
minacy as stipulated by today's quantum theory. Randomness as such does not exclude a deterministic relation-
ship between cause and effect, since every random event has its own cause. The purpose of this publication is to 
provide a satisfactory description of the microstructure of space-time by mathematising the deterministic rela-
tionship between cause and effect at quantum level in the form of a mathematical formula of the causal rela-
tionship k. 
 
Despite our best and different approaches of theorists worldwide spanning more than thousands of years taken to 
describe the workings of the universe in general, to understand the nature at the most fundamental quantum level 
and to develop a theory of everything progress has been very slow. There are a lot of proposals and interpreta-
tions, some of them grounded on a picturesque interplay of observation and experiment with ideas. In short, the 
battle for the correct theory is not completely free of metaphysics. Yet, besides of the many efforts and attempts 
to reconcile quantum (field) theory with general relativity an ultimate triumph of human reason on this matter is 
not in sight. There is still no single theory which provides a genuine insight and understanding of gravity and 
quantum mechanics, one of the most cherished dreams of physics and of science as such. Einstein’s Weltformel 
or a “final” or “ultimate” theory of everything (ToE) as a hypothetical theoretical framework of philosophy, 
mathematics and physics capable of describing all phenomena of objective reality should rest at least on general 
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relativity (GR) and quantum (field) theory (Q(F)T). Still, physicists have experimentally confirmed that (GR) 
and (Q(F)T) as they are currently formulated are to some extent mutually incompatible and cannot both be right 
in the same respect. Thus far, some of today’s front runners are the string theory, the loop quantum gravity et 
cetera and the quantum field theory. Among the numerous alternative proposals for reconciling quantum physics 
and general relativity theory, the mathematical and conceptual framework of quantum field theory  (Q(F)T) 
covers the electromagnetic, the weak and the strong interaction. In quantum field theory, there is a field associ-
ated to each type of a fundamental particle that appears in nature. However, quantization of a classical field 
proposed by quantum field theory is (philosophically) unsatisfactory since the very important and fundamental 
force in nature, gravitation, has defied quantization so far. The problems are related to the quantum mechanical 
framework as such. The usual axioms of quantum mechanics say that observables are represented by Hermitian 
operators which is not entirely true. At least one observable in quantum mechanics is not represented by a Her-
mitian operator: the time it self. Today, the time itself enters into the mathematical formalism of quantum me-
chanics but not as an eigenvalue of any operator. Our subsequent discussion will be restricted almost completely 
to both, the principles of general relativity and quantum theory. 
 
Claim. 
In general, the mathematical formula of the causal relationship k (Einstein’s Weltformel) follows as 
 
 

 
(456) 

 
 
Direct proof. 
As a rule, the point of departure is axiom I. In general, axiom I is determined as 
 

(457) 
 
Multiplying be the tensor of the unified field 1µv, we obtain 
 

(458) 
 
or 

(459) 
 
 
Multiplying this equation by the tensor of the cause RUµv, we obtain  
 

(460) 
 
or 
 

(461) 
 
 
Multiplying by the tensor of the effect 0Wµv, it is 
 

(462) 
 
 
 
Due to our definition of standard deviation of the cause , it is               
 

1 1+ = +

µv µv1 1 1 1∩ = ∩

µv µv1 1=

µv R µv µv R µv1 U 1 U∩ = ∩

R µv R µvU U=

R µv 0 µv R µv 0 µvU W U W∩ = ∩

( )
( ) ( )( )( )

R

R
2

R R

U
U

p U 1 p U

µν
µν

µν µν µν

σ
≡

∩ −

( ) ( )
( ) ( )

( ) ( ) ( )( )
( ) ( )( )( ) ( ) ( )( )( )

R µv 0 µv R µv 0 µvR µv 0 µv

R µv 0 µv
2R 0 µv

R R 0 µv 0 µv

p U , W p U p WU , W
k U , W

U W p U 1 p U p W 1 p Wµν
µν µν µν µν

− ∩σ
= =

σ ∩ σ ∩ − ∩ ∩ −
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Substituting this relation into the equation above, we obtain 
 

 
(463) 

 
 
 
 
Due to our definition of standard deviation of effect, it is               
 
 
Substituting this relation into the equation before, we obtain 
 
 

 
(464) 

 
 
 
 
According to the definition of the co-variance of cause and effect, it is 
 
 

               
 
 
 
Substituting this relationship into the equation before, we obtain 
 
 

 
(465) 

 
 
Rearranging equation, it is 
 
 

 
(466) 

 
 
Einstein’s Weltformel, the mathematical formula of the causal relationship k,follows as 
 
 
 

 
(467) 

 
 
Quod erat demonstrandum. 
 
 

( )
( ) ( )( )( )

0 µv

0 µv

2
0 µv 0 µv

W
W

p W 1 p Wµν

σ
≡

∩ −

( )
( ) ( )( )( )

R

R µv 0 µv 0 µv
2

R R

U
U W W

p U 1 p U

µν

µν µν µν

σ
∩ = ∩

∩ −

( ) ( )
( ) ( )( )( ) ( ) ( )( )( )

R 0 µv

R µv 0 µv

2 2
R R 0 µv 0 µv

U W
U W

p U 1 p U p W 1 p W

µν

µν µν µν µν

σ ∩ σ
∩ =

∩ − ∩ ∩ −

( )
( ) ( ) ( )( )

( ) ( )
( ) ( )( )( ) ( ) ( )( )( )

R µv 0 µv R 0 µv

2 2R µv 0 µv R µv 0 µv R R 0 µv 0 µv

U , W U W

p U , W p U p W p U 1 p U p W 1 p W

µν

µν µν µν µν

σ σ ∩ σ
=

− ∩ ∩ − ∩ ∩ −

( )
( ) ( ) ( )( )

R µv 0 µv

R µv 0 µv

R µv 0 µv R µv 0 µv

U , W
U W

p U , W p U p W

σ
∩ ≡

− ∩

( )
( ) ( )

( ) ( ) ( )( )
( ) ( )( )( ) ( ) ( )( )( )

R µv 0 µv R µv 0 µvR µv 0 µv

2 2R 0 µv
R R 0 µv 0 µv

p U , W p U p WU , W

U W p U 1 p U p W 1 p Wµν
µν µν µν µν

− ∩σ
=

σ ∩ σ ∩ − ∩ ∩ −

( ) ( )
( ) ( )

( ) ( ) ( )( )
( ) ( )( )( ) ( ) ( )( )( )

R µv 0 µv R µv 0 µvR µv 0 µv

R µv 0 µv

2R 0 µv
R R 0 µv 0 µv

p U , W p U p WU , W
k U , W

U W p U 1 p U p W 1 p Wµν
µν µν µν µν

− ∩σ
= =
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Scholium. 
The range of the causal relationship is  -1µv  <  k(RU µv , 0W µv)  < +1 µv. In last consequence, negative parti-
cles can be derived from Einstein’s field equation. 
 
Causality and determinism (and prediction) are often equated even if both are not really the same. For a variety 
of reasons such an approach to determinism and causality is fraught with many problems. A further problem is 
posed by the fact that, as is today widely recognized, that the fundamental, exceptionless laws of nature are gov-
erned by the laws of quantum mechanics which itself is widely thought to be a strongly non-deterministic [31]- 
[34] theory. Roughly speaking, Einstein's dream of a complete [35] theory of quantum mechanics (i. e. hidden 
variable theory) with the goal “to restore to the theory causality and locality” [36], determinism and definiteness 
to micro-reality became [37] partly mistaken and/or misleading but not impossible [38] -[39] in principle. 
 
 
The causal relationship k, deeply connected with our understanding of objective reality, became a subject to 
clarification and mathematical analysis and has been investigated in a specific, well-defined theoretical context 
of the general theory of relativity as developed by the German-born theoretical physicist Albert Einstein. In or-
der for us to gain a clear understanding of the concept of causality or unified field theory under conditions of the 
general theory of relativity further explanation and investigation is required. Causality has been given various, 
usually imprecise definitions. Many scholars contributed to the notion of causality and determinism, among 
them Nicolas de Condorcet, Baron D'Holbach and Laplace [40]. One of these definitions is the known Laplace 
demon (sometimes referred to as Laplace's Superman, after Hans Reichenbach). The mechanical determinism 
generally referred to as Laplace demon is of course incompatible with the mainstream interpretations of today 
quantum mechanics which stipulates indeterminacy, and was formulated by Laplace as follows:  
  
“Une     intelligence      qui,      pour      un      instant      donné,      connaîtrait      
toutes     les      forces      dont      la      nature      est      animée,      et      la      
situation      respective      des      êtres      qui     la      composent,      si      d'ailleurs      
elle      était      assez      vaste     pour      soumettre     ces      données      à l'analyse,      
embrasserait      dans      la      même      formule      les     mouvements     des      
plus      grand      corps      de      l'univers      et      ceux      du      plus      léger      
atome:      rien      ne      serait      incertain      pour      elle,      l'avenir      comme      
le      passé      seraient      présents      à      ses      yeux.” [41] 
  
Laplace demon translated into English:  
 
“We may regard the present state of the universe as the effect of its past and the cause of its future. An intellect 
which at a certain moment would know all forces that set nature in motion, and  all  positions  of  all  
items  of  which  nature  is  composed,  if  this  intellect  were  also  vast enough to submit these 
data to analysis, it would embrace in a single formula the movements of  the  greatest  bodies  of  the  
universe  and  those  of  the  tiniest  atom;  for  such  an  intellect nothing  would  be  uncertain  
and  the  future  just  like  the  past  would  be  present  before  its eyes.”  
 
Thus far, to avoid certain major errors of definition, the geometrical tensorial representation of the mathematical 
formula of the causal relationship k (Einstein’s Weltformel) as 
 
 

 
(468) 

 
 
is valid for a chaotic and random system too and cannot be reduced to Laplace demon and his articulation of 
causal or scientific determinism. 

( ) ( )
( ) ( )

( ) ( ) ( )( )
( ) ( )( )( ) ( ) ( )( )( )

R µv 0 µv R µv 0 µvR µv 0 µv

R µv 0 µv

2R 0 µv
R R 0 µv 0 µv

p U , W p U p WU , W
k U , W

U W p U 1 p U p W 1 p Wµν
µν µν µν µν

− ∩σ
= =

σ ∩ σ ∩ − ∩ ∩ −



Ilija Barukčić 

 

 7

3 

4. Discussion 

Einstein had started unifying the electromagnetic and gravitational fields via pure geometry into a unified field 
[2] theory. In spite of failing success, Einstein tried to relate the macroscopic world of universal space-time to 
those in the physical phenomena in the submicroscopic world of the atom. Einstein’s modest hope and the key to 
a more perfect quantum theory was his epistemological and methodological position that a “real state” of a 
physical system exists objectively and independent of any observation or measurement, independent of human 
mind and consciousness. Still only a rather small number of theoretical physicists devoted their work to the 
search for a unified theory and the unification of electromagnetism and gravitation has apparently faded into the 
background at least since the death of Einstein. 
 
For the convenience of the reader, some of the mathematical formalism given by general relativity theory is re-
peated in a slightly extended form only as much as needed for an understanding of this paper. In general, for the 
geometrization and the quantization of the fields, various geometric frameworks can been chosen. The geomet-
rical structures of the underlying probability field enables the transformation to different geometric frameworks. 
 
Under conditions of general theory of relativity, we obtain the following relationships (Table 7). 

Table 7. Unified field theory under conditions of the theory of general realtivity                               

 
 Curvature 

 
yes no 

En-
ergy 

/  
mo
men
tum 

y
e
s 
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µv µv µv µv
µv

µv µv µv µ
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4 2
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c c c c

                                        
1 1

 
4 4
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Curvature excludes momentum and vice versa 
 
Under conditions where curvature excludes momentum, the stress-energy tensor of ordinary matter 0Eµv is 
equivalent to zero we obtain 

Table 8. Curvature excludes momentum and vice versa.                                                  
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or the equation 
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From this assumption we obtain 
 
 

(470) 
 
 
Such a manifold is determined by the fact that all energy and momentum is contained within the stress-energy 
tensor of the electromagnetic field. 
 
Momentum implies curvature 
 
Under conditions of general relativity, there are circumstances where momentum implies curvature. Such mani-
folds are determined by the stress-energy tensor of the electro-magnetic field which is equal 0Eµv=0. Under these 
conditions we obtain 
 

(471) 
 
 
The following 2x2 table may illustrate these circumstances (Table 9). 

Table 9. Momentum implies curvature.                                                               

 
 Curvature 

 
yes no 

En-
ergy 

/  
mo
men
tum 

y
e
s 

µv µv µv µv
µv

µv µv µv µv

4 2
T

c c c c

 ∩ ∩ π ∩ γ
∩  ∩ ∩ ∩ 

 0  µv µv µv µv
µv

µv µv µv µv

4 2
T

c c c c

 ∩ ∩ π ∩ γ
∩  ∩ ∩ ∩ 

 

n
o µν−Λ ∩ g  

R

2 µν
 ∩ 
 

g  
R

2 µν µν
 ∩ − Λ ∩ 
 

g g
 

 Gµν  R

2 µν
 ∩ 
 

g  Rµν  

 
Without momentum no curvature 
 
Under conditions of general relativity, manifolds can be determined by the fact that without momentum no cur-
vature. Under these conditions it is 
 
 

(472) 
 
 
and the stress energy tensor of the electromagnetic field is determined by the equation 
 
 

(473) 
 
 
The question of course is, are there circumstances at all, where the stress energy tensor of the electromagnetic 
field is determined by the equation before. The following 2x2 table may illustrate these circumstances (Table 
10). 
 
 
 

( )µv µv µv µv
µv

µv µv µv

  

µv

4 2
T

c c c 4c

1 1

4
µν ν

µ ν µν ν
µν

     × × − × × ×       ×   

 ∩ ∩ π ∩ γ
∩ =  ∩ ∩ ∩   

c d
c dF F g F F

π

( )  1 1
0

4 4
µν ν

µ ν µν ν
µν

     × × − × × × =       ×     

c d
c dF F g F F

π

( ) µ
  

v

1 1
0g

4 4
µν ν

µ ν µν ν
µν

     × × − × × × =       ×   
+ − Λ ∩

 

c d
c dF F g F F

π

( ) v
  

µg
1 1

4 4
µν ν

µ ν µν ν
µν

     × × − × × × =       ×    
+ Λ ∩



c d
c dF F g F F

π
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Table 10. Without momentum no curvature.                                                           

 
 Curvature 

 
yes no 

En-
ergy 

/  
mo
men
tum 

y
e
s 

µv µv µv µv
µv

µv µv µv µv

µv

4 2
T

c c c c

                                         g

 ∩ ∩ π ∩ γ
∩  ∩ ∩ ∩ 

− Λ ∩

 

µv

                  

                   g+ Λ ∩

 
µv µv µv µv

µv
µv µv µv µv

4 2
T

c c c c

 ∩ ∩ π ∩ γ
∩  ∩ ∩ ∩ 

 

n
o 0  

µv                   - g

R

2 µν

Λ ∩

 ∩ 
 

g

 

R

2 µν µν
 ∩ − Λ ∩ 
 

g g

 

 Gµν  
R

2 µν
 ∩ 
 

g

 

Rµν  

 
 
 
Momentum or curvature 
One feature of manifolds determined by momentum or curvature is the validity of the equation 
 
 

(474) 
 
 
 
Consequently, under these circumstances the stress energy tensor of the electromagnetic field is determined by 
the equation 
 

(475) 
 
 
 
The following 2x2 table may illustrate this manifold in more detail (Table 11). 
 
 
 

Table 11. Momentum or curvature.                                                                  

 
 Curvature 

 
yes no 

En-
ergy 

/  
mo
men
tum 

y
e
s 

µv µv µv µv
µv

µv µv µv µv

4 2
T

c c c c

R
                                         

2 µν

 ∩ ∩ π ∩ γ
∩  ∩ ∩ ∩ 

 − ∩ 
 

g

 
R

2 µν
 + ∩ 
 

g

 
µv µv µv µv

µv
µv µv µv µv

4 2
T

c c c c

 ∩ ∩ π ∩ γ
∩  ∩ ∩ ∩ 

 

n
o 

R
                                          +

2 µν

µν

 ∩ 
 

−Λ ∩

g

g

 

0  
R

2 µν µν
 ∩ − Λ ∩ 
 

g g

 

 Gµν  
R

2 µν
 ∩ 
 

g

 

Rµν  

 
 
 
 
 
 
 
 

( )  R

2

1 1
0

4 4
µν ν

µν µ ν µν ν
µν

     × × − × × × =       ×    

 ∩ − 
 

c d
c dg F F g F F

π

( )  R1 1

4 24
µν ν

µ ν µν ν µν
µν

     × × − × × × =       ×    

 ∩ 
 

c d
c dF F g F F g

π
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Either momentum or curvature 
Manifolds determined by either momentum or curvature are illustrated by the following 2x2 table (Table 12). 
 

Table 12. Either momentum or curvature.                                                             

 
 Curvature 

 
yes no 

En-
ergy 

/  
mo
men
tum 

y
e
s 

( )

µv µv µv µv
µv

µv µv µv µ

 

v

 

4 2
T

c c c c

                                        
1 1

 
4 4

µν ν
µ ν µν ν

µν

     × × − × × ×       

 ∩ ∩ π ∩ γ
∩

×   

 ∩ ∩ ∩ 


−

 

c d
c dF F g F F

π

 

( )                
1

  
1

  
4 4

µν ν
µ ν µν ν

µν

     × × − × × ×       ×     
+ c d

c dF F g F F
π

 
µv µv µv µv

µv
µv µv µv µv

4 2
T

c c c c

 ∩ ∩ π ∩ γ
∩  ∩ ∩ ∩ 

 

n
o 

( )                                 
1 1

4 4
+ µν ν

µ ν µν ν
µν

µν

     × × − × × ×       ×    

−Λ ∩


c d
c dF F g F F

π

g

 

( )                     -

R

2

1 1

4 4
µν ν

µ ν µν ν
µν

µν

     × × − × × ×       ×     

 ∩ 
 

c d
c dF F g F F

π

g

 

R

2 µν µν
 ∩ − Λ ∩ 
 

g g

 

 Gµν  
R

2 µν
 ∩ 
 

g

 

Rµν  

 
The either momentum or curvature manifold is determined by the equation  
 
 

(476) 
 
 
and by the equation 
 
 

(477) 
 
 
The following 2x2 table may illustrate this manifold in more detail (Table 13). 

Table 13. Either momentum or curvature.                                                             

 
 Curvature 

 
yes no 

En-
ergy 

/  
mo
men
tum 

y
e
s 0  

R

2 µν
 ∩ 
 

g
 µv µv µv µv

µv
µv µv µv µv

4 2
T

c c c c

 ∩ ∩ π ∩ γ
∩  ∩ ∩ ∩ 

 

n
o 

R
                               +

2 µν

µν

 ∩ 
 

−Λ ∩

g

g

 

0  
R

2 µν µν
 ∩ − Λ ∩ 
 

g g

 

 Gµν  
R

2 µν
 ∩ 
 

g

 

Rµν  

 
In last consequence, this manifold is determined by the equation 
 
 

(478) 
 

 
At the end, either momentum or curvature manifolds are described by the equation 
 
 

(479) 
 

( )  R

2

1 1
0

4 4
µν ν

µν µ ν µν ν
µν

     × × − × × × =       ×    

 ∩ − 
 

c d
c dg F F g F F

π

( )µv µv µv µv
µv

µv µv µv µv

  4 2
T

c c c c

1 1
0

4 4
µν ν

µ ν µν ν
µν

     × × − × × × = 
 ∩ ∩ π ∩ γ

∩ −      ×   
 ∩ ∩ ∩    

c d
c dF F g F F

π

R R
R

2 2µν µν µν µν µν µν µν
   ∩ − Λ ∩ + ∩ = ∩ − Λ ∩ = Λ ∩ =   
   

g g g g g g R

Rµν µν µν+Λ ∩ + Λ ∩ = ∩g g g
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where Λ denotes anti lamda, the anti cosmological constant. Under these conditions, anti lambda describes the 
geometrical structures underlying the unified hyper-field of electromagnetism and gravitation, the unifying of 
the electromagnetic and gravitational fields into a hyper-field via pure geometry. 
 
 

5. Conclusions 

For the geometrization of fields, various geometric frameworks can been chosen. This probability theory com-
patible approach to the unified field theory enable the us of different geometric frameworks depending upon 
circumstances. The relationship between cause and effect is expressed completely in the language of tensors 
while demonstrating the close relationship to Einstein’s general theory of relativity and Einstein’s field equation.  
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